实验三-叠加原理的验证
- 格式:docx
- 大小:141.43 KB
- 文档页数:4
实验三叠加原理和戴维南定理验证实验三叠加原理和戴维南定理验证 2学时(一)叠加原理的验证一、实验目的验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。
二、原理说明叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电源或电压的代数和。
线性电路的齐次性是指当激励信号(某独立源的值)增加或减少 K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减少K倍。
三、实验设备表(一)序号名称型号与规格数量备注二路1 直流稳压电源0 ~ 30V可调2 可调直流恒流源0 ~ 500mA1可调3 直流数字电压表 14 直流数字毫安表 1四、实验内容实验线路如图(一)所示,用 HE-12挂箱的“基尔霍夫定律/叠加原理”线路。
1、将电压源的输出调节为12V,电流源的输出调节为7mA,接入 U S 和 I S 处。
2、令 U S 电源单独作用(将开关 K1投向 U S 侧,开关 K2投向开路侧)。
用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表(二)。
表(二)单独作用单独作用、共同作用单独作用3、令 I S 电源单独作用(将开关 K1投向短路侧,开关K2投向 I S 侧),重复实验步骤 2的测量和记录,数据记入表(二)。
1、验证戴维南定理的正确性,加深对该定理的理解。
2、掌握测量有源二端网络等效参数的一般方法。
二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其佘部分看作是一个有源二端网络(或称为含源一端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势 U S 等于这个有源二端网络的开路电压 U OC ,其等效内阻 R 0 等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
实验三叠加定理的验证一、实验目的1.学习用电压表监测调节可调电压源合适电压的方法。
2.学习导线接通的电阻式测量方法。
3.验证叠加定理的正确性,加深对叠加定理的理解和认识。
二、实验器材可调直流稳压电源、直流数字毫安表、直流数字电压表、基尔霍夫定律试验板、数字多用表。
三、实验原理叠加定理:在线性电路中,当电路里有多个电源共同作用时,某一支路的响应等于电路中所有独立电源单独作用时在该支路产生响应的代数和。
示例如下图所示:////// 图中:i=i+i, u=u+u即叠加定理的表达形式。
111222注意:叠加定理对非线性电路并不满足。
四、实验电路图图3-1验证基尔霍夫定律和叠加定理的原理图图中330Ω电阻接入电路(线性电路)时电压、电流参数符合叠加定理。
二极管INTEX007接入电路(非线性电路)时电压、电流参数不符合叠加定理。
五、实验过程实验准备:将可调电源中的两路“0,30V可调输出”直流可调稳压电源的输出调至最小(调节旋钮轻轻逆时针旋到底),将试验台最下方的电源挂箱的总控开关向上合上。
将电源转接箱和其下方的“AC220V输出”通过所带的插头连接线连接电源插孔,并将电源转接箱电源插孔通过红、蓝粗线和可调电源及测量仪表一的电源插孔相连(L与L用红线连接,N与N用蓝线连接)。
验证叠加定理的操作过程实验步骤:(1) 将测量仪表一中的直流电压表并接在可调电源两端,打开电源开关,分别调节两路可调电源的输出旋钮,用直流电压表监测使两路可调电源的输出分别为E=6V、E=12V,然后断开电源开关。
12(2)从电路基础试验箱(一)中找到“基尔霍夫定理/叠加原理”图,并将图中的开关K、K向内置于短路位置。
12(3)再按照实验原理图3-1用导线将已调节好输出电压值的两路直流稳压源E1、E2分别引到原理图中的U1、U2口。
(4)将电流插头插入实验电路板中三条支路电流的I3测量插孔中,(插孔中未插入电流插头时插孔两边的导线连通,插入电流插头后两边导线只能通过电流插头的两根出线连通。
实验名称:叠加原理实验实验日期:2023年X月X日实验地点:电工实验室一、实验目的1. 理解叠加原理的基本概念。
2. 掌握叠加原理在电路分析中的应用。
3. 通过实验验证叠加原理的正确性。
二、实验原理叠加原理是线性电路分析中的一个重要原理,它表明在线性电路中,任一支路的电流或电压等于各独立源单独作用于电路时在该支路上产生的电流或电压的代数和。
即对于线性电路,任一支路的响应可以分解为各独立源单独作用时在该支路上产生的响应之和。
三、实验仪器与设备1. 交流电源:220V,50Hz2. 电阻箱:1个3. 电容箱:1个4. 电感箱:1个5. 电流表:1个6. 电压表:1个7. 双踪示波器:1台8. 连接线:若干四、实验步骤1. 搭建实验电路:根据实验要求,搭建一个线性电路,电路中包含电阻、电容和电感元件,以及所需的独立源。
2. 接通电源:将交流电源接入电路,确保电源电压稳定。
3. 测量电路响应:使用电流表和电压表分别测量电路中各个元件的电流和电压。
4. 单独激励独立源:依次断开电路中的独立源,只保留一个独立源,测量电路中各个元件的电流和电压。
5. 计算叠加响应:根据叠加原理,将各个独立源单独作用时产生的电流和电压相加,得到电路在多个独立源共同作用下的总响应。
6. 比较实际响应与计算响应:使用双踪示波器同时显示实际响应和计算响应的波形,比较两者是否一致。
五、实验数据与分析1. 搭建电路:按照实验要求搭建电路,连接好所有元件。
2. 测量电路响应:记录电路中各个元件的电流和电压数据。
3. 单独激励独立源:依次断开独立源,测量电路中各个元件的电流和电压,并记录数据。
4. 计算叠加响应:根据叠加原理,将各个独立源单独作用时产生的电流和电压相加,得到电路在多个独立源共同作用下的总响应。
5. 比较实际响应与计算响应:使用双踪示波器同时显示实际响应和计算响应的波形,观察两者是否一致。
六、实验结果与结论1. 实验结果表明,在多个独立源共同作用下的电路响应,可以通过叠加原理计算得到。
叠加原理的实验报告叠加原理的实验报告引言:在物理学中,叠加原理是一项基本原理,它指出在线性系统中,多个波或力的效应可以简单地叠加在一起。
本次实验旨在通过一系列实验验证叠加原理的有效性,并探究其在不同情境下的应用。
实验一:光的干涉实验在这个实验中,我们使用了一台双缝干涉装置。
首先,我们将一束单色光通过一个狭缝,然后通过另一个狭缝,最后观察到干涉条纹的形成。
接下来,我们将两个狭缝分别遮挡住,只保留其中一个狭缝。
我们观察到,当只有一个狭缝开启时,干涉条纹消失,只有一条亮度均匀的光斑。
这表明,当两个光源同时存在时,它们的光波相互叠加形成干涉现象。
实验二:声音的叠加实验在这个实验中,我们使用了两个音响扬声器。
首先,我们单独打开一个扬声器,可以听到清晰的声音。
接下来,我们同时打开两个扬声器,发现声音变得更加响亮。
这是因为两个扬声器发出的声波相互叠加,增强了声音的强度。
我们还进行了位置调整的实验,将两个扬声器分别放置在不同的位置,发现声音的强度会随着位置的改变而发生变化。
这进一步验证了叠加原理在声音传播中的应用。
实验三:力的叠加实验在这个实验中,我们使用了一个力传感器和几个弹簧。
首先,我们单独挂上一个弹簧,测量其受力情况。
接下来,我们挂上第二个弹簧,测量受力情况。
我们发现,当两个弹簧同时挂上时,力传感器所示的受力值等于两个弹簧单独受力值的总和。
这说明在受力系统中,多个力可以简单地叠加在一起,形成一个等效的力。
实验四:电路中电压的叠加实验在这个实验中,我们使用了一个简单的电路,包括一个电源和几个电阻。
首先,我们测量每个电阻上的电压值。
接下来,我们将电阻连接在一起,形成一个并联电路。
我们发现,每个电阻上的电压之和等于电源的电压。
这表明在电路中,电压可以按照叠加原理进行计算,不同电阻上的电压可以简单地相加。
结论:通过以上实验,我们验证了叠加原理在光的干涉、声音传播、力的叠加以及电路中电压叠加等方面的有效性。
叠加原理的应用广泛,不仅在物理学中有重要意义,也在其他领域如电子工程、声学和光学等方面发挥着重要作用。
基尔霍夫叠加原理的验证实验报告一、实验背景与目的嗨,朋友们!今天我要和大家分享一次超有趣的实验——基尔霍夫叠加原理的验证实验。
你们有没有想过,电路里那些电流和电压就像一群调皮的小精灵,它们到底遵循着怎样的规则在电路里跑来跑去呢?基尔霍夫叠加原理就像是这个电路世界的魔法咒语,能让我们弄清楚复杂电路中的电流和电压情况。
我呀,就像一个好奇的探险家,带着满心的期待走进这个实验,想要亲自验证这个神奇的原理。
二、实验器材实验开始前,我和我的小伙伴们准备了好多东西呢。
有电源、电阻、导线,还有电流表和电压表。
那些电阻就像一个个小守卫,规规矩矩地站在电路里。
电源呢,就像是能量的大仓库,随时准备给整个电路输送能量。
电流表和电压表就像是我们的小眼睛,能帮我们清楚地看到电流和电压的大小。
我当时就兴奋地对小伙伴说:“咱们就靠着这些小玩意儿,就能揭开基尔霍夫叠加原理的神秘面纱啦!”小伙伴也特别激动,说:“那可不,感觉就像要去发现一个大宝藏一样!”三、实验原理基尔霍夫叠加原理说的是什么呢?简单来讲,就好比一群人在做不同的工作,总的工作量就等于每个人单独工作的量加起来。
在电路里,一个电路中有多个电源的时候,某条支路的电流或者电压,就等于每个电源单独作用时在这条支路产生的电流或者电压的代数和。
这就像是几个厨师一起做菜,最后这道菜的味道,就等于每个厨师单独做菜的味道混合起来一样奇妙。
我当时就跟小伙伴打趣:“这电路里的事儿,和咱们做饭还真有点像呢!”小伙伴哈哈大笑,说:“你这比喻可真逗!”四、实验步骤1. 首先,我们连接了一个有两个电源的电路。
这个电路看起来就像一个复杂的迷宫,那些导线弯弯绕绕的。
我一边连接导线,一边小心翼翼的,就怕接错了。
小伙伴在旁边看着电压表和电流表,还时不时地提醒我:“小心点儿,可别把线接错啦,不然咱们就找不到正确的‘宝藏’啦!”我心里想着,这可不能马虎呀,就像盖房子,一块砖放错了位置,整座房子都可能出问题呢。
实验3_线性电路叠加原理和齐次性的验证(自动)一、实验目的1. 理解线性电路叠加原理和齐次性原理的基本概念和意义;2. 掌握叠加原理和齐次性原理的实验验证方法和实验步骤;3. 培养学生使用实验仪器测试线性电路的能力。
二、实验原理1. 线性电路叠加原理:叠加原理是对于由多个不同的独立源作用于同一电路中的电压和电流的关系,可以通过叠加各个源的作用来求得最终的电压和电流的规律的一种方法。
线性电路在满足叠加原理的情况下,可以将各个电源的作用逐一地计算出来,最后进行叠加求和。
叠加原理的表述如下:对于多个独立源同时作用于线性电路中,每个电源单独作用时,电路中的电压、电流和功率等物理量的值,等于这个电源在电路中单独存在时引起的电压、电流和功率等物理量的值的代数和。
2. 齐次性原理:齐次性原理是指在电路中,如果所有的初始条件(即在某一初始状态下的电压、电流、充电等状态)都为零,则电路的响应也将为零。
这是由于电路的状态不发生变化,导致了电路中的各个元件的电压、电流等物理量都不发生变化,相应的电路响应也为零。
齐次性原理的表述如下:如果线性电路的输入为零,则输出也为零。
三、实验装置与设备1. 普通电压源;2. 万用电表;3. 实验电路图(如图1、图2)。
四、实验步骤(1)按照实验电路图1搭建线性电路。
(2)将普通电压源V1和V2的正负极分别接入电路中的两个不同的电阻上,调节电压源的电压为10V和5V。
(3)使用万用电表测量R1、R2、R3的电阻值,并记录下来。
(4)测量电路中R1两端的电压(记作V1)和R2两端的电压(记作V2)。
(6)根据叠加原理和测量结果,计算出电路中R1和R2两端的电压的大小。
(7)与测量结果进行比较,观察并分析误差的产生原因。
(3)分别记录电源开关开关前后各个电阻的电压值,并记录下来。
(4)打开电源开关使电流通过电路。
五、实验结果与分析(1)测得R1的电阻值为45.6Ω,R2的电阻值为33.3Ω,R3的电阻值为67.9Ω。
叠加原理的验证实验报告实验目的:验证叠加原理,即线性系统对于多个输入信号的响应等于各个输入信号单独作用于系统后得到的响应的叠加。
实验材料:1. 功放电路,用于放大输入信号和系统响应信号;2. 信号发生器,用于产生多个不同频率的输入信号;3. 混频器,用于将多个输入信号混合;4. 示波器,用于显示输入信号和系统响应信号;5. 连接线等。
实验步骤:1. 将功放电路、信号发生器、混频器和示波器按照图示连接,确保连接正确可靠;2. 打开信号发生器,设置一个频率为f1的正弦波作为第一个输入信号;3. 调节信号发生器的幅度控制旋钮,观察示波器上显示的输入信号幅度变化;4. 记录下第一个输入信号的幅度;5. 关闭信号发生器,重新打开并设置一个频率为f2的正弦波作为第二个输入信号;6. 调节信号发生器的幅度控制旋钮,观察示波器上显示的输入信号幅度变化;7. 记录下第二个输入信号的幅度;8. 关闭信号发生器,重新打开并设置一个频率为f1+f2的正弦波作为第三个输入信号;9. 调节信号发生器的幅度控制旋钮,观察示波器上显示的输入信号幅度变化;10. 记录下第三个输入信号的幅度;11. 连接信号发生器的输出端与功放电路的输入端,并设置输入信号的频率为f1;12. 打开功放电路,观察示波器上显示的系统响应信号;13. 记录下系统响应信号的幅度;14. 重复步骤12和13,分别设置输入信号的频率为f2和f1+f2;15. 将第一个输入信号的幅度、第二个输入信号的幅度、第三个输入信号的幅度以及相应频率下的系统响应信号的幅度整理成表格。
实验结果:输入信号的频率(Hz)输入信号的幅度系统响应信号的幅度f1 A1 B1f2 A2 B2f1+f2 A3 B3实验结论:根据叠加原理,系统对多个输入信号的响应等于各个输入信号单独作用于系统后得到的响应的叠加。
通过实验验证,实验结果表明,在相同幅度的输入信号下,系统响应信号的幅度等于各个输入信号的幅度的叠加。
叠加原理的验证实验(电工学实验).doc
叠加原理是电工学中非常重要的基本原理,它指出在一个线性的、稳态的电路中,每个电源单独作用时,电路中的电流、电势及功率等物理量可以按照其单独作用时的结果来计算。
换句话说,如果一个电路中有多个电源作用,那么每个电源都可以看做是单独作用的,而整个电路中电流、电势及功率等物理量的总和就是所有单独作用结果的代数和。
为了验证叠加原理的正确性,我们可以进行如下的实验:
【实验材料】:
1.电源:直流电源和交流电源各一台;
2.电阻:10欧姆、20欧姆、30欧姆、40欧姆、50欧姆、60欧姆、70欧姆、80欧姆、90欧姆、100欧姆共10个,分别编号为R1-R10;
3.万用表:VC8145A型数字台式万用表一台。
1.将直流电源连接至一个电阻上,用万用表测量该电阻上的电流和电势(电压),记录下来。
3.将两次测量所得的电流和电势相加,得到该电路中的总电流和总电势(电压)。
4.将上述实验步骤中使用的电阻换成另一个电阻,并重复步骤1-3,直至所有的电阻都被测量完毕。
1.在连接电路时要注意正确连接,以免损坏电源和电阻等器件。
2.测量电阻、电流和电势(电压)时要仔细操作,防止出现测量误差。
3.在交流电路中,要注意相位的影响,以免对测量结果产生影响。
叠加原理的验证
实验要求
【实验目的】用实验方法验证叠加原理的正确性。
学习复杂电路的连接方法,进一步熟悉直流电流表的使用。
【实验仪器】直流稳压电源(两台),分别为12V和6V;万用表;转换开关(两个);标准电阻(三个),分别为100Ω、430Ω和180Ω。
【实验原理】叠加原理是指几个电源在线性电路的任何部分共同作用所产生的电流和电压等于这些电源单独地在该部分所产生的电流或电压叠加的结果。
【实验内容】按照所给的电路图搭建电路(图3-3)。
【注意事项】按实验所给图形接线后,必须设置接地连接,(例如将电源负极接地),
否则无法进行实验。
【实验步骤】
(1)测出S1接1端,同时S2接1端时的电流IL。
(2)将开关S1接至1端,S2接至2端,使12V电源单独作用,测出此时通过R1的电流I11和通过R2的电流I21;将开关S1接至2端, S2接至1端,使6V电源单独作用,测出此时通过R1的电流I12和通过R2的电流I22;令I1=I11+I12,I2=I21+I22,注意电流的方向和符号。
将上述2步所测数据填写到表1 (3)测出S1接1端,S2接2端,各支路的电压U1、U2、UL。
(4)测出S1接2端,S2接1端,各支路的电压U1、U2、UL。
(5)测出S1接1端,S2接1端,各支路的电压U1、U2、UL。
将上述3组所测数据分别填入表2
实验结论:
(1)实验数据表格
表1:叠加原理的验证—数据记录
(1)
表2:叠加原理的验证—数据记
录(2)
(2)总结结论,验证叠加定理的正确性。
验证叠加原理实验报告一、实验目的。
本实验旨在验证叠加原理在物理实验中的应用,通过实验数据和分析,验证叠加原理在电学和力学中的有效性和适用性。
二、实验原理。
叠加原理是指在多个力或多个电场作用下,系统的受力或受电场的情况等于每个力或电场分别作用下系统的受力或受电场的状况的矢量和。
在力学中,叠加原理适用于多个力作用下物体的受力情况;在电学中,叠加原理适用于多个电场作用下电荷的受力情况。
三、实验材料和方法。
1. 实验材料,电磁感应实验装置、电磁铁、导线、电源等。
2. 实验方法,首先设置好实验装置,然后通过调节电源和导线的位置,使得电磁感应实验装置中的电磁铁受到不同方向和大小的电场作用。
四、实验步骤。
1. 首先,将电磁感应实验装置中的电磁铁放置在原点处,记录下电磁铁受到的电场作用情况。
2. 然后,通过调节导线的位置,使得电磁感应实验装置中的电磁铁受到另一方向和大小的电场作用,记录下电磁铁受到的电场作用情况。
3. 最后,分析实验数据,验证叠加原理在电学中的适用性。
五、实验数据和分析。
通过实验记录和数据分析,我们发现在不同电场作用下,电磁铁受到的受力情况与叠加原理的预测值非常接近,验证了叠加原理在电学中的有效性和适用性。
六、实验结论。
本实验通过验证叠加原理在电学中的应用,得出了叠加原理在电学中的有效性和适用性。
叠加原理在电学中的应用为我们理解电场作用下物体受力情况提供了重要的理论基础和实验依据。
七、实验总结。
通过本次实验,我们不仅验证了叠加原理在电学中的应用,也加深了对叠加原理的理解和应用。
叠加原理在物理学中具有广泛的应用价值,对于理论研究和实际应用都具有重要意义。
八、参考文献。
1. 《大学物理实验教程》。
2. 《物理学实验指导书》。
以上为验证叠加原理实验报告的全部内容。
电路实验报告-叠加原理的验证电路实验报告,今天咱们要聊聊叠加原理的验证。
叠加原理听起来挺复杂,但其实就是把多个信号的影响分开来分析,这样就能更清楚地理解电路的运行。
我们这次实验主要是通过实际操作,亲身体验这个原理的神奇。
一、实验目的和理论背景1.1 实验目的咱们这次实验的目标,就是验证叠加原理在电路中的应用。
希望通过实验能看到在不同电源下,电流是如何变化的。
简单来说,就是想搞清楚,电路里每个部分是怎么互相影响的。
1.2 理论背景叠加原理是电路分析中一个很重要的概念。
它说的是在一个线性电路中,各个独立电源对电路某一点的电流或电压的影响,可以单独计算,然后把结果加起来。
这个听起来有点儿理论,但在实际操作中却能让我们省不少事儿。
你想想,如果能把复杂的电路拆分成简单的部分,那做起来不就轻松多了吗?二、实验器材与步骤2.1 实验器材这次实验,我们准备了几个关键的器材。
电源、导线、欧姆表、万用表,还有几个电阻。
其实就是这些基础的东西,但它们能帮我们完成一场精彩的实验。
2.2 实验步骤第一步,连接电路。
按照图纸,把电源和电阻串联起来。
一定要小心,连接不对可就麻烦了。
第二步,测量电流。
用万用表量一下电流的大小。
第三步,换个电源,再测一次。
最后,咱们把每次测得的结果都记录下来。
简单吧?就像做饭,按部就班,一步步来。
2.3 数据记录实验过程中,我发现每次更换电源,电流的变化都挺明显的。
记录下来的数据,真是让人眼前一亮。
每次测量都有不同的结果,而这些结果都验证了我们的理论。
看到这里,心里就觉得特别踏实,真的是“眼见为实”。
三、数据分析与讨论3.1 数据分析把实验数据整理一下,发现电流的变化趋势明显符合叠加原理的预期。
每次有新的电源加进来,电流都按比例增大,简直就是数学和物理的完美结合。
咱们可以把这些数据画成图,能更直观地看到这个变化。
3.2 讨论不过,实验中也有一些小插曲。
有次接线不太对,导致测得的电流比预期低。
重新检查后,发现是导线接触不良。
实验3叠加定理的电路设计及验证一、实验目的1.掌握叠加定理的电路特点,设计相应的验证电路2.验证叠加定理3.通过实验加深对叠加定理的理解二、实验仪器及元件1.通用电学实验台1台2.电阻100Ω1支220Ω1支330Ω1支3.导线若干三、实验电路叠加原理指出:在有几个独立电源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立电源单独作用时在该元件上所产生的电流或电压的代数和。
具体方法是:一个电源单独作用时,其他的电源必须置为零(电压源短路,电流源开路);在求电流或电压的代数和时,当电源单独作用时电流或电压的参考方向与共同作用时的参考方向一致时,符号取正,否则取负。
叠加原理反映了线性电路的叠加性,叠加性只适用于求解线性电路中的电流、电压。
对于非线性电路,叠加性不再适用。
在本实验中,用直流稳压电源来近似模拟理想电压源,由其产生的误差可忽略不计,这是因为直流稳压电源的等效内阻很小。
由叠加定理的内容可以分析出电路的特点,如图1可以作为验证叠加定理的电路。
+ U -+U2-图1 叠加定理实验电路1四、实验方法1.首先粗调好直流稳压电源,使其两路输出U1、U2均在10V以下,最大不得超过14V。
2.按照实验电路图1接线。
3.测量U1、U2两个电源共同作用下的电路响应:●将电路中ef、gh、jk三处分别用短接线短接;●用直流电压表测量电源U1、U2的准确电压值;●用直流电压表测量k、m两点之间的电压值,即R3支路的电压响应U km;●断开ef间的短接线,在ef之间接入直流电流表测量R1支路的电流响应I1;●同样方法,再次测量R2、R3支路的电流响应I2和I3;●将实验数据记录入表1中。
4. 测量电源U1单独作用下的电路响应:●将电路中ef、gh、jk三处分别用短接线短接;●断开电源U2,将c、d两点用短接线短接;●用直流电压表测量k、m两点之间的电压值,即R3支路的电压响应U km;●断开ef间的短接线,在ef之间接入直流电流表测量R1支路的电流响应I1;●同样方法,再次测量R2、R3支路的电流响应I2和I3;●将实验数据记录入表1中。
广东第二师范学院学生实验报告
表3.4.1 叠加原理实验数据记录
五、实验报告要求
整理测试结果,根据叠加原理绘出实验电路的拆分电路。
说明为什么叠加原理是成立的。
测量项目 实验内容
1E
(V)
2E
(V)
1I
mA
2I
mA
3I
mA
AB U (V ) CD U (V ) AD U (V ) DE U (V ) EA U
(V )
1E 单独作用 12.05 6.03 14.23 9.45 4.80 4.79 0 4.79 0 -4.79 2E 单独作用
12.05 6.03 -4.53 -6.91 2.39 -3.55 0 2.32 0 -2.36 1E 、2E 共同作用
12.05 5.96 9.46 2.28 7.21 1.21 0 7.17 0 -7.16 22E 单独作用
12.05
12.00
-9.42
-14.23
4.81
-7.23
4.80
-4.80
由实验数据得出,在线性电阻电路中,某处电压或电流都是由电路中各个独立源单独作用时,在该处分别产生的电压或电流的叠加。
六、实验注意事项
1. 测量各支路电流时,应注意仪表的极性,以及数据表格中“+”、“—”号的记录。
2. 注意仪表量程的及时更换。
七、思考题
1. 对于非线性电路,是否也可应用叠加原理,为什么?
答:叠加定理不适用于非线性电路。
对于非线性电路,虽然各个电源单独作用时都有确定的电压(或电流),但是由于元件的非线性,施加不同电压(或电流)时,其阻值R也随之变化,因此电源共同作用时,电压(或电流)改变,同时R也改变,那么电流就不再是单独作用时的和值了,因此,非线性电路不能使用叠加定理。
2. 元件的关联参考方向在叠加原理中起到什么作用?
答:为电流电压的方向确定提供了前提,使后面进行代数和运算时更便利。
:八、实验心得
测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。
记录数据的时候记得考虑到参考方向,适当的添加“+”“-”表明方向,以免造成数据的错误。