高中数学奥林匹克竞赛试题
- 格式:doc
- 大小:137.00 KB
- 文档页数:6
2023年全国中学生数学奥林匹克竞赛(预赛)暨全国高中数
学联合竞赛一试及加试试题(A 卷)
学校:___________姓名:___________班级:___________考号:___________
二、解答题
9.平面直角坐标系xOy 中,抛物线2:4y x Γ=,F 为Γ的焦点,A ,B 为Γ上的两个不重合的动点,使得线段AB 的一个三等分点P 位于线段OF 上(含端点),记Q 为线段AB 的另一个三等分点.求点Q 的轨迹方程.
10.已知三棱柱111:ABC A B C Ω-的9条棱长均相等.记底面ABC 所在平面为α.若Ω的另
(1)点K在TDP
的外接圆上;
(2)K为定点.
13.正整数n称为“好数”,如果对任意不同于
参考答案:
取卡片(顶点)的规则可解释为:
(ⅰ)若顶点P 已取走,则以下每步取当前标号最小或最大的顶点,直至取完;
(ⅱ)若顶点P 未取走,则必为某个()(),,0G m n m n ≥的情形,此时若号顶点,
【详解】
()11,x y ,()22,B x y .)1,0.由于点P 位于线段t ,22y t =-,则1x ,B 不重合知0t ≠,所以)2x x +【详解】
,1B ,1C 在平面α上的投影分别为1C ,11ABB A ,11ACC A ,BCC
)
的圆心O,过点O作AB的平行线l ,D,P,K共圆及KD KP
=,可知=︒-∠=︒-∠=∠
9090
DTB ATD PBA
∠的平分线.所以点K在直线为DTP。
全国高中数学奥林匹克竞赛试题一、设集合A为所有满足条件“能被3整除且末位数字为7”的正整数的集合,集合B为所有满足条件“能被7整除且末位数字为3”的正整数的集合。
则集合A和B的交集:A. 只含有一个元素B. 含有有限个元素C. 含有无限多个元素D. 为空集(答案)C二、在三角形ABC中,角A、B、C的对边分别为a、b、c,若a + 2b = 3c,且sin A : sinB : sinC = 3 : 4 : 5,则cos C的值为:A. 1/5B. -1/5C. 3/5D. -3/5(答案)B三、已知函数f(x) = ax3 + bx2 + cx + d的图像经过点(0,1),且在x=1处取得极值,在x=-1处取得最值。
则a+b+c的值为:A. -1B. 0C. 1D. 2(答案)D四、设等差数列{an}的前n项和为Sn,若a1 = -23,且S10 = S14,则S20的值为:A. -110B. -90C. -70D. -50(答案)C五、已知椭圆C的方程为x2/a2 + y2/b2 = 1 (a > b > 0),其左焦点为F,过F作直线l 交椭圆C于A、B两点。
若|AF| = 3|FB|,且cos∠BFA = -5/13,则椭圆C的离心率为:A. √2/2B. √3/2C. 2√2/3D. √5/3(答案)A六、设函数f(x) = ex - ax - 1,若存在唯一的实数x0,使得f(x0) = 0,则实数a的取值范围为:A. a < 0B. 0 < a < 1C. a > 1D. a = 1(答案)C七、已知向量a = (1,2),b = (2,m),若a与b的夹角为锐角,则m的取值范围是:A. m > -1 且 m ≠ 4B. m > 4C. m ≠ 4D. -1 < m < 4(答案)A八、设函数f(x) = ln(x + 1) - x2/2,若对所有的x ∈ [0, +∞),都有f(x) ≤ ax + b ≤ x2/2 + ln(x + 1)成立,则a + b的最大值为:A. -1B. 0C. 1/2D. 1(答案)B。
高中数学奥林匹克竞赛试题(9月7日上午9:00-11:00) 注意事项:本试卷共18题,满分150分一、选择题(本大题共6个小题,每小题6分,满分36分) 1.定义在实数集R 上的函数y =f(-x)的反函数是y =f -1(-x),则(A)y =f(x)是奇函数 (B)y =f(x)是偶函数(C)y =f(x)既是奇函数,也是偶函数 (D)y =f(x)既不是奇函数,也不是偶函数2.二次函数y =ax 2+bx +c 的图象如右图所示。
记N =|a +b +c|+|2a -b|,M =|a -b +c|+|2a +b|,则(A)M >N (B)M =N (C)M <N(D)M 、N 的大小关系不能确定3.在正方体的一个面所在的平面内,任意画一条直线,则与它异面的正方体的棱的条数是(A) 4或5或6或7 (B) 4或6或7或8 (C) 6或7或8 (D) 4或5或6 4.ΔABC 中,若(sinA +sinB)(cosA +cosB)=2sinC,则(A)ΔABC 是等腰三角形但不一定是直角三角形 (B)ΔABC 是直角三角形但不一定是等腰三角形 (C)ΔABC 既不是等腰三角形也不是直角三角形 (D)ΔABC 既是等腰三角形也是直角三角形5.ΔABC 中,∠C =90°。
若sinA 、sinB 是一元二次方程x 2+px +q =0的两个根,则下列关系中正确的是(A)p =q 21+±且q >21- (B)p =q 21+且q >21-(C)p =-q 21+且q >21- (D)p =-q 21+且0<q ≤216.已知A (-7,0)、B (7,0)、C (2,-12)三点,若椭圆的一个焦点为C,且过A 、B 两点,此椭圆的另一个焦点的轨迹为(A)双曲线 (B)椭圆(C)椭圆的一部分 (D)双曲线的一部分二、填空题(本大题共6个小题,每小题6分,满分36分)7. 满足条件{1,2,3}⊆ X ⊆{1,2,3,4,5,6}的集合X 的个数为____。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试试题(A )一、填空题:本大题共8小题,每小题8分,满分64分.1.若实数m >1满足98m log log =2024,则32m log log 的值为.2.设无穷等比数列{a n }的公比q 满足0<q <1.若{a n }的各项和等于{a n }各项的平方和,则a 2的取值范围是.3.设实数a ,b 满足:集合A ={x ∈R |x 2-10x +a ≤0}与B ={x ∈R |bx ≤b 3}的交集为4,9 ,则a +b 的值为.4.在三棱锥P -ABC 中,若PA ⏊底面ABC ,且棱AB ,BP ,BC ,CP 的长分别为1,2,3,4,则该三棱锥的体积为.5.一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为a ,b .若事件a +b =7发生的概率为17,则事件“a =b ”发生的概率为.6.设f (x )是定义域为R 、最小正周期为5的函数.若函数g (x )=f (2x )在区间0,5 上的零点个数为25,则g (x )在区间[1,4)上的零点个数为.7.设F 1,F 2为椭圆Ω的焦点,在Ω上取一点P (异于长轴端点),记O 为△PF 1F 2的外心,若PO ∙F 1F 2 =2PF 1 ∙PF 2 ,则Ω的离心率的最小值为.8.若三个正整数a ,b ,c 的位数之和为8,且组成a ,b ,c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(a ,b ,c )为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10<a <b <c 的幸运数组(a ,b ,c )的个数为.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ΔABC 中,已知cos C =sinA +cosA 2=B sin +cosB 2,求cos C 的值.10.(本题满分20分)在平面直角坐标系中,双曲线Γ:x 2-y 2=1的右顶点为A .将圆心在y 轴上,且与Γ的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA的所有可能的值.11.(本题满分20分)设复数z ,w 满足z +w =2,求S =z 2-2w +w 2-2z 的最小可能值.2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试试题(A卷)一.(本题满分40分)给定正整数r,求最大的实数C,使得存在一个公比为r的实数等比数列a nn≥1,满足a n≥C对所有正整数n成立.(x 表示实数x到与它最近整数的距离.)二.(本题满分40分)如图,在凸四边形ABCD中,AC平分∠BAD,点E,F分别在边BC,CD上,满足EF||BD,分别延长FA,EA至点P,Q,使得过点A,B,P的圆ω1及过点A,D,Q的圆w2均与直线AC相切.证明:B,P,Q,D四点共圆.(答题时储将图画在答卷纸上)三.(本题满分50分)给定正整数n.在一个3×n的方格表上,由一些方格构成的集合S称为“连通的”,如果对S 中任意两个不同的小方格A,B,存在整数l≥2及S中l个方格A=C1,C2,…,C l=B,满足C i与C i+1有公共边(i=1, 2,⋯,l-1).求具有下述性质的最大整数K:若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S,使得S中的黑格个数与白格个数之差的绝对值不小于K.四.(本题满分50分)设A,B为正整数,S是一些正整数构成的一个集合,具有下述性质:(1)对任意非负整数k,有A K∈S;(2)若正整数n∈S,则n的每个正约数均属于S;(3)若m,n∈S,且m,n互素,则mn∈S;(4)若n∈S,则An+B∈S.证明:与B互素的所有正整数均属于S.。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。
数学奥林匹克高中训练题(19)第一试一、选择题(本题满分36分,每小题6分)1.(训练题24) 对于每一对实数,x y ,函数f 满足方程()()()1f x y f x f y xy +--=+,且(1)1f =.那么,()(1)f n n n =≠的整数n 的个数共有(B)个.(A)0 (B)1 (C)2 (D)32.(训练题24)有六个座位连成一排,三人就座,恰有两个空位相邻的排法种数为(A).(A)72 (B)96 (C) 48 (D) 以上都不对3.(训练题24)在一次体育比赛中,红白两队各有5名队员参加,比赛记分办法是:队员在比赛中获第几名就为本队得几分,且每个队员的得分均不同,得分少的队获胜,则可能获胜的分数是(C).(A)29 (B)28 (C) 27 (D) 134.(训练题24)现有下面四个命题:①底面是正多边形,其余各面都是等腰三角形的棱锥是正棱锥.②底面是正三角形,相临两侧面所成二面角都相等的三棱锥是正三棱锥.③有两个面互相平行,其余四个面都是全等的等腰梯形的六面体是正四棱台.④有两个面互相平行,其余各个面是平行四边形的多面体是棱柱.其中,正确的命题的个数是(D).(A) 3 (B) 2 (C) 1 (D)05.(训练题24)设:f N N →,且对所有正整数n ,有(1)(),(())3f n f n f f n n +>=.(1997)f 的值为(C).(A)1997 (B)1268 (C)3804 (D)59916.(训练题24)247247(1)(1)(1)1(1)(1)(1)1x x x y y y y x ⎧+++=+⎨+++=+⎩的解(,)x y 共有(B)组. (A)4 (B)2 (C)1 (D)0二、填空题(本题满分54分,每小题9分)1.(训练题24)数列{}n a 的前14项是4,6,9,10,14,15,21,22,25,26,33,34,35,38,….按此规律,则16a = 46 .2.(训练题24)函数1()f x x=⋅的值域是 (0,1) .3.(训练题24)16=+的解是 .4.(训练题24)若方程2(12)30()x i x m i m R +-+-=∈有一实根、一虚根,则此虚根是 122i -+ . 5.(训练题24)平面上有四点,,,A B C D ,其中,A B 为定点,且,AB C D =为动点,且1AD DC BC ===,记ABD S T BCD ∆=∆为的面积.则22S T +的取值范围是223748S T ≤+≤ . 6.(训练题24)使不等式1111199512213a n n n +++<-+++对一切自然数n 都成立的最小自然数a 是 1997 .第二试一、(训练题24)(本题满分25分)已知12,F F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,c 为半焦距,弦AB 过焦点2F .求1F AB ∆的面积的最大值.二、(训练题24)(本题满分25分)若1110,1,,6n i i i i x x x x n +=>==>∑,求证:111!ni i i n x x =+∏>+. 三、(训练题24)(本题满分35分)已知ABC ∆是等腰三角形,,AB AC CD =是腰AB 上的高线,CD 的中点为,,M AE BM E AF CE F ⊥⊥于于.求证: 13AF AB ≤. 四、(训练题24)(本题满分35分)46个国家派代表队参加一次国际竞赛,比赛共4个题,结果统计如下:做对第一题的选手235人,做对第一、二的选手59人,做对第一、三的选手29人,做对第一、四的选手15人,全做对的3人.存在这样的选手,他做对了前三题,但没有做对第四题.求证:存在一个国家,这个国家派的选手中至少有4个人,他们只做对了第一题.。
数学奥林匹克高中训练题(20)第一试一、选择题(本题满分 36分,每小题6分)x — a1.(训练题25)已知函数y 的反函数的图象关于点(-1,3)成中心对称图形,则实数 a 等于x-a -1(A ).(A ) 2 (B )3(C )-2(D )-4,5 I222.(训练题25)我们把离心率等于黄金比 丄二的椭圆称之为“优美椭圆”.设二•爲=1(a > b >2a 2b 20)为优美椭圆,F, A 分别是它的左焦点和右端点,B 是它的短轴的一个端点,贝y ■ ABF 等于(C ).复数一定是(C ).Z 26.(训练题25)在集合M 二{1,2,3,)11,10}的所有子集中,有这样一族不同的子集,不是空集,那么这族子集最多有(B ). (A ) 210 个(B ) 29 个(C )102 个(D ) 92 个(A) 60o(B)75°(C)90o(D)120°3.(训练题25)已知 ABC 三边的长分别是a,b,c , 复数Z i ,Z 2满足 Z i =a, Z 2 =b,乙+ z 2 = c ,那么(A )是实数(B)是虚数(C)不是实数(D) 不是纯虚数4.(训练题25)函数 f (X)二 1(-厂卩:21 c2 c 2CE 的最大值是(D ). (A) 20(B)10(C)-10(D)-205 .(训练题 25)以O 为球心,4为半径的球与三条相互平行的直线分别切于A,B,C 三点.已知S.BOC = 4 ,S ABC 16,则• ABC 等于(B).Ji(A)—12(B)5■: 7■:12(C)12(D)11- 12它们两两的交集都二、填空题(本题满分54分,每小题9分)1.(训练题25)在直角坐标系中,一直角三角形的两条直角边分别平行于两坐标轴,且两直角边上的中3线所在直线方程分别是 v =3x • 1和v = mx • 2,则实数m 的值是3或124x2 •(训练题25)设f (x ) J (a .0,a ") , [m]表示不超过实数m 的最大整数,则函数1+a x1 1[f (x ) ] [f (-x )]的值域是 ___________ {-1,0} ________ •2 2 ------------------------------3 •(训练题25)设a, b,c 是直角三角形的三条边长,c 为斜边长,那么使不等式a 2 (bc ) b 2 (c a ) c 2 (a • b ) _ kabc 对所有直角三角形都成立的 k 的最大值是2 3 r 2•4.(训练题25)如图,正三棱柱 ABC -ABG 的各条棱长都是1,截面BCD 1 在棱AA 上的交点为D ,设这个截面与底面ABC 和三个侧面ABB 1A 1,BCC 1B 1,CAAC 1所成的二面角依次为:「,:七,〉,若 c o :s^ c o 2s-c 3o S,则截面的面积等于 —3乜 _______________85.(训练题25)已知f (x )是定义域在实数集的函数,且f (X • 2)[1 - f (X )] =1 • f (x )•若f (1) =2,,3 , 则 f (1949)的值是 ___________ p 3 - 2 .6.(训练题25)设x 1是方程.3sin x 「3cosx = 2a 「1的最大负根,x 2是方程2cos 2x 「2sin 2x = a 的最小正根,那么,使不等式为Ex?成立的实数a 的取值范围是 ________ - -43^a^~或 a= 2 __________.2第二试一、 (训练题25)(本题满分25分)某眼镜车间接到一任务,需要加工 6000个A 型零件和2000个B 型 零件,这个车间有 214名工人,他们每一个人加工 5个A 型零件的时间可加工 3个B 型零件•将这些 人分成两组同时工作,每组加工同一型号的零件,为了在最短的时间完成,应怎样分组? 77二、 (训练题25)(本题满分25分)已知一个四边形的各边长都是整数, 并且任意一边的长都能整除其余三边之和.求证:这个四边形必有两边相等.B 1B(训练题25)(本题满分35 分)实数数列a1, a2, |a3, ,a M足a P 帕弋钏帕996—為97=1997若数列{0}满足:b k = ai+:+川%(k =1,2川1997).求bf —b2 + b2 —…+0 996-匕997的最大可能值.四、(训练题25)(本题满分35分)给定两个七棱锥,它们有公共的底面A,A2A3A4A5A6A7,顶点R,P2在底面的两侧•现将下述线段中的每一条染红,蓝两色之一:R,P2,底面上的所有的对角线和所有的侧棱.求证:图中心存在一个同色三角形.。
数学奥林匹克高中训练题(15)第一试一、选择题(本题满分36分,每小题6分)2.(训练题20)把直线L 沿Y 轴平移sin cos 0θθ-≠个单位,再沿x0个单位,所得到的直线与原直线重合,则原直线的斜率为(B).(A) 不存在 (B) θθsin cos --- (C) θθcos sin --- (D) θθsin cos +3.(训练题20)三棱锥A BCD -中,AB ⊥平面BCD .则CAD ∠与CBD ∠的关系为(D).(A) CAD CBD ∠>∠ (B) CAD CBD ∠=∠ (C) CAD CBD ∠=∠ (D) 不确定4.(训练题20)设递增正数列12,,,n a a a 是分母为60的既约真分数.则1cos ni i a π==∑ (A).(A) 0 (B)8 (C) 16 (D) 305.(训练题20)从正方体的8个顶点中取出3个顶点使至少有两个顶点在同一棱上,其取法数为(B).(A)44 (B)48 (C)50 (D) 526.(训练题20)存在12,,,n x x x 满足210k x +=,且使1122310n n n x x x x x x x x -+++=成立的充要条件是(B). (A) 2|n (B) 4|n (C) 6|n (D) 8|n二、填空题(本题满分54分,每小题9分)1.(训练题20)已知()tan(arctan )4f x x π=-则f2.(训练题20)递推数列,12211()n n n x x x ax bx n N ++==⎧⎨=+∈⎩, 若1996T =是使121T T x x ++==的最小自然数,则19961i i x -∑= 0 . 3.(训练题20)在平面α上有一个ABC ∆,105,o ABC AC ∠==.在平面α的两侧分别有一点,S T ,满足5SA SB SC TA TB TC ======.则ST = 8 . 5.(训练题20)在双曲线222x y -=上任取三点,,A B C ,则ABC ∆垂心H 的轨迹方程为222xy -=.6.(训练题20)对复数x,解析式u x x i x =+-+第二试一、(训练题20)(本题满分25分)在ABC ∆的AB 边上任取一点D 作//DE AC 交BC 于E ,连CD .求证:CDE ∆的面积不超过原三角形面积的14. 二、(训练题20)(本题满分25分)求证:对于任给的正数a ,必存在一个自然数N ,使每一个大于N 的自然数n 都有唯一的自然数()f n ,使1010()1()n na f n f n <≤+. 三、(训练题20)(本题满分35分)对于坐标平面上的整点集{(,)|16,,}S x y x y x N y N =≤<≤∈∈,求证:从中任取11个点时必存在3个点,两两之间连线的斜率存在且不为零.四、(训练题20)(本题满分35分)设{1,2,,}(5)n S n n =≥.取,n n X S Y S ⊆⊆(无顺序),若X Y ⊆或Y X ⊆时,则称,X Y 为”包含子集对”,否则称为非包含子集对,问n S 中包含子集对多还是非包含子集多?证明你的结论.。
2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛一试(A 卷)试题(含参考答案)说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设复数910i z (i 为虚数单位),若正整数n 满足2023n z ,则n 的最大值为 . 答案:2.解:22910181nnnnz z.因21812023z ,而当3n 时,181132023nn n z,故n 的最大值为2.2. 若正实数,a b 满足lg 2b a ,lg lg 5a b a b ,则lg ()ab ab 的值为 . 答案:20.解:因为lg lg lg lg 102a a b b b a ,所以lg lg lg lg lg lg lg ()()()52220ab a b a b b a ab ab a b a b .3. 将一枚均匀的骰子独立投掷三次,所得的点数依次记为,,x y z ,则事件“777C C C x y z”发生的概率为 . 答案:127.解:由于162534777777C C C C C C ,因此当,,{1,2,3,4,5,6}x y z 时,事件“777C C C x y z”发生当且仅当“{1,6},{2,5},{3,4}x y z ”成立,相应的概率为321627. 4. 若平面上非零向量,, 满足 ,2|| ,3|| ,则||的最小值为 .答案:23.解:由 ,不妨设(,0),(0,)a b ,其中,0a b ,并设(,)x y,则由2||得2by a ,由3|| 得3ax b .所以2232||2223b ax y xy a b. 取3,2a b ,此时6x y ,||取到最小值23.5. 方程sin cos2x x 的最小的20个正实数解之和为 . 答案:130 .解:将2cos212sin x x 代入方程,整理得(2sin 1)(sin 1)0x x ,解得532,2,2()662Z x k k k k.上述解亦可写成2()36Z k x k,其中0,1,,19k 对应最小的20个正实数解,它们的和为192219202013036326k k. 6. 设,,a b c 为正数,a b .若,a b 为一元二次方程20ax bx c 的两个根,且,,a b c 是一个三角形的三边长,则a b c 的取值范围是 .答案:7,518. 解:由条件知2222()()()ax bx c a x a x b ax a ab x a b ,比较系数得22,b a ab c a b ,故24,11a a b c a a,从而 24231a a a b c a a a a a .由于201a a b a,故112a .此时显然0b c .因此,,,a b c 是一个三角形的三边长当且仅当a c b ,即4211a a a a a,即2(1)0a a a ,结合112a ,解得15122a .令23()f x x x x ,则()a b c f a .显然当0x 时()f x 连续且严格递增,故a b c 的取值范围是151,22f f,即7,518 . 7. 平面直角坐标系xOy 中,已知圆 与x 轴、y 轴均相切,圆心在椭圆2222:1(0)x y a b a b内,且 与 有唯一的公共点(8,9).则 的焦距为 .答案:10.解:根据条件,可设圆心为(,)P r r ,则有222(8)(9)r r r ,解得5r 或29r .因为P 在 内,故5r .椭圆 在点(8,9)A 处的切线为2289:1x y l a b ,其法向量可取为2289,n a b. 由条件,l 也是圆 的切线,故n 与PA 平行,而(3,4)PA ,所以223227a b.又2264811a b ,解得22160,135a b .从而 的焦距为22210a b .8. 八张标有,,,,,,,A B C D E F G H 的正方形卡片构成下图.现逐一取走这些卡片,要求每次取走一张卡片时,该卡片与剩下的卡片中至多一张有公共边(例如可按,,,,,,,D A B E C F G H 的次序取走卡片,但不可按,,,,,,,D B A E C F G H 的次序取走卡片),则取走这八张卡片的不同次序的数目为 .AB C D EFGH答案:392.解:如左下图重新标记原图中的八张卡片.现将每张卡片视为顶点,有公共边的两张卡片所对应的顶点之间连一条边,得到一个八阶图,该图可视为右下图中的2m n 阶图(,)G m n 在3,3m n 时的特殊情况.231-3-20P-1 G (m , n )Pn...210-1-2-m ...取卡片(顶点)的规则可解释为:(i) 若顶点P 已取走,则以下每步取当前标号最小或最大的顶点,直至取完; (ii) 若顶点P 未取走,则必为某个(,)(,0)G m n m n 的情形,此时若0m ,则将P 视为1 号顶点,归结为(i)的情形;若0,0m n ,则将P 视为1号顶点,归结为(i)的情形;若,1m n ,则当前可取P 或m 号顶点或n 号顶点,分别归结为(i)或(1,)G m n 或(,1)G m n 的情形.设(,)G m n 的符合要求的顶点选取次序数为(,)f m n ,本题所求即为(3,3)f .由(i)、(ii)知1(,0)2(0)m f m m ,1(0,)2(0)n f n n ,且(,)2(1,)(,1)(,1)m n f m n f m n f m n m n .由此可依次计算得(1,1)12f ,(1,2)(2,1)28f f ,(1,3)(3,1)60f f ,(2,2)72f ,(2,3)(3,2)164f f ,(3,3)392f ,即所求数目为392.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分)平面直角坐标系xOy 中,抛物线2:4y x ,F 为 的焦点,,A B 为 上的两个不重合的动点,使得线段AB 的一个三等分点P 位于线段OF 上(含端点),记Q 为线段AB 的另一个三等分点.求点Q 的轨迹方程.解:设1122(,),(,)A x y B x y .不妨设AP PQ QB ,则121222,33x x y y P. 易知(1,0)F .由于点P 位于线段OF 上,故122[0,1]3x x ,12203y y . ……………4分可设12,2y t y t ,则2212,4t x x t .此时有2122[0,1]32x x t ,且由,A B 不重合知0t ,所以2(0,2]t . ……………8分设(,)Q Q Q x y ,则21212232,343Q Q x x y y x t y t,有243Q Q y x . 注意到2330,42Q x t ,故点Q 的轨迹方程为243(0)32y x x .……………16分10.(本题满分20分)已知三棱柱111:ABC A B C 的9条棱长均相等.记底面ABC 所在平面为 .若 的另外四个面(即面111111111,,,A B C ABB A ACC A BCC B )在 上投影的面积从小到大重排后依次为23,33,43,53,求 的体积.解:设点111,,A B C 在平面 上的投影分别为,,D E F ,则面11111,,A B C ABB A 1111,ACC A BCC B 在 上的投影面积分别为,,,DEF ABED ACFD BCFE S S S S .由已知及三棱柱的性质,DEF 为正三角形,且,,ABED ACFD BCFE 均为平行四边形.由对称性,仅需考虑点D 位于BAC 内的情形(如图所示). 显然此时有ABED ACFD BCFE S S S . ……………5分XFEB DCA由于,,,23,33,43,53DEF ABED ACFD BCFE S S S S ,故,ABED ACFD S S 必为23,33的排列,53BCFE S ,进而43DEF S ,得DEF 的边长为4,即正三棱柱 的各棱长均为4. ……………10分不妨设23,33ABED ACFD S S ,则333,2ABD ACD S S .取射线AD 与线段BC 的交点X ,则23ABD ACD BX S CX S ,故85BX .因此2242cos60195AX AB BX AB BX , 而58ABD ACD ABC AD S S AX S ,故192AD. ……………15分 于是 的高221352h AA AD. 又43ABC S ,故 的体积615ABC V S h . ……………20分11.(本题满分20分)求出所有满足下面要求的不小于1的实数t :对任意,[1,]a b t ,总存在,[1,]c d t ,使得()()1a c b d .解:记[1,]t I t ,()()S a c b d .假如2t ,则当a b t 时,对任意,t c d I ,均有2(1)1S t ,不满足要求.假如312t,则当1,2a b t 时,对任意,t c d I ,均有 21a c t ,12t b d .若,a c b d 同正或同负,则2(1)1S t ,其余情况下总有01S ,不满足要求. ……………5分以下考虑322t 的情形.为便于讨论,先指出如下引理.引理:若1,2u v ,且52u v ,则1uv .事实上,当32u v 时,22225312244u v u v uv . 当32u v 时,1131222uv .引理得证. 下证对任意,t a b I ,可取11,t c d I ,使得111()()1S a c b d .① 若12a b ,则取111c d ,此时1(1)(1)(1)(1)S a b a b ,其中31311,12222a b b a ,且5(1)(1)2()2a b a b ,故由引理知11S .若12a b ,则取1132t c d I ,此时13322S a b, 其中331,222a b ,且3353222a b a b ,故由引理知11S . ……………15分 注意到,当,t a b I 时,可取2t c I ,使得21a c (例如,当[1,1]a 时取20c ,当(1,]a t 时取21c ),同理,可取2t d I ,使得21b d .此时22222()()1S a c b d a c b d .②根据①、②,存在一个介于12,c c 之间的实数c ,及一个介于12,d d 之间的实数d ,使得()()1a c b d ,满足要求.综上,实数t 满足要求当且仅当322t . ……………20分。
高中数学奥林匹克竞赛试题(9月7日上午9:00-11:00)注意事项:本试卷共18题,满分150分一、选择题(本大题共6个小题,每小题6分,满分36分)1.定义在实数集R 上的函数y =f(-x)的反函数是y =f -1(-x),则(A)y =f(x)是奇函数 (B)y =f(x)是偶函数(C)y =f(x)既是奇函数,也是偶函数 (D)y =f(x)既不是奇函数,也不是偶函数2.二次函数y =ax 2+bx +c 的图象如右图所示。
记N =|a +b +c|+|2a -b|,M =|a -b +c|+|2a +b|,则(A)M >N (B)M =N(C)M <N(D)M 、N 的大小关系不能确定3.在正方体的一个面所在的平面内,任意画一条直线,则与它异面的正方体的棱的条数是(A) 4或5或6或7 (B) 4或6或7或8(C) 6或7或8 (D) 4或5或64.ΔABC 中,若(sinA +sinB)(cosA +cosB)=2sinC ,则(A)ΔABC 是等腰三角形但不一定是直角三角形(B)ΔABC 是直角三角形但不一定是等腰三角形(C)ΔABC 既不是等腰三角形也不是直角三角形(D)ΔABC 既是等腰三角形也是直角三角形5.ΔABC 中,∠C =90°。
若sinA 、sinB 是一元二次方程x 2+px +q =0的两个根,则下列关系中正确的是(A)p =q 21+±且q >21- (B)p =q 21+且q >21- (C)p =-q 21+且q >21- (D)p =-q 21+且0<q ≤21 6.已知A (-7,0)、B (7,0)、C (2,-12)三点,若椭圆的一个焦点为C ,且过A 、B 两点,此椭圆的另一个焦点的轨迹为(A)双曲线 (B)椭圆(C)椭圆的一部分 (D)双曲线的一部分二、填空题(本大题共6个小题,每小题6分,满分36分)7. 满足条件{1,2,3}⊆ X ⊆{1,2,3,4,5,6}的集合X 的个数为____。
8. 函数a|a x |x a )x (f 22-+-=为奇函数的充要条件是____。
9. 在如图所示的六块土地上,种上甲或乙两种蔬菜(可只种其中一种,也可两种都种),要求相邻两块土地上不都种甲种蔬菜,则种蔬菜的方案数共有____种。
10. 定义在R 上的函数y =f(x),它具有下述性质:(i)对任何x ∈R ,都有f(x 3)=f 3(x),(ii)对任何x 1、x 2∈R ,x 1≠x 2,都有f(x 1)≠f(x 2),则f(0)+f(1)+f(-1)的值为____。
11. 已知复数z 满足3z z z z =--⋅,且3)1z arg(π=-,则z =____。
12. 已知动点P (x ,y )满足二次方程10x -2xy -2y +1=0,则此二次曲线的离心率为____。
三、解答题(本大题共6个小题,满分78分)13.(本题满分12分)如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AB 与BC 的中点。
(Ⅰ)求二面角B -FB 1-E 的大小;(Ⅱ)求点D 到平面B 1EF 的距离; (Ⅲ)在棱DD 1上能否找到一点M ,使BM ⊥平面EFB 1? 若能,试确定点M 的位置;若不能,请说明理由。
14.(本题满分13分)关于x 的一元二次方程2x 2―tx ―2=0的两个根为α、β((Ⅰ)若x 1、x 2为区间[α,β]上的两个不同的点,求证:4x 1x 2-t(x 1+x 2)-4<0; (Ⅱ)设1x t x 4)x (f 2+-=,f(x)在区间[α,β]上的最大值和最小值分别为f max 和f min ,g(t)=f max -f min ,求g(t)的最小值。
15.(本题满分13分)已知a 1=1,a 2=3,a n +2=(n +3)a n +1-(n +2)a n ,若当m ≥n 时,a m 的值都能被9整除,求n 的最小值。
16.(本题满分13分)一台计算机装置的示意图如图,其中J 1、J 2表示数据入口,C 是计算结果的出口。
计算过程是由J 1、J 2分别输入自然数m 和n ,经过计算后得自然数K 由C 输出。
若此装置满足以下三个性质:①J 1、J 2分别输入1,则输出结果1;②若J 1输入任何固定自然数不变,J 2输入自然数增大1,则输出结果比原来增大2; ③若J 2输入1,J 1输入自然数增大1,则输出结果为原来的2倍,试问:m n K A B A C 1 D 1E(Ⅰ)若J 1输入1,J 2输入自然数n ,则输出结果为多少?(Ⅱ)若J 2输入1,J 1输入自然数m ,则输出结果为多少?(Ⅲ)若J 1输入自然数2002,J 2输入自然数9,则输出结果为多少?17.(本题满分13分)以A 为圆心,以2cos θ(4π<θ<2π)为半径的圆外有一点B ,已知|AB|=2sin θ。
设过点B 且与圆A 外切于点T 的圆的圆心为M 。
(Ⅰ)当θ取某个值时,说明点M 的轨迹P 是什么曲线;(Ⅱ)点M 是轨迹P 上的动点,点N 是圆A 上的动点,把|MN|的最小值记为f(θ)(不要求证明),求f(θ)的取值范围;(Ⅲ)若将题设条件中的θ的范围改为(0<θ<4π=,点B 的位置改为圆内,其它条件不变,点M 的轨迹记为P 。
试提出一个和具有相同结构的有意义的问题(不要求解答)。
18.(本题满分14分)设长方体的长、宽、高分别为a 、b 、c ,其体对角线长为l ,试证:(l 4-a 4)(l 4-b 4)(l4-c 4)≥512a 4b 4c 4。
湖南省2002年高中数学竞赛试题解答一、选择题(本大题共6个小题,每小题6分,满分36分)1. 解:由y =f -1(-x)得f(y)=-x ,故y =-f(x)是y =f -1(-x)的反函数,即-f(x)=f(-x)。
所以y =f(x)是奇函数,选(A )。
注:也可以先求得y =f(-x)的反函数为y =-f -1(x),进而知y =f -1(x)是奇函数,故y =f(x)是奇函数。
2. 解:如图,f(1)=a +b +c <0,f(-1)=a -b +c >0,a >0,f(0)=c <0,a 2b ->1。
从而b <0,2a +b <0,2a -b >0,a -c <0。
故M -N =|a -b +c|+|2a +b|-|a +b +c|-|2a -b|=(a -b +c)+(a +b +c)-(2a +b)-(2a -b)=―2(a ―c)<0,所以选(C )。
3.解:由图形可知应当选(B )。
4. 解:因为左边=sinAcosA +sinAcosB +sinBcosA +sinBcosB =21(sin2A +sin2B)+sin(A +B)=sin(A +B)cos(A -B)+sin(A +B),右边=2sin(A +B)。
所以已知等式可变形为sin(A +B)[cos(A +B)-1]=0。
又因sin(A +B)>0,所以cos(A -B)=1,故A =B 。
另一方面,A =B =30°,C =120°也符合已知条件。
所以ΔABC 是等腰三角形但不一定是直角三角形,选(A )。
5. 解:由根与系数的关系可知sinA +sinB =-p >0,sinAsinB =q >0,即sinA +cosA =-p >0,sinAcosA =q >0。
再由sin 2A +cos 2A =1可知p 2-2q =1,p 2-4q ≥0且p <0,q >0。
所以p =-q 21+且0<q =sinAcosA =21sin2A ≤21。
选(D )。
6. 解:设椭圆的另一个焦点为F ,则由椭圆的定义知|AC|+|AF|=常数=|BC|+|BF|,故|BF|-|AF|=|AC|-|BC|。
又|AC|=15,|BC|=13,|AB|=14,所以|FB|-|FA|=2<14=|AB|。
故点F 的轨迹为双曲线的部分,选(D )。
二、填空题(本大题共6个小题,每小题6分,满分36分)7.不同的X 共有23=8个。
8. a >0。
9.解: 可得总方案数为21C C C C 34251607=+++。
10.解: f(0)+f(1)+f(-1)=0。
11.解: z =i 32+。
12.解:由10x -2xy -2y +1=0可得1x 295y +-=-,所以二次曲线为等轴双曲线,故离心率为2。
另解:由10x -2xy -2y +1=0有x 2+6x +y 2-6y -2xy +9=x 2-4x +4+y 2-4y +4。
即|3y x |)2y ()2x (22+-=-+-,所以22|3y x |)2y ()2x (22=+--+-,故e =2。
三、解答题(本大题共6个小题,满分78分)13.解:(Ⅰ)作BH ⊥B 1F 于H ,连结EH 。
则由EB ⊥平面BB 1F 可知EH ⊥B 1F (三垂线定理),于是∠EHB 是二面角B -FB 1-E 的平面角。
在Rt ΔBB 1F 中,BH =a 55a 41a a 21a FB BB BF 2211=+⋅=⋅,所以tg ∠EHB =25BH EB =。
故二面角B -FB 1-E 的大小为arctg 25。
(Ⅱ)容易证明ΔDEF ≌ΔB 1EF ,所以由EF B D DEF B 11V V --=可得点D 到平面B 1EF 的距离等于点B 1到平面DEF 的距离,当然等于a 。
(Ⅲ)设EF 与BD 交于点G ,连结B 1G 。
则由EF ⊥BD 以及EF ⊥B 1B知EF ⊥对角面BB 1D 1D ,于是面B 1EF ⊥面BB 1D 1D 。
在面BB 1D 1D 内过B作BK ⊥B 1G 于K ,延长后交D 1D 所在的直线于点M ,则BM ⊥平面B 1EF 。
再在平面BB 1D 1D 内,由ΔB 1BG ∽ΔBDM 知DMBD BG B B 1=。
又B 1B =a ,BG =42,BD =2,所以DM =2a 。
这说明点M 在正方体的棱D 1D 上,且正好为D 1D 的中点。
14.解:(Ⅰ)因为x 1、x 2∈[α,β],所以由抛物线y =2x 2―tx ―2的开口向上可知f(x 1)<0且f(x 2)<0。
即2x 12―tx 1―2<0,2x 22―tx 2―2<0。
两式相加得2(x 12+x 22)-t(x 1+x 2)―4<0,故由A C 1 D 1平均值不等式可得4x 1x 2-t(x 1+x 2)-4<0。
(Ⅱ)依题意,416t t 2+-=α,416t t 2+-=β。
所以t 16t 81616t t 216t t 16t 161416t t t 416t t 4)(f 22222222-+-=++-+++-=+⎪⎭⎫ ⎝⎛+--+-⋅=α,t 16t 8)(f 2++=β。