第三章材料的凝固与相图
- 格式:ppt
- 大小:2.92 MB
- 文档页数:18
第三章二元合金相图和合金的凝固一.名词解释相图、相律、匀晶转变、共晶转变、包晶转变、共析转变、包析转变、异晶转变、平衡结晶、不平衡结晶、异分结晶、平衡分配系数、晶内偏析、显微偏析、区域偏析、区域提纯、成份过冷、胞状组织、共晶组织、亚共晶组织、过共晶组织、伪共晶、离异共晶、二.填空题1.相图可用于表征合金体系中合金状态与和之间的关系。
2.最基本的二元合金相图有、、。
3.根据相律,对于给定的金属或合金体系,可独立改变的影响合金状态的内部因素和外部因素的数目,称为,对于纯金属该数值最多为,而对于二元合金该数值最多为。
4.典型的二元合金匀晶相图,如Cu-Ni二元合金相图,包含、两条相线,、、三个相区。
5.同纯金属结晶过程类似,固溶体合金的结晶包括和两个基本过程。
6.勻晶反应的特征为_____________,其反应式可描述为________ 。
7.共晶反应的特征为_____________,其反应式可描述为___________ _。
8.共析反应的特征为_____________,其反应式可描述为_____________。
9.金属或合金在极缓慢冷却条件下进行的结晶过程称为。
纯金属结晶时所结晶出的固相成分与液相成分,称为;而固溶体合金结晶时所结晶出的固相成分与液相成分,称为。
10.固溶体合金经不平衡结晶所产生的两类成分偏析为、。
11.固溶体合金产生晶内偏析的程度受到溶质原子扩散能力的影响,若结晶温度较高,溶质原子的扩散能力小,则偏析程度。
如磷在钢中的扩散能力较硅小,所以磷在钢中的晶内偏析程度较,而硅的偏析较。
12.固溶体合金结晶后出现枝晶偏析时,结晶树枝主轴含有较多的________组元。
严重的晶内偏析降低合金的,为消除枝晶偏析,工业生产中广泛采用的方法。
13.根据区域偏析原理,人们开发了,除广泛用于提纯金属、金属化合物外,还应用于半导体材料及有机物的提纯。
通常,熔化区的长度,液体的成分,提纯效果越好。
第三章材料的凝固与相图讲授重点:固溶体、化合物的晶体结构及性能特点;固溶强化及其实际应用;二元合金相图的基本概念。
本章难点:过冷度的概念;相、相图。
§3-1金属的结晶一、结晶的概念物质由液态冷却转变为固态的过程称为凝固。
如果凝固的固态物质是原子(或分子)作有规则排列的晶体,则这种凝固又称为结晶。
1.结晶与凝固的区别——前者的产物是晶体,后者可以是非晶体。
2.结晶条件——结晶温度 T <理论结晶温度 To(克服界面能)。
过冷度:ΔT = To–Tn (Tn:实际结晶温度)金属在无限缓慢冷却条件下(即平衡条件下)所测得的结晶温度T0称为理论结晶温度。
但在实际生产中,金属由液态结晶为固态时冷却速度都是相当快的,金属总是要在理论结晶温度T0以下的某一温度Tn才开始进行结晶,温度Tn 称为实际结晶温度。
实际结晶Tn温度低于理论结晶温度T0的现象称为过冷现象。
而T0与Tn之差ΔT称为过冷度,即ΔT=T0-Tn。
过冷度并不是一个恒定值,液体金属的冷却速度越大,实际结晶的温度T1就越低,即过冷度ΔT就越大。
实际金属总是在过冷情况下进行结晶的,所以过冷是金属结晶的一个必要条件。
3、过冷度与冷却曲线——冷速越快,过冷度越大。
4.过冷度对形核、长大的影响(见下图)二、金属结晶的过程纯金属的结晶过程是在冷却曲线上的水平线段内发生的。
实验证明,金属结晶时,首先从液体金属中自发地形成一批结晶核心,形成自发晶核,与此同时,某些外来的难熔质点了可充当晶核,形成非自发晶核;随着时间的推移,已形成的晶核不断长大,并继续产生新的晶核,直到液体金属全部消失,晶体彼此接触为止。
所以结晶过程,就是不断地形核和晶核不断长大的过程(如下图所示)。
结晶时由每一晶核长成的晶体就是一个晶粒。
晶核在长大过程中,起初是不受约束的,能够自由生长,当互相接触后,便不能再自由生长,最后即形成由许多向位不同的晶粒组成的多晶体。
1. 形核 —— 自发形核、非自发形核。
第三章二元相图及合金的凝固第三章二元相图及合金的凝固相图:phase diagram 描述系统的状态、温度、压力及成分之间关系的图解。
又称状态图(state diagram)或平衡图(equilibrium diagram)。
¾二元系相图是研究二元体系在热力学平衡条件下,相与温度、成分之间关系的有力工具。
¾根据相图可确定不同成分的材料在不同温度下组成相的种类、各相的相对量、成分及温度变化时可能发生的变化。
¾仅在热力学平衡条件下成立,不能确定相结构、分布状态和具体形貌。
3.1 相图的基本知识3.1.1 合金与相的概念(1)合金合金(alloy)组元(component)(元)二元合金三元合金多元合金合金系(alloy system)二元系三元系多元系(2)相相(phase)单相合金多相合金(3)相律(phase rule)相律:热力学平衡条件下,系统的组元数、相数和自由度数之间的关系。
吉布斯相律(Gibbs phase rule):F=C一P十2式中,C:系统的组元数P:平衡共存的相的数目F:自由度。
取最小值F=0,得出:P=C十2若压力给定,应去掉一个自由度,P=C十1公式表明:在压力给定的情况下,系统中可能出现的最多平衡相数比组元数多一个。
例如:一元系:C=1,P=2,即最多可以两相平衡共存。
如纯金属结晶时,其温度固定不变,同时共存的平衡相为液相和固相。
二元系:C=2,P=3,最多三相平衡共存;三元系:C=3,P=4,最多四相平衡共存;依此类推,n元系,最多n十1相平衡共存。
¾确定系统中可能存在的最多平衡相数。
应用:¾解释纯金属与合金的结晶差别。
应当注意,相律的限制性:1)相律只适用于热力学平衡状态。
平衡状态下各相的温度应相等(热量平衡);各相的压力应相等(机械平衡);每一组元在各相中的化学位必须相同(化学平衡);2)相律只能表示体系中组元和相的数目,不能指明组元或相的类型和含量;3)相律不能预告反应动力学(速度);4)自由度F不得小于零。