第五章 凝固组织的控制
- 格式:ppt
- 大小:1.95 MB
- 文档页数:34
凝固和组织控制原理一、课程介绍《凝固和组织控制原理》是材料科学与工程专业(金属材料工程模块)的主要学科基础课,是研究金属凝固过程相关现象及其物理本质的专业性课程。
本课程按照理论分析-研究手段-工程控制这一主线,以金属凝固过程的物理本质及影响凝固组织的主要因素作为核心内容,开展相关教学。
本课程旨在加深学生对金属材料凝固相关现象和知识的理解和掌握,为学习后续的课程做必要的知识储备;使学生进一步认识到金属材料的重要性,激发学生开展金属材料凝固相关前沿科学研究、推进凝固相关新技术应用的兴趣和热情。
本课程所涵盖的内容包括液态金属的结构与性质、凝固热力学与动力学、凝固过程中的传热与传质、单相合金,多相合金及金属基复合材料的凝固、凝固组织的控制、凝固缺陷、凝固新技术等内容,共10章,共32学时,全部为理论教学,以期末闭卷考试形式结课。
Introduction‘The principles of solidification and microstructure control’ is a specialized course concerning phenomenon and physical essence of solidification and is as well a required course for university students whose major is materials science and engineering. The course is focusing on the physical essence of solidification and main factors that affect the solidification microstructure, and the teaching activities is organized as theoretical analysis, research techniques and engineering control. The purpose of this course is threefold: Firstly, to deepen the understandings of the students about fundamentals of solidification of metallic materials, making them ready for the subsequent other courses. Secondly, to make students recognize the importance of metallic materials and thirdly, to stimulate their interests in frontier researches and development of novel techniques in solidification of metallic materials.The content of this course includes: structures and properties ofliquid metals, thermodynamics and kinetics of solidification, heat and mass transformation during solidification, solidifications of single-phase alloys, multi-phase alloys and metallic composites, control of solidification microstructures, solidification defects and new technologies of solidification. It will take 32 theoretical lessons. The examination adopts close-book mode.课程基本信息二、教学大纲1、教学目的《凝固和组织控制原理》是面向材料科学与工程专业(金属材料工程模块)本科生的一门学科基础课程。
铸造合金的冷却速率与凝固组织控制在铸造工艺中,冷却速率是一个至关重要的参数,它直接影响着合金凝固组织的形成。
凝固组织的控制对于铸造件的性能和质量具有重要意义。
本文将探讨铸造合金的冷却速率与凝固组织控制的相关性,以及目前常用的凝固组织控制方法。
一、冷却速率与凝固组织的关系冷却速率是指铸造合金从液相态到凝固态的过程中,单位时间内温度降低的速率。
冷却速率的大小直接决定了凝固组织的形成方式和细化程度。
通常情况下,高冷却速率会促使合金形成细小的凝固组织,而低冷却速率则有利于形成粗大的凝固组织。
在铸造过程中,合金的冷却速率受到多种因素的影响,例如浇注温度、铸型材料、冷却介质等。
合理的控制这些因素可以有效地调节铸造合金的冷却速率,从而控制凝固组织的形成。
二、凝固组织控制方法1. 调节浇注温度:浇注温度是指熔融金属从炉中倒入铸型时的温度。
通过调整浇注温度,可以对铸造合金的冷却速率进行控制。
一般来说,较高的浇注温度会使冷却速率减慢,从而有利于形成粗大的凝固组织;而较低的浇注温度则会加快冷却速率,促使形成细小的凝固组织。
2. 选用合适的铸型材料:铸型材料的导热性和热容量也会对合金的冷却速率产生影响。
导热性较高的铸型材料有利于加快合金的冷却速率,而热容量较高的铸型材料则能够减缓冷却速率。
根据具体需求,选择合适的铸型材料可以实现对凝固组织形成的精确控制。
3. 冷却介质的选择:冷却介质是指用于冷却铸造合金的介质,常见的有水、油等。
不同的冷却介质具有不同的冷却性能,其传热系数和传热速度也会对合金的冷却速率产生影响。
通过选择适宜的冷却介质,可以有效地控制冷却速率,从而实现对凝固组织的控制。
4. 辅助手段:在实际生产中,还可以采用一些辅助手段来控制冷却速率和凝固组织的形成,例如采用陶瓷芯棒、添加凝固剂等。
这些辅助手段可以在一定程度上改变凝固路径,从而影响凝固组织的形成。
综上所述,冷却速率是影响铸造合金凝固组织的一个重要参数。
合理的控制冷却速率可以实现对凝固组织形成过程的精确控制,从而满足铸造件的性能和质量要求。
凝固过程与控制
凝固是物质由液态转变为固态的过程。
在材料科学和冶金学中,控制凝固过程对于获得理想的结晶微观结构和性能非常重要。
以下是凝固过程的一些常见控制方法:
1. 温度控制:通过控制凝固过程中的温度变化,可以影响晶体生长速率和晶粒尺寸。
降低温度可以促使晶体生长缓慢而细小,有利于获得细小的晶粒。
2. 界面控制:凝固过程涉及到液-固界面的形成和迁移。
通过调整界面条件,如界面能量和界面活性剂浓度,可以控制晶体生长速率和形态。
3. 搅拌和搅拌控制:在凝固过程中施加搅拌力可以打破液态中的大团聚,增加传质速率,并控制晶体的成长方向和结构。
4. 成核控制:通过添加成核剂或控制成核条件,可以控制凝固过程中的初期晶核数量和分布,从而影响最终的晶体结构。
5. 基底控制:在某些凝固过程中,使用特定的基底材料可以影响晶体的取向和生长速率。
基底的选择和处理可以有针对性地控制晶体的取向和形态。
6. 包封和保护控制:在一些凝固过程中,通过包封或保护液相,可以控制氧气或其他外界物质对凝固过程的影响,以获得所需的结构和性能。
《材料成型理论基础》课程教学大纲一、课程名称(中英文)中文名称:材料成型理论基础英文名称:Fundamentals for Materials Processing二、课程编码及性质课程编码:0809554课程性质:专业核心课,必修课三、学时与学分总学时:56学分:3.5四、先修课程工程材料学、传热学、流体力学、材料成形工艺基础五、授课对象本课程面向材料成型及控制工程专业学生开设,也可以供材料科学与工程专业和电子封装技术专业学生选修。
六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)本课程是本专业的核心课程之一,其教学目的主要包括:1.让学生对液态成形、连接成形、固态塑性成形及高分子材料成形的基本过程有较全面、深入的理解,掌握其基本原理和规律。
2.了解液态金属的结构和性质;掌握液态金属凝固的基本原理,冶金处理及其对产品性能的影响。
3.掌握材料成形中化学冶金基本规律和缺陷的形成机理、影响因素及防止措施。
4.掌握塑性成形过程中的应力与应变的基础理论,金属流动的基本规律及其应用。
5.了解高分子材料的组织转变及流动、成形的基本规律。
表1 课程目标对毕业要求的支撑关系七、教学重点与难点:教学重点:1)本课程以材料成形工艺的理论基础为主线,根据成形加工过程中材料所处或经历的状态,分为液态凝固成形、固态塑性成形、连接成形、塑料注射成形等几类,学习材料在成形过程中的组织结构、性能、形状随外在条件的不同而变化的规律性知识。
2)本课程着重利用前期所学的物理、化学等基础理论,以及传热学、流体力学等专业基础理论知识,学习液态成形、塑性成形、连接成形等基本材料成形技术的内在规律和物理本质,包括共性原理,同时也要注重个性规律性认识。
3)课程将重点或详细介绍三种主要材料成形方法中的主要基础理论和专门知识,阐述这些现象的本质,揭示变化的规律。
而对次要成形方法的基本原理或发展状况等只作简要介绍或自学。
4)重点学习的章节内容包括:第4章“单相合金与多相合金的凝固”(6学时)、第5章“铸件凝固组织的形成与控制”(6学时)、第7章“焊缝及其热影响区的组织和性能”(6学时)、第8章“成形过程的冶金反应原理”(6学时)、第11章“应力与应变理论”(4学时)、第12章“屈服准则”(6学时)。