电化学总复习第六-十二章
- 格式:pptx
- 大小:4.74 MB
- 文档页数:5
电化学基础知识点总结装置特点:化学能转化为电能。
①、两个活泼性不同的电极;形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应);原③、形成闭合回路(或在溶液中接触)电负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。
池基本概念:正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。
原电极反应方程式:电极反应、总反应。
理失e-,沿导线传递,有电流产生氧化反应负极铜锌原电池正极还原反应反应原理: Zn-2e-=Zn2+不溶阳2H ++2e-=2H 2↑移断解离电解质溶液子向电极反应:负极(锌筒) Zn-2e-=Zn2+正极(石墨) 2NH 4++2e-=2NH 3+H2↑①、普通锌——锰干电池总反应: Zn+2NH 4+=Zn2++2NH3+H2↑干电池:电解质溶液:糊状的NH4Cl特点:电量小,放电过程易发生气涨和溶液②、碱性锌——锰干电池电极:负极由锌改锌粉(反应面积增大,放电电流增加);电解液:由中性变为碱性(离子导电性好)。
正极( PbO2) PbO2+SO42-+4H++2e-=PbSO4+2H2O负极( Pb)Pb+SO42--2e-=PbSO4铅蓄电池:总反应:PbO2+Pb+2H2 SO4放电充电2PbSO4+2H2O电解液: 1.25g/cm3~1.28g/cm3的 H 2SO4溶液蓄电池特点:电压稳定。
化Ⅰ、镍——镉( Ni —— Cd)可充电电池;学电其它蓄电池Cd+2NiO(OH)+2H 2 O放电Cd(OH)2+2Ni(OH) 2源放电 `简Ⅱ、银锌蓄电池介锂电池①、燃料电池与普通电池的区别不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时燃料电极反应产物不断排出电池。
电池②、原料:除氢气和氧气外,也可以是CH4、煤气、燃料、空气、氯气等氧化剂。
负极: 2H2 +2OH--222O+4e-=4OH--4e =4H O ;正极: O +2H③、氢氧燃料电池:总反应: O2 +2H2 =2H2O特点:转化率高,持续使用,无污染。
第十二章光催化性能评价研究方法本章重点介绍在光催化机理、降解产物分析和性能评价研究中所涉及到的各种表征方法。
光催化机理是物理化学研究所关注的领域,在本章中重点介绍了各种光电化学测量手段在光催化机理研究中的应用,除此外也介绍了光生载流子寿命以及活性物种的研究方法;对于光催化降解产物的研究一直是环境化学所关注的重要问题,在这里介绍了不同分析方法(色谱、质谱、色质联用等)在中间产物分析中的应用;光催化材料性能的表征是评价光催化材料及其制备工艺优劣的关键,不仅在理论研究中获得广泛的关注,而且随着光催化技术的迅速发展和广泛的工业化应用,光催化性能标准测试方法的建立是实现不同光催化材料和光催化材料制备工艺评价的基础。
12.1 光催化机理研究光催化污染物的降解是一个复杂的物理化学过程,涉及到光能吸收、光生电荷分离和界面反应等环节,只有当光激发载流子(电子和空穴)被俘获并与电子给体/受体发生作用才是有效的。
在研究光生电荷产生、迁移及复合相关的机理时,需要多种测试手段的相互辅助。
这些检测技术如果按照检测参数可以分为:(1)光生电荷产生:吸收光谱法;(2)电荷密度与传输过程特性:电子自旋共振(ESR)、光谱电化学法、电化学I-V法、阻抗谱、表面光伏/光电流技术;(3)寿命与复合,产生辐射、声子或者能量传递给其它载流子:载流子辐射度测量、荧光光谱技术、光声/光热测量、表面能谱技术等等。
对于光催化机理的研究是深入认识光催化材料性能及光催化过程的基础,但由于所涉及到的技术手段较多,不同技术涉及到的机理及表征方法各不相同,故在本章中仅介绍文献中常用的技术方法。
12.1.1 紫外-可见漫反射光谱法在光催化研究中,半导体光催化材料高效宽谱的光吸收性能是保证光催化活性的一个必要而非充分的条件,因此对于光催化材料吸收光谱的表征是必不可少的。
半导体的能带结构一般由低能价带和高能导带构成,价带和导带之间存在禁带。
当半导体颗粒吸收足够的光子能量,价带电子被激发越过禁带进入空的导带,而在价带中留下一个空穴,形成电子-空穴对。
一,概念电化学概念及研究内容:•研究电子导电相〔金属和半导体〕和离子导电相〔溶液、熔盐和固体电解质〕之间的界面上所发生的各种界面效应,即有电现象发生的化学反响的科学。
•研究内容:•第一类导体;〔已属于物理学的研究X畴〕•第二类导体;〔经典电化学领域〕•两类导体的界面及其界面。
〔现代电化学〕电化学装置〔电化学反响〕•两种电化学装置:原电池,电解池•电池的组成:•阴极〔正极〕:得到电子发生复原反响•阳极〔负极〕:失去电子发生氧化反响•电解池组成:•阳极〔正极〕:正电荷从电极到溶液〔氧化〕•阴极〔负极〕:正电荷从溶液到电极〔复原〕电极与电极反响•电极:在相互接触的两个导体相中,一个是电子导电相,另一个是离子导电相,并且在相界面上有电荷转移,该体系称为电极体系,简称电极。
•电极反响:作为电子导体的电极与离子导体(电解质溶液)接触面上进展的电子交换反响。
三、“可逆〞电池:•须从热力学意义上的可逆概念来理解,有两层含义:1. 化学〔物质〕可逆性:电极反响物质在充、放电过程可逆;2. 能量可逆性:即热力学可逆过程,为反响速度趋于零时的准静态过程〔这一点初学者易无视〕。
可逆电池电动势的测量假设用伏特计测量电动势:1〕需有电流i通过,此时的电池已非“可逆〞〔i较大〕,而且电解液浓度亦随时间改变;2〕电池有内阻r,所以量得的仅为两电极间的输出电压,而非可逆电池的电动势。
测量要求:i ® 0•即要求在几乎没有电流情况下的测量;•因此,需在外电路上加一反向的等电动势的电池。
对消法测量消除液接电势:1〕采用单液电池,无液接电势;2〕两液相间用盐桥,减小或消除e j 电动势测定的应用一、热力学量确实定二、电解质溶液平均活度系数的测定三、测定溶液的pH值四、电位滴定五、电势-pH 图及其应用双电层(double layer)的概念在金属与溶液的界面上,由于正、负离子静电吸引和热运动两种效应的结果,溶液中的正、负离子只有一局部严密地排在固体外表附近,相距约一、二个离子厚度称为严密层(contact double layer);另一局部离子按一定的浓度梯度扩散到本体溶液中,称为扩散层(diffused double layer)。
第12章氧化还原与电化学习题与详细答案1.计算下列化合物中右上角带“*”元素的氧化态:KCl*O3,NaCl*O,H2O*2,O*3,S*8,C*60,KO*2,Na2S*2O3,Cr*2O72-,S*4O62-,N*H4+,N*2H4,Fe*3O4,Ni*(CO)4,Na[Co*(CO)4],H[Mn*(CO)5],[Fe*(CN)6]4-,[Fe(N*CS)6]3-.解:+5 +1 -1 0 0 0 -½ +2 +6 +2.5 -3KCl*O3,NaCl*O,H2O*2,O*3,S*8,C*60,KO*2,Na2S*2O3,Cr*2O72-,S*4O62-,N*H4+,-2 +8/3 0 -1 -1 +2 -3N*2H4,Fe*3O4,Ni*(CO)4,Na[Co*(CO)4],H[Mn*(CO)5],[Fe*(CN)6]4-,[Fe(N*CS)6]3-.2.用“氧化数法”配平以下列各氧化还原反应的方程式;(8)-(15)同时用“离子-电子法”配平:(1)AgNO3(s) → Ag(s) + NO2(g) + O2(g)(2)(NH4)2Cr2O7(s) → N2(g) + Cr2O3(s)(3)H2O2(aq) → H2O(l) + O2(g)(4)Cu(s) + HNO3(稀)→ Cu(NO3)2 + NO(g)(5)CuS(s) + HNO3(浓)→ CuSO4 + NO2(g)(6)H2S(g) + H2SO4(浓)→ S(s) + SO2(g)(7)C(s) + H2SO4(浓)→ CO2(g) + SO2(g) + H2O(8)SO2(g) + MnO4-→ Mn2+ + SO42-(9)Cr2O72- + H2O2→ Cr3+ + O2(g)(10)CrO42- + CN-→ Cr(OH)3(s) + OCN-(11)Cl2(g) + CN- + OH-→ Cl- + OCN-(12)I2(s) + OH-→ I- + IO3-(13)I- + IO3-→ I2(s) + H2O(14)I2(s) + S2O32-→ I- + S4O62-(15)NaBiO3(s) + Mn2+ + H+→ Bi3+ + MnO4-解:(1)氧化数+1 +5 -2 0 +4 -2 02 AgNO3(s) = 2 Ag(s) + 2 NO2(g) + O2(g)(2)(NH4)2Cr2O7(s) = N2(g) + Cr2O3(s) + 4 H2O(3)2 H2O2(aq) = 2 H2O(l) + O2(g)(4)3 Cu(s) + 8 HNO3(稀)= 3 Cu(NO3)2 + 2 NO(g) + 4 H2O(5)CuS(s) + 8 HNO3(浓)= CuSO4 + 8 NO2(g) + 4 H2O(6)H2S(g) + H2SO4(浓)= S(s) + SO2(g) + 2 H2O(7)C(s) + 2 H2SO4(浓)→ CO2(g) + 2 SO2(g) + 2 H2O(8)“氧化数法”:5 SO2(g) + 2 MnO4- + 2 H2O = 2 Mn2+ + 5 SO42- + 4 H+“离子-电子法”:5 SO2(g) + 10 H2O = 5 SO42- + 20 H+ + 10 e2 MnO4- + 10 e + 16 H+ = 2 Mn2+ + 5 SO42-两式相加,得:5 SO2(g) + 2 MnO4- + 2 H2O = 2 Mn2+ + 5 SO42- + 4 H+(9)“氧化数法”:Cr2O72- + 3 H2O2 + 8 H+ = 2 Cr3+ + 3 O2(g) + 7 H2O“离子-电子法”:3 H2O2 = 3 O2(g) + 6 H+ + 6 eCr2O72- + 14 H+ + 6 e = 2 Cr3+ + 7 H2O两式相加,得:Cr2O72- + 3 H2O2 + 8 H+ = 2 Cr3+ + 3 O2(g) + 7 H2O (10)“氧化数法”:2 CrO42- + 3 CN- + 5 H2O = 2 Cr(OH)3(s) + 3 OCN- + 4 OH-“离子-电子法”:3 CN- + 6 OH- = 3 OCN- + 3 H2O + 6 e2 CrO42- + 8 H2O + 6 e = 2 Cr(OH)3(s) +10 OH-两式相加,得:2 CrO42- + 3 CN- + 5 H2O = 2 Cr(OH)3(s) + 3 OCN- + 4 OH- (11)“氧化数法”:Cl2(g) + CN- + 2 OH- = 2 Cl- + OCN- + H2O“离子-电子法”:CN- + 2 OH- = OCN- + H2O + 2 eCl2(g) + 2 e = 2 Cl- + H2O两式相加,得:Cl2(g) + CN- + 2 OH- = 2 Cl- + OCN- + H2O(12)“氧化数法”:3 I2(s) + 6 OH- = 5 I- + IO3- + 3 H2O“离子-电子法”:I2(s) + 12 OH- = 2 IO3- + 6 H2O + 10 e5 I2(s) + 10 e = 10 I-两式相加,约简系数,得:3 I2(s) + 6 OH- = 5 I- + IO3- + 3 H2O(13)“氧化数法”:5 I- + IO3- + 6 H+ = 3 I2(s) + 3 H2O“离子-电子法”:10 I- = 5 I2(s) + 10 e2 IO3- + 12 H+ + 10 e = I2(s) + 6 H2O两式相加,约简系数,得:5 I- + IO3- + 6 H+ = 3 I2(s) + 3 H2O(14)“氧化数法”:I2(s) + 2 S2O32- = 2 I- + S4O62-“离子-电子法”:2 S2O32- = S4O62- + 2 eI2(s) + 2 e = 2 I-两式相加,得:I2(s) + 2 S2O32- = 2 I- + S4O62-(15)“氧化数法”:5 NaBiO3(s) + 2 Mn2+ + 14 H+ = 5 Bi3+ + 5 Na+ + 2 MnO4- + 7 H2O “离子-电子法”:2 Mn2+ + 8 H2O= 2 MnO4- + 16 H+ + 10 e5 NaBiO3(s) + 30 H+ + 10 e = 5 Bi3+ + 5 Na+ + 15 H2O两式相加,得:5 NaBiO3(s) + 2 Mn2+ + 14 H+ = 5 Bi3+ + 5 Na+ + 2 MnO4- + 7 H2O 3.含氰(CN-)工业废水可以用漂白粉[有效成份Ca(ClO)2]或氯气或H2O2在碱性介质中进行氧化处理后排放,写出各反应方程式。