最新高考数学(文)第二章 函数的概念及其基本性质2-2-1习题及答案
- 格式:doc
- 大小:63.50 KB
- 文档页数:2
高考数学必修二函数知识点在高中数学的课程中,函数是一个重要的概念,也是高考中必考的内容之一。
函数不仅是数学中的一种基本工具,而且在现实生活中随处可见。
掌握好函数的相关知识,对于高中生来说至关重要。
本文将对高考数学必修二中函数的基本概念、性质和应用进行详细论述。
1. 函数的基本概念函数是数学中一个非常基础的概念,它表达了一种特殊的对应关系。
在数学上,我们通常将函数表示为f(x),其中x表示自变量,f(x)表示因变量。
函数的核心概念是对于给定的自变量,有唯一确定的因变量与之对应。
比如,我们可以定义一个函数f(x)=2x,那么无论x取何值,其对应的因变量都是2倍的自变量。
2. 函数的性质在高考数学必修二中,我们需要掌握函数的一些基本性质。
首先是函数的定义域和值域。
定义域是自变量可能取值的范围,而值域则是因变量可能取值的范围。
另外,我们还需要了解函数的奇偶性和单调性。
奇函数是指满足f(-x)=-f(x)的函数,而偶函数则是指满足f(-x)=f(x)的函数。
单调性则是指函数在定义域内的增减情况,包括单调递增和单调递减。
3. 常见函数的图像和性质在高考数学必修二中,我们需要熟悉一些常见函数的图像和性质。
例如,一次函数是y=kx+b的形式,其中k和b为常数。
一次函数的图像是一条直线,斜率k决定了函数的斜率大小,而截距b决定了函数与y轴的交点。
二次函数是y=ax²+bx+c的形式,其中a、b、c为常数且a≠0。
二次函数的图像是一个抛物线,开口方向由a的正负决定。
此外,指数函数、对数函数等也是高考中常见的函数类型。
4. 函数的应用函数在生活中有着广泛的应用。
在经济学中,函数可以用来描述投资收益、消费行为等经济现象。
在物理学中,函数可以用来描述运动的规律,如位移、速度和加速度等。
在生物学中,函数可以用来描述种群增长、肿瘤扩散等现象。
在计算机科学中,函数是程序设计的基础,用来解决各种问题。
因此,函数的理解和掌握对于学生未来的学习和工作都具有重要意义。
高考数学总复习:第一节 函数及其表示学习要求:1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念函数映射两集合A 、B设A 、B 是两个① 非空数集 设A 、B 是两个② 非空集合对应关系f :A →B按照某种确定的对应关系f ,使对于集合A中的③ 任意 一个数x ,在集合B 中都有④ 唯一确定 的数f (x )与之对应按某种确定的对应关系f ,使对于集合A 中的⑤ 任意 一个元素x ,在集合B 中都有⑥ 唯一确定 的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数 称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A 对应f :A →B▶提醒 判断一个对应关系是不是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的⑦ 定义域 ;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的⑧ 值域 .(2)函数的三要素:⑨ 定义域 、值域和对应关系.(3)相等函数:若两个函数的⑩ 定义域 相同,且 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示方法: 解析法 、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.▶提醒一个分段函数的解析式要把每一段写在一个大括号内,各段函数的定义域不可以相交.知识拓展1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为{x|x∈R且x≠xπ+π2,x∈Z}.(6)函数f(x)=x0的定义域为{x|x∈R且x≠0}.(7)y=log a x(a>0,且a≠1)的定义域为{x|x>0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为[4xx-x24x ,+∞);当a<0时,值域为(-∞,4xx-x24x].(3)y=xx(k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.1.判断正误(正确的打“√”,错误的打“✕”).(1)函数y=1与y=x0是同一个函数.()(2)f(x)=√x-3+√2-x是一个函数.()(3)若两个函数的定义域与值域相同,则这两个函数相等.()(4)函数y=f(x)的图象与直线x=1的交点最多有1个.()答案(1)✕(2)✕(3)✕(4)√2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是 ( )答案 B3.(新教材人教A 版必修第一册P65例2改编)函数f (x )=√2x的定义域为 ( )A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞) 答案 A 要使f (x )=2x有意义,需满足2x-1>0,解得x >0,∴函数f (x )=2x的定义域为(0,+∞),故选A.4.(2020山东威海一中期中)已知函数f (x )的定义域为(-1,0),则函数f (2x -2)的定义域为( ) A.(-1,1) B.(-1,-12) C.(-1,0) D.(12,1)答案 D ∵f (x )的定义域为(-1,0),∴-1<2x -2<0,解得12<x <1,∴函数f (2x -2)的定义域为(12,1),故选D .5.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )= ( )A.x +1B.2x -1C.-x +1D.x +1或-x -1答案 A 因为f (x )是一次函数,所以可设f (x )=kx +b (k ≠0).由f [f (x )]=x +2得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,所以k 2=1,kb +b =2,解得k =1,b =1,则f (x )=x +1.故选A.函数、映射概念的理解典例1 (1)给出下列四个对应:①A =R,B =R,对应关系f :x →y ,y =1x +1,x ∈A ,y ∈B ;②A ={x |12x ∈N *},B ={x |x =1x,x ∈N *},对应关系f :a →b ,b =1x;③A ={x |x ≥0},B =R,对应关系f :x →y ,y 2=x ,x ∈A ,y ∈B ;④A ={x |x 是平面α内的矩形},B ={y |y 是平面α内的圆},对应关系f :每一个矩形都对应它的外接圆. 其中是从A 到B 的映射的为( )A.①③B.②④C.①④D.③④ (2)下列函数中,与函数y =x +1是相等函数的是 ( )A.y =(√x +1)2B.y =√x 33+1C.y =x 2x+1 D.y =√x 2+1答案 (1)B (2)B解析 (1)对于①,当x =-1时,y 的值不存在,所以①不是从A 到B 的映射;对于②,A ,B 是两个集合,分别用列举法表述为A ={2,4,6,…},B ={1,12,13,14,…},由对应关系f :a →b ,b =1x 知,②是从A 到B 的映射;③不是从A 到B 的映射,如A 中的元素1对应B 中两个元素±1;④是从A 到B 的映射.(2)对于A,函数y =(√x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B,两个函数的定义域和对应关系都相同,是相等函数;对于C,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D,两个函数的定义域相同,但对应关系不同,不是相等函数,故选B .名师点评1.定义域和值域都相同的两个函数不一定是相等函数.2.判断一个从集合A 到集合B 的对应是不是一个函数(映射)的依据可归纳为可以一对一,也可以多对一,但不能一对多.1.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3}, f :x →x 的平方根; ②A =R,B =R, f :x →x 的倒数; ③A =R,B =R, f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1}, f :x →x 2. 其中是A 到B 的映射的是 ( )A.①③B.②④C.③④D.②③ 答案 C2.下列四组函数中,表示相等函数的一组是 ( )A.f (x )=|x |,g (x )=√x 2B.f (x )=√x 2,g (x )=(√x )2C.f (x )=x 2-1x -1,g (x )=x +1D.f (x )=√x +1·√x -1,g (x )=√x 2-1 答案 A函数的定义域角度一 具体函数的定义域典例2 (1)函数f (x )=√x +1+lg(6-3x )的定义域为 ( )A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2] (2)函数f (x )=√4-|x |+lgx 2-5x +6x -3的定义域为 ( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6] 答案 (1)C (2)C解析 (1)要使函数f (x )=√x +1+lg(6-3x )有意义,则{x +1≥0,6-3x >0,即-1≤x <2.故函数f (x )的定义域为[-1,2).(2)要使函数f (x )有意义,需满足{4-|x |≥0,x 2-5x +6x -3>0,即{|x |≤4,(x -3)(x -2)x -3>0,解得2<x <3或3<x ≤4,故f (x )的定义域为(2,3)∪(3,4].角度二 已知函数定义域,求参数的取值范围典例3 (1)(2019河北衡水联考)若函数y =xx -1xx 2+4xx +3的定义域为R,则实数m 的取值范围是 ( )A.(0,34]B.(0,34)C.[0,34]D.[0,34)(2)若函数f (x )=√xx 2+xxx +x 的定义域为{x |1≤x ≤2},则a +b 的值为 . 答案 (1)D (2)-92解析 (1)要使函数的定义域为R, 则mx 2+4mx +3≠0恒成立, ①当m =0时,显然满足条件; ②当m ≠0时,由Δ=(4m )2-4m ×3<0, 得0<m <34. 综上可知,0≤m <34.(2)函数f (x )=√xx 2+xxx +x 的定义域是不等式ax 2+abx +b ≥0的解集.由题意知不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2}, 所以{x <0,1+2=-x ,1×2=xx,解得{x =-32,x =-3, 所以a +b =-32-3=-92. 角度三 抽象函数的定义域典例4 已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是 .答案 [12,32]解析 因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x 需要满足{0≤x +12≤2,0≤x -12≤2,解得12≤x ≤32,所以函数g (x )的定义域是[12,32]. ◆变式探究 若函数y =f (x )的定义域是[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [0,1)解析 由题意得{0≤2x ≤2,x -1≠0,解得0≤x <1,所以g (x )的定义域为[0,1).名师点评简单函数定义域的类型及求法(1)已知函数的解析式,构造使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f [g (x )]的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)函数f (x )=√2x -1-1的定义域是 . (2)函数f (x )=(x -12)0√x +2的定义域是 .答案 (1)(1,3] (2)(-2,12)∪(12,+∞) 2.若函数y =的定义域为R,则实数a 的取值范围是 .答案 [0,12)解析 由题意得ax 2-4ax +2>0恒成立, 则a =0或{x >0,x =(-4x )2-4×x ×2<0,解得0≤a <12.3.已知函数y =f (x 2-1)的定义域为[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [-12,1)∪(1,32]解析 因为y =f (x 2-1)的定义域为[0,2],所以x ∈[0,2],x 2-1∈[-1,3],所以{-1≤2x ≤3,x -1≠0,解得-12≤x ≤32且x ≠1,所以函数g (x )的定义域是[-12,1)∪(1,32].函数的解析式典例5 (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ). (2)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x ). 解析 (1)解法一(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c.因为f (2x +1)=4x 2-6x +5,所以{4x =4,4x +2x =-6,x +x +x =5,解得{x =1,x =-5,x =9,所以f (x )=x 2-5x +9(x ∈R). 解法二(换元法): 令2x +1=t (t ∈R),则x =x -12,所以f (t )=4(x -12)2-6·x -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R).解法三(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)(解方程组法)由f (-x )+2f (x )=2x①, 得f (x )+2f (-x )=2-x②,①×2-②得3f (x )=2x +1-2-x,即f (x )=2x +1-2-x3.故函数的解析式是f (x )=2x +1-2-x3(x ∈R).方法技巧求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的式子,然后以x 替代g (x )得f (x )的解析式.(2)换元法:已知函数f (g (x ))的解析式,求f (x )的解析式时可用换元法,即令g (x )=t ,从中解出x ,代入已知解析式进行换元,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数),则可用待定系数法.(4)解方程组法:已知关于f (x )与f (1x )或f (-x )的等式,可根据已知条件构造出等式,组成方程组,通过解方程组求出f (x )的解析式.(2020河北衡水中学调研)已知f (x )是二次函数,且f (0)=0, f (x +1)=f (x )+x +1.求f (x )的解析式.解析 设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0知c =0,则f (x )=ax 2+bx ,又由f (x +1)=f (x )+x +1得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以{2x +x =x +1,x +x =1,解得a =b =12,所以f (x )=12x 2+12x (x ∈R).分段函数角度一 分段函数的最值问题典例6 已知函数f (x )={x 2-2xx +9,x ≤1,x +4x +x ,x >1,若f (x )的最小值为f (1),则实数a 的取值范围是 .答案 [2,+∞)解析 当x >1时, f (x )=x +4x +a ≥4+a ,当且仅当x =2时,等号成立.当x ≤1时, f (x )=x 2-2ax +9为二次函数,要想在x =1处取最小值,则函数图象的对称轴要满足x =a ≥1,并且f (1)≤4+a ,即1-2a +9≤a +4,解得a ≥2.角度二 已知函数值,求参数的值(或取值范围)典例7 设函数f (x )={x 2+2x ,x <0,x +1,x ≥0,则f (-1)= ;若f (a )>f (a -1),则实数a 的取值范围是 .答案 -1;(-12,+∞)名师点评分段函数问题的求解策略(1)根据分段函数的解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.1.(2020辽宁盘锦一中模拟)已知函数f (x )={2e x -1,x <1,x 3+x ,x ≥1,则f (f (x ))<2的解集为 ( )A.(1-ln 2,+∞)B.(-∞,1-ln 2)C.(1-ln 2,1)D.(1,1+ln 2)答案 B 因为当x ≥1时, f (x )=x 3+x ≥2,当x <1时, f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2, 所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.2.(2018课标全国Ⅰ文,12,5分)设函数f (x )={2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是 ( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)答案 D 函数f (x )={2-x ,x ≤0,1,x >0的图象如图所示:由f (x +1)<f (2x )得{2x <0,2x <x +1,得{x <0,x <1.∴x <0,故选D .3.已知函数f (x )={log 2(3-x ),x ≤0,2x -1,x >0,若f (a -1)=12,则实数a = .答案 log 23解析 由题意知当a -1≤0,即a ≤1时,log 2(3-a +1)=12,解得a =4-√2>1,舍去.当a -1>0,即a >1时,2a -1-1=12,解得a =log 23>1,成立.故a =log 23.微专题——新定义函数的有关计算新定义函数问题是近几年高考中函数的热点题型,解答这类问题的关键在于阅读理解时准确把握新定义、新信息,并把它纳入已有的知识体系之中,用原来的知识和方法来解决新情境下的问题,一般有两方面的考查:(1)利用新函数进行计算;(2)讨论新函数的性质.典例 (2020浙江镇海中学高三模拟)定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,若f (x )是定义在R 上的减函数,g (x )=f (x )-f (ax )(a >1),则 ( )A.sgn[g (x )]=sgn xB.sgn[g (x )]=-sgn xC.sgn[g (x )]=sgn[f (x )]D.sgn[g (x )]=-sgn[f (x )] 答案 A解析 由题意知g (x )=f (x )-f (ax ),且f (x )是R 上的减函数, 当x >0时,x <ax ,则有f (x )>f (ax ), 则g (x )=f (x )-f (ax )>0, 此时sgn[g (x )]=1;当x =0时,x =ax ,则有f (x )=f (ax ), 则g (x )=f (x )-f (ax )=0, 此时sgn[g (x )]=0;当x <0时,x >ax ,则有f (x )<f (ax ), 则g (x )=f (x )-f (ax )<0, 此时sgn[g (x )]=-1. 综上所述,sgn[g (x )]=sgn x. 故选A.根据新定义得到f (x )的表达式,判断函数f (x )在定义域的单调性,可得结果.1.(2020辽宁大连高三月考)在实数的原有运算法则中,我们定义新运算 “x” 如下:当a ≥b 时,a x b =a ;当a <b 时,a x b =b 2,则函数f (x )=(1x x )·x -(2x x )(x ∈[-2,2])的最大值等于(“·”和“-”仍为通常的乘法和减法) ( )A.-1B.1C.12D.6 答案 D 因为a x b ={x ,x ≥x ,x 2,x <x ,所以f (x )=(1x x )·x -(2x x )={x -2,-2≤x ≤1,x 3-2,1<x ≤2,易知函数f (x )在[-2,2]上单调递增,所以f (x )max =f (2)=6,故选D.2.定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,则当x ∈R 时,不等式x +2>(2x -1)sgn x的解集为 .答案 {x |-3-√334<x <3}解析 当x >0时,不等式可转化为x +2>2x -1,解得0<x <3; 当x =0时,不等式可转化为2>1,不等式成立;当x <0时,不等式可转化为x +2>12x -1①,因为2x -1<0,所以①等价于(x +2)(2x -1)<1,即2x 2+3x -3<0,解得-3-√334<x <0.综上所述,不等式的解集为 {x |-3-√334<x <3}.A 组 基础达标1.下列各组函数中,表示同一个函数的是 ( )A.f (x )=x 2和f (x )=(x +1)2B.f (x )=(√x )2x和f (x )=(x )2C.f (x )=log a x 2和f (x )=2log a xD.f (x )=x -1和f (x )=√(x -1)2答案 B2.函数y =ln(x 2-x )+√4-2x 的定义域为 ( )A.(-∞,0)∪(1,+∞)B.(-∞,0)∪(1,2]C.(-∞,0)D.(-∞,2)答案 B 由已知得{x 2-x >0,4-2x≥0,解得{x <0或x >1,x ≤2,即x ∈(-∞,0)∪(1,2],故选B.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A.(-1,1) B.(-1,-12)C.(-1,0)D.(12,1)答案 B4.已知函数f (x +1)=3x +2,则f (x )= ( )A.3x +2B.3x +1C.3x -1D.3x +4 答案 C5.已知f (10x)=x ,则f (5)= ( )A.105B.510C.log 510D.lg 5 答案 D6.(2020湖南湘潭一中模拟)已知函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))= ( )A.-12 B.2 C.4 D.11 答案 C ∵函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,∴f (1)=12+2=3,∴f (f (1))=f (3)=3+13-2=4.故选C.7.已知函数f (x )={3-x +1(x ≤0),x x +2(x >0),若f (f (-1))=18,则实数a 的值是 ( )A.0B.1C.2D.3 答案 C8.设函数f :R →R 满足f (0)=1,且对任意的x ,y ∈R 都有f (xy +1)=f (x )·f (y )-f (y )-x +2,则f (2 017)= ( ) A.0 B.1 C.2 017 D.2 018答案 D 令x =y =0,则f (1)=f (0)·f (0)-f (0)-0+2=1×1-1-0+2=2,令y =0,则f (1)=f (x )·f (0)-f (0)-x +2,将f (0)=1, f (1)=2代入得f (x )=1+x ,所以f (2 017)=2 018,故选D .9.(2020湖南郴州二中模拟)设x ∈R,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x +32x +1,则函数y =[f (x )]的值域为 ( )A.{0,1,2,3}B.{0,1,2}C.{1,2,3}D.{1,2} 答案 D f (x )=2x +32x+1=2x +1+22x+1=1+22x+1,∵2x>0,∴1+2x>1,∴0<22x+1<2,∴1<1+22x +1<3,即1<f (x )<3.当1<f (x )<2时,[f (x )]=1;当2≤f (x )<3时,[f (x )]=2.综上,函数y =[f (x )]的值域为{1,2},故选D.B 组 能力拔高10.已知函数f (x )={(x -1)x +4-2x ,x <1,1+log 2x ,x ≥1,若f (x )的值域为R,则实数a 的取值范围是( )A.(1,2]B.(-∞,2]C.(0,2]D.[2,+∞)答案 A 当x ≥1时, f (x )=1+log 2x ≥1;当x <1时, f (x )=(a -1)x +4-2a 必须是增函数,且值域区间的右端点的值大于或等于1,才能满足f (x )的值域为R,可得{x -1>0,x -1+4-2x ≥1,解得1<a ≤2.11.(2020江苏苏州一中期中)已知函数f (x )={2x ,x ≤1,log 3(x -1),x >1,且f (x 0)=1,则x 0=( )A.0B.4C.0或4D.1或3 答案 C 当x 0≤1时,由f (x 0)=2x 0=1得x 0=0(满足x 0≤1);当x 0>1时,由f (x 0)=log 3(x 0-1)=1得x 0-1=3,得x 0=4(满足x 0>1),故选C. 12.(2020北京,11,5分)函数f (x )=1x +1+ln x 的定义域是 .答案 (0,+∞)解析 要使函数f (x )有意义,则{x +1≠0,x >0,故x >0,因此函数f (x )的定义域为(0,+∞). 13.(2019湖南衡阳模拟)已知函数f (x )=xxx -1,若f (x )+f (1x )=3,则f (x )+f (2-x )= .答案 6 解析 ∵f (x )=xx x -1, f (x )+f (1x)=3, ∴f (x )+f (1x )=xx x -1+xx 1x-1=xx x -1-x x -1=x (x -1)x -1=3,解得a =3,∴f (x )=3x x -1,∴f (x )+f (2-x )=3x x -1+6-3x 2-x -1=6(x -1)x -1=6.C 组 思维拓展14.(2020广东珠海一中模拟)已知x 为实数,用[x ]表示不超过x 的最大整数,例如[1.2]=1,[-1.2]=-2,[1]=1.对于函数f (x ),若存在m ∈R 且m ∉Z,使得f (m )=f ([m ]),则称函数f (x )是Ω函数. (1)判断函数f (x )=x 2-13x ,g (x )=sin πx 是不是Ω函数(只需写出结论);(2)已知f (x )=x +x x,请写出a 的一个值,使得f (x )为Ω函数,并给出证明. 解析 (1)f (x )=x 2-13x 是Ω函数,g (x )=sin πx 不是Ω函数. (2)a =32.证明:设k ∈N *,取a ∈(k 2,k 2+k ),令[m ]=k ,m =x x ,则一定有m -[m ]=xx -k =x -x 2x∈(0,1),且f (m )=f ([m ]),所以f (x )是Ω函数.。
描述:高中数学必修1(人教B版)知识点总结含同步练习题及答案第二章 函数 2.1 函数一、学习任务1. 通过同一过程中的变量关系理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域和值域;初步掌握换元法的简单应用.2. 了解映射的概念,能判断一些简单的对应是不是映射.3. 理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象.4. 理解函数的单调性及其几何意义,会判断一些简单函数的单调性;理解函数最大(小)值的概念及其几何意义;了解函数奇偶性的含义.二、知识清单函数的相关概念函数的表示方法 映射函数的定义域的概念与求法函数的值域的概念与求法 函数的解析式的概念与求法分段函数复合函数 函数的单调性函数的最大(小)值 函数的奇偶性三、知识讲解1.函数的相关概念函数的概念设 , 是非空数集,如果按照某种确定的对应关系 ,使对于集合 中的任意一个数 ,在集合 中都有唯一确定的数 和它对应,那么就称 为从集合 到集合 的一个函数(function).记作:其中, 叫做自变量,自变量取值的范围(数集 )叫做这个函数的定义域. 叫做因变量,与 的值相对应的 值叫做函数在 处的函数值,所有函数值构成的集合叫做这个函数的值域.相同函数的概念A B f Ax B f (x )f :A →B A By =f (x ),x ∈A .x A y x y x {y | y =f (x ),x ∈A }N集合 的函数关系的有( )012.数轴表示为(2){x | 2⩽x⩽8 且8](3)函数 的图象是由 t 的映射的是( )N(2)函数图象如图所示:y的距离 与点y=f(x)如图为函数 的图象,试写出函数解: [1,2]2(5)(图象法)画出。
第二章函数概念与基本初等函数Ⅰ第二讲函数的基本性质练好题·考点自测1.下列说法中正确的个数是() (1)若函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(2)对于函数f(x),x∈D,若对任意x1,x2∈D(x1≠x2),有(x1-x2)[f(x1)-f(x2)]〉0,则函数f(x)在区间D上是增函数。
(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称。
(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称。
(5)已知函数y=f(x)是定义在R上的偶函数,若f(x)在(-∞,0)上是减函数,则f(x)在(0,+∞)上是增函数。
(6)若T为函数y=f(x)的一个周期,那么nT(n∈Z)也是函数f(x)的周期。
A.3 B。
4 C.5 D。
62。
[2019北京,3,5分][文]下列函数中,在区间(0,+∞)上单调递增的是()A。
y=x12 B.y=2-xC.y=lo g12x D.y=1x3.[2019全国卷Ⅱ,6,5分][文]设f(x)为奇函数,且当x≥0时,f(x)=e x—1,则当x<0时,f(x)=()A .e —x —1B .e -x +1C .—e —x —1 D.—e -x +14.[2020山东,8,5分]若定义在R 的奇函数f (x )在(—∞,0)上单调递减,且f (2)=0,则满足xf (x —1)≥0的x 的取值范围是( )A.[—1,1]∪[3,+∞)B.[-3,-1]∪[0,1] C 。
[—1,0]∪[1,+∞) D 。
[-1,0]∪[1,3]5.[2021大同市调研测试]已知函数f (x )=ax 3+b sin x +c ln(x +√x2+1)+3的最大值为5,则f (x )的最小值为 ( )A.—5 B 。
1 C .2 D.36.[2020福州3月质检]已知f (x )是定义在R 上的偶函数,其图象关于点(1,0)对称。
函数的概念试题及答案高中一、选择题1. 下列哪个选项正确描述了函数的概念?A. 函数是一种运算B. 函数是一种关系C. 函数是一种映射D. 函数是一种变量2. 如果f(x) = 2x + 3,那么f(-1)的值是多少?A. -1B. 1C. 3D. 53. 函数y = x^2 + 1在x = -2时的值是多少?A. 5B. 4C. 3D. 1二、填空题4. 如果一个函数f(x)的定义域是所有实数R,那么这个函数被称为_________函数。
5. 函数f(x) = 3x - 2的反函数是_________。
三、简答题6. 函数的三要素是什么?7. 请解释什么是函数的值域,并给出一个例子。
四、计算题8. 给定函数f(x) = x^2 - 4x + 4,求出当x = 0, 1, 2, 3时的函数值。
答案一、选择题1. C. 函数是一种映射2. A. -1(计算过程:f(-1) = 2*(-1) + 3 = -2 + 3 = 1)3. A. 5(计算过程:y = (-2)^2 + 1 = 4 + 1 = 5)二、填空题4. 无界5. f^(-1)(x) = (x + 2) / 3三、简答题6. 函数的三要素包括:定义域(Domain)、值域(Range)和对应法则(Rule of correspondence)。
7. 函数的值域是指函数所有可能的输出值的集合。
例如,函数y =x^2的值域是所有非负实数,即[0, +∞)。
四、计算题8. 当x = 0时,f(x) = 0^2 - 4*0 + 4 = 4;当x = 1时,f(x) = 1^2 - 4*1 + 4 = 1;当x = 2时,f(x) = 2^2 - 4*2 + 4 = 0;当x = 3时,f(x) = 3^2 - 4*3 + 4 = 1。
结束语:通过本试题的练习,希望同学们能够加深对函数概念的理解,掌握函数的基本性质和计算方法。
函数是数学中的基础工具,对后续的数学学习至关重要。
1.2.1 函数的概念及练习题答案【1】一、选择题1.集合A ={x|0≤x ≤4},B ={y|0≤y ≤2},下列不表示从A 到B 的函数是( ) A .f(x)→y =12x B .f(x)→y =13xC .f(x)→y =23xD .f(x)→y =x2.某物体一天中的温度是时间t 的函数:T(t)=t3-3t +60,时间单位是小时,温度单位为℃,t =0表示12:00,其后t 的取值为正,则上午8时的温度为( )A .8℃B .112℃C .58℃D .18℃3.函数y =1-x2+x2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1} 4.已知f(x)的定义域为[-2,2],则f(x2-1)的定义域为( ) A .[-1,3] B .[0,3]C .[-3,3] D .[-4,4]5.若函数y =f(3x -1)的定义域是[1,3],则y =f(x)的定义域是( ) A .[1,3] B .[2,4]C .[2,8] D .[3,9]6.函数y =f(x)的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个C .至多一个 D .可能两个以上 7.函数f(x)=1ax2+4ax +3的定义域为R ,则实数a 的取值范围是( )A .{a|a ∈R}B .{a|0≤a ≤34}C .{a|a >34}D .{a|0≤a <34}8.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x(x ∈N)为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .79.(安徽铜陵县一中高一期中)已知g(x)=1-2x ,f[g(x)]=1-x2x2(x ≠0),那么f ⎝ ⎛⎭⎪⎫12等于( )A .15B .1C .3D .3010.函数f(x)=2x -1,x ∈{1,2,3},则f(x)的值域是( ) A .[0,+∞) B .[1,+∞)C .{1,3,5} D .R 二、填空题11.某种茶杯,每个2.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y =________,其定义域为________.12.函数y =x +1+12-x的定义域是(用区间表示)________.三、解答题13.求一次函数f(x),使f[f(x)]=9x +1.14.将进货单价为8元的商品按10元一个销售时,每天可卖出100个,若这种商品的销售单价每涨1元,日销售量就减少10个,为了获得最大利润,销售单价应定为多少元?15.求下列函数的定义域.(1)y =x +1x2-4; (2)y =1|x|-2;(3)y =x2+x +1+(x -1)0.16.(1)已知f(x)=2x -3,x ∈{0,1,2,3},求f(x)的值域.(2)已知f(x)=3x +4的值域为{y|-2≤y ≤4},求此函数的定义域. 17.(1)已知f(x)的定义域为 [ 1,2 ] ,求f (2x1)的定义域; (2)已知f (2x1)的定义域为 [ 1,2 ],求f(x)的定义域;(3)已知f(x)的定义域为[0,1],求函数y=f(x +a)+f(x -a)(其中0<a <)的定义域.18.用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩 形底边长为2x ,求此框架的面积y 与x 的函数关系式及其定义域.1.2.1 函数的概念答案 一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.2.[答案] A[解析] 12:00时,t =0,12:00以后的t 为正,则12:00以前的时间负,上午8时对应的t =-4,故T(-4)=(-4)3-3(-4)+60=8.3.[答案] D[解析] 使函数y =1-x2+x2-1有意义应满足⎩⎪⎨⎪⎧1-x2≥0x2-1≥0,∴x2=1,∴x =±1.4.[答案] C[解析] ∵-2≤x2-1≤2,∴-1≤x2≤3,即x2≤3,∴-3≤x ≤ 3. 5.[答案] C2x[解析] 由于y =f(3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f(x)的定义域为[2,8]。
函数【】函数的概念〔1〕函数的概念①设A、B是两个非空的数集,如果按照某种对应法那么f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应〔包括集合A,B以及A到B的对应法那么f〕叫做集合A到B的一个函数,记作f:A B.②函数的三要素:定义域、值域和对应法那么.③只有定义域相同,且对应法那么也相同的两个函数才是同一函数.〔2〕区间的概念及表示法①设a,b 是两个实数,且a b,满足ax b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a xb,或ax b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,x a,x b,x b的实数x的集合分别记做[a,),(a,),(,b],(,b).注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须b.3〕求函数的定义域时,一般遵循以下原那么:f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y tanx中,x k(k Z).2⑥零〔负〕指数幂的底数不能为零.⑦假设f(x)是由有限个根本初等函数的四那么运算而合成的函数时,那么其定义域一般是各根本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:假设f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a g(x)b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.4〕求函数的值域或最值求函数最值的常用方法和求函数值域的方法根本上是相同的.事实上,如果在函数的值域中存在一个最小〔大〕数,这个数就是函数的最小〔大〕值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比拟简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:假设函数y f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)x c(y)0,那么在a(y)0时,由于x,y为实数,故必须有b2(y)4a(y)c(y)0,从而确定函数的值域或最值.④不等式法:利用根本不等式确定函数的值域或最值.⑤换元法:通过变量代换到达化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法5〕函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.〔6〕映射的概念①设A、B是两个集合,如果按照某种对应法那么f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应〔包括集合A,B以及A到B的对应法那么f〕叫做集合A到B的映射,记作f:A B.②给定一个集合A到集合B的映射,且aA,b B.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〗函数的根本性质】单调性与最大〔小〕值1〕函数的单调性①定义及判定方法函数的定义图象判定方法性质(版)高考文科数学函数专题讲解及高考真题(含答案)如果对于属于定义域 I 内〔1〕利用定义某个区间上的任意两个1yy=f(X)f(x 2)〔2〕利用函数 12<的单调性自变量的值x、x ,当x..函数的单调性x 2时,都有 f(x 1)<f(x2),.. .........那么就说 f(x) 在这个区间上是增函数. ...如果对于属于定义域 I 内某个区间上的任意两个 自变量的值 x 1、x 2,当x 1< .. x 2时,都有 f(x 1)>f(x2),.. .........那么就说 f(x) 在这个区 间上是减函数.... f(x 1)o x 1x 2xy y=f(X)f(x 1)f(x 2)o x 1 x 2x〔3〕利用函数图象〔在某个区间图象上升为增〕4〕利用复合函数1〕利用定义2〕利用函数的单调性3〕利用函数图象〔在某个区间图象下降为减〕〔4〕利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数yf [g(x)],令ug(x),假设yf(u)为增,u g(x)为增,那么y f[g(x)]为增;假设y f(u)为减,ug(x)为减,那么yf[g(x)]为增;假设y f(u)为增,ug(x)为减,那么yf[g(x)]为减;假设yf(u)为减,u g(x)为增,那么 y f[g(x)]为减. 〔2〕打“√〞函数 f(x) x a(a0)的图象与性质xf(x)分别在( , a]、[a,)上为增函数,分别在[a,0)、(0,a]上为减函数.〔3〕最大〔小〕值定义①一般地,设函数 y f(x)的定义域为I ,如果存在实数 M 满足:〔1〕对于任意yox的xI ,都有 f(x) M ;〔2〕存在x 0I ,使得f(x 0)M.那么,我们称M 是函数f(x)的最大值,记 作f max (x) M .②一般地,设函数yf(x)的定义域为I ,如果存在实数m 满足:〔1〕对于任意的xI ,都有f(x) m ;〔2〕存在x 0I ,使得f(x 0)m .那么,我们称m 是函数f(x)的最小值,记作f max (x)m .】奇偶性4〕函数的奇偶性①定义及判定方法函数的 定义图象 判定方法性质如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数...........f(x)叫做奇函数....函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数..........f(x)叫做偶函数....②假设函数f(x)为奇函数,且在x 0处有定义,那么f(0)0.1〕利用定义〔要先判断定义域是否关于原点对称〕2〕利用图象〔图象关于原点对称〕1〕利用定义〔要先判断定义域是否关于原点对称〕2〕利用图象〔图象关于y轴对称〕③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数〔或奇函数〕的和〔或差〕仍是偶函数〔或奇函数〕,两个偶函数〔或奇函数〕的积〔或商〕是偶函数,一个偶函数与一个奇函数的积〔或商〕是奇函数.〖补充知识〗函数的图象1〕作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质〔奇偶性、单调性〕;④画出函数的图象.利用根本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种根本初等函数的图象.①平移变换y f(x)②伸缩变换y f(x)y f(x)③对称变换h0,左移h个单位yf(xh)yf(x)k0,上移k个单位yf(x)k h0,右移|h|个单位k0,下移|k|个单位01,伸y f(x)1,缩0A1,缩y Af(x)A1,伸y f(x)y f(x)y f(x)yf(x) x轴f(x)y f()y轴y f() y x x原点f(x)y f(x)直线yxy f1(x) y去掉y轴左边图象y f(|x|)保存y轴右边图象,并作其关于y轴对称图象保存x轴上方图象y|f(x)|将x轴下方图象翻折上去2〕识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.3〕用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形〞的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 根本初等函数 (Ⅰ)〗指数函数】指数与指数幂的运算〔1〕根式的概念①如果x na,a R,xR,n1,且n N ,那么x 叫做a 的n 次方根.当n 是奇数时,a 的 n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号 n a 表示,负的n 次方根用符号 na表示;0的n 次方根是 0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,a 0 .③根式的性质:(n a)na ;当n 为奇数时,n a na ;当n 为偶数时,n a n|a|a(a0).a(a0)〔2〕分数指数幂的概念mn a m(a①正数的正分数指数幂的意义是:a n0,m,n N,且n 1).0的正分数指数幂等于0.mmn (1)m (a②正数的负分数指数幂的意义是:an(1)n 0,m,nN,且n1).0的负分数指数幂没aa有意义. 注意口诀:底数取倒数,指数取相反数.〔3〕分数指数幂的运算性质①a r a s a rs (a 0,r,sR)②(a r )s a rs (a0,r,sR)③(ab )r rb r (a 0,b 0,r )aR【】指数函数及其性质〔4〕指数函数函数名称指数函数定义函数ya x (a0且a1)叫做指数函数图象a 10 a1yya xyya xy1y1(0,1)(0,1)Ox Ox 定域R域(0,)定点象定点(0,1),即当x0,y1.奇偶性非奇非偶性在R上是增函数在R上是减函数a x1(x0)a x1(x0)函数的a x1(x0)a x1(x0)化情况a x a x1(x0)1(x0) a化象的影响在第一象限内,a越大象越高;在第二象限内,a越大象越低.〖〗数函数【】数与数运算〔1〕数的定①假设a x N(a0,且a 1),x叫做以a底N的数,作x log a N,其中a叫做底数,N叫做真数.②数和零没有数.③数式与指数式的互化:xlog a N a x N(a0,a1,N0).〔2〕几个重要的数恒等式log a10,log a a1,log a a b b.〔3〕常用数与自然数常用数:lgN,即log10N;自然数:lnN,即log e N〔其中e⋯〕.〔4〕数的运算性如果a0,a1,M0,N0,那么①加法:log a M log a N log a(MN)②减法:log a M log a Nlog a MN③数乘:nlog a M log a M n(n R)④a log a N N⑤log bM n nlogaM(b0,n)log a Nlog b N且b1)ab R⑥换底公式:(b0,log b a【】对数函数及其性质5〕对数函数函数名称对数函数定义函数ylog a x(a0且a1)叫做对数函数a10a1x1x1y ylog a x y ylog a x图象(1,0)O(1,0)x O x 定义域(0,)值域R过定点图象过定点(1,0),即当x1时,y0.奇偶性非奇非偶单调性在(0,)上是增函数在(0,)上是减函数log a x0(x1)log a x0(x1)函数值的log a x0(x1)log a x0(x1)变化情况log a x0(0x1)log a x0(0x1) a变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.(6)反函数的概念设函数y f(x)的定义域为A,值域为C,从式子y f(x)中解出x,得式子x(y).如果对于y在C中的任何一个值,通过式子x(y),x在A中都有唯一确定的值和它对应,那么式子x(y)表示x是y的函数,函数x(y)叫做函数y f(x)的反函数,记作x f1(y),习惯上改写成yf1(x).〔7〕反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y f(x)中反解出x f1(y);③将x f1(y)改写成y f1(x),并注明反函数的定义域.〔8〕反函数的性质①原函数y f(x)与反函数y f1(x)的图象关于直线yx对称.②函数y f(x)的定义域、值域分别是其反函数yf1(x)的值域、定义域.③假设P(a,b)在原函数y f(x)的图象上,那么P'(b,a)在反函数y f1(x)的图象上.④一般地,函数yf(x)要有反函数那么它必须为单调函数.〖〗幂函数〔1〕幂函数的定义一般地,函数y x叫做幂函数,其中x为自变量,是常数.〔2〕幂函数的图象〔3〕幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).③单调性:如果0,那么幂函数的图象过原点,并且在[0,)上为增函数.如果0,那么幂函数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当q〔其中p,q互pq q质,p和q Z〕,假设p为奇数q为奇数时,那么yx p是奇函数,假设p为奇数q为偶数时,那么yx p是偶q函数,假设p为偶数q为奇数时,那么y x p是非奇非偶函数.⑤图象特征:幂函数yx,x(0,),当1时,假设0x1,其图象在直线y x下方,假设x1,其图象在直线y x上方,当10x1yx上方,假设x1,其图象在直线时,假设,其图象在直线x下方.〖补充知识〗二次函数〔1〕二次函数解析式的三种形式①一般式:f(x)ax2bx c(a0)②顶点式:f(x)a(x h)2k(a0)③两根式:f(x)a(x x1)(x x2)(a0)〔2〕求二次函数解析式的方法①三个点坐标时,宜用一般式.②抛物线的顶点坐标或与对称轴有关或与最大〔小〕值有关时,常使用顶点式.③假设抛物线与x轴有两个交点,且横线坐标时,选用两根式求f(x)更方便.〔3〕二次函数图象的性质①二次函数f(x)ax2bx c(a0)的图象是一条抛物线,对称轴方程为x b,顶点坐标是2ab4acb2 (,).2a4a②当a0时,抛物线开口向上,函数在(,b]上递减,在[b,)上递增,当xb时,2a2a2af min(x)4acb 2;当a0时,抛物线开口向下,函数在(,b]上递增,在[b,)上递减,4a2a2a当x b4acb2时,f max(x)4a.2a③二次函数f(x)ax2bx c(a0)当b24ac0时,图象与x轴有两个交点M1(x1,0),M2(x2,0),|M1M2||x1x2||a|.〔4〕一元二次方程ax2bxc0(a0)根的分布一元二次方程根的分布是二次函数中的重要内容,这局部知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理〔韦达定理〕的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程ax2bx c 0(a 0)的两实根为x1,x2,且x1x2.令f(x) ax2bx c,从以b 下四个方面来分析此类问题:①开口方向: a ②对称轴位置:x ③判别式:④端点函数2a值符号.〔5〕二次函数f(x)ax 2 bxc(a 0)在闭区间[p,q]上的最值设f(x)在区间[p,q]上的最大值为M,最小值为m ,令x 01(p q).〔Ⅰ〕当a0时〔开口向上〕2①假设bp ,那么mf(p) ②假设p bq ,那么mf( b ) ③假设b q ,那么mf(q)2a2a2a2affff(q)(p)(q)(p)OxOxOxfbbf((p)bf()f f())2a2a 2a(q)b Mf(q)bf(p)①假设x 0,那么②x 0,那么M2a2ax 0f(q)O gxff((p)b )(Ⅱ)当a02a时(开口向下)①假设bf(p)②假设pp ,那么M2af(b)2af(p)(p)Oxfb(q),那么mf(q)①假设x 0 2af(b ) f 2a(p)x 0gOxf (q)f(p)xgOxf f(b)2a(q)b q ,那么Mf( b)③假设b2a2a2af(b)2aff f (Ox(q)f(q)Ob x 0,那么mf(p).f②2a(p)f (b)2a(q)xgO xf (p)q ,那么Mf(q)) 2ax第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x 叫做函数yf(x)(xD)的零点。
(2)函数的概念与基本初等函数——2023届高考数学一轮复习揭秘高考原题【全国卷】(一)高考原题1.【2022年全国乙卷(文),1】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A.3231x x y x -+=+B.321x x y x -=+C.22cos 1x x y x =+D.22sin 1x y x =+ 2.【2022年全国甲卷(文),8】当1x =时,函数()ln b f x a x x =+取得最大值-2,则(2)f '=( ) A.-1 B.12- C.12 D.13.【2022年全国乙卷(理),12】已知函数()f x ,()g x 的定义域均为R ,且()(2)5f x g x +-=,()(4)7g x f x --=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k =∑=( ) A.-21B.-22C.-23D.-24(二)考情分析 1.本部分内容在高考试题中考查内容丰富,主要考查函数的基本性质,分段函数,指数函数,对数函数,函数的图像及其应用,函数零点等,函数单调性常作为工具使用,函数与方程思想,数形结合思想也是高考的热点,试题命题角度变化很多,但注重基础.(三)变式训练4.给定函数2()f x x =,()2g x x =+,x ∀∈R ,用()M x 表示()f x ,()g x 中的较大者,记为()max{(),()}M x f x g x =,则()M x 的最小值为( )A.-1B.1C.2D.45.已知函数()y f x =的图象与函数2x y =的图象关于直线y x =对称,函数()g x 是奇函数,且当x 0>时,()()g x f x x =+,则(4)g -=( ).A.-18B.-12C.-8D.-66.已知函数()()()f x x a x b =++(其中a b >)的图象如图所示,则函数()x g x a b =+的图象是( )A. B. C. D.7.已知函数()()log 21(0x a f x b a =+->,且1)a ≠的图像如图所示,则a ,b 满足的关系是( )A.101a b -<<<B.101b a -<<<C.101b a -<<<D.1101a b --<<<8.若函数()41x f x x mx =⋅--在(,1)-∞-上存在零点,则实数m 的取值范围为( ).答案以及解析1.答案:A解析:对于选项B ,当1x =时,0y =,与图象不符,故排除B ;对于选项D ,当3x =时,1sin305y =>,与图象不符,故排除D ;对于选项C ,当0x >时,22cos 2cos cos 112x x x x y x x x=≤=≤+,与图象在y 轴右侧最高点大于1不符,所以排除C.故选A. 2.答案:B解析:由题意知,(1)ln12f a b b =+==-.求导得2()(0)a b f x x x x '=->,因为()f x 的定义域为(0,)+∞,所以易得(1)0f a b '=-=,所以2a =-,所以1(2)242a b f '=-=-.故选B. 3.答案:D解析:由()y g x =的图象关于直线2x =对称,可得(2)(2)g x g x +=-.在()(2)5f x g x +-=中,用-x 替换x ,可得()(2)5f x g x -++=,可得()()f x f x -=①,()y f x =为偶函数.在()(4)7g x f x --=中,用2x -替换x ,得(2)(2)7g x f x -=--+,代入()(2)5f x g x +-=中,得()(2)2f x f x +--=-②,所以()y f x =的图象关于点(1,1)--中心对称,所以(1)(1)1f f =-=-.由①②可得()(2)2f x f x ++=-,所以(2)(4)2f x f x +++=-,所以(4)()f x f x +=,所以函数()f x 是以4为周期的周期函数.由()(2)5f x g x +-=可得(0)(2)5f g +=,又(2)4g =,所以可得(0)1f =,又()(2)2f x f x ++=-,所以(0)(2)2f f +=-,得(2)3f =-,又(3)(1)1f f =-=-,(4)(0)1f f ==,所以221()6(1)6(2)5(3)5(4)k f k f f f f ==+++∑6(1)6(3)5(1)5124=⨯-+⨯-+⨯-+⨯=-.故选D. 4.答案:B解析:在同一直角坐标系中,作出函数2()f x x =,()2g x x =+的图象,由()M x 的定义知,函数()M x 的图象如图中实线部分所示.由图象知,当1x =-时,()M x 取得最小值1.故选B.5.答案:D解析:由题意知2()log f x x =,所以当0x >时,2()log g x x x =+,又因为函数()g x 是奇函数,所以()2(4)(4)log 446g g -=-=-+=-.故选D.6.答案:C解析:本题考查二次函数图象和指数函数图象.由题图可知,1a -<-,01b <-<,则1a >,10b -<<,则()g x 是增函数,可排除A 项,B 项,再根据01()0g b =+>,可排除D 项.7.答案:A解析:令()21x g x b =+-,则()g x 为增函数,又由()f x 的图像可知函数log ()a y g x =是增函数,所以必有1a >.由()f x 的图像知图像与y 轴交点的纵坐标介于-1和0之间, 即1(0)0f -<<,所以1log 0a b -<<,故11a b -<<.因此101a b -<<<.8.答案:C。
函数的概念及基本性质练习题1. 下列各图中,不能是函数f (x )图象的是( )2.若f (1x )=11+x ,则f (x )等于( )A.11+x (x ≠-1) B.1+xx (x ≠0)C.x1+x (x ≠0且x ≠-1) D .1+x (x ≠-1)3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=() A .3x +2 B .3x -2C .2x +3D .2x -34.函数f (x )=lg(x -1)+4-x 的定义域为( )A .(1,4]B .(1,4)C .[1,4]D .[1,4)5.已知函数f (x )=⎩⎨⎧ 2x +1,x <1x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( )A.12B.45C .2D .96.下列集合A 到集合B 的对应f 是函数的是( )A .A ={-1,0,1},B ={0,1},f :A 中的数平方B .A ={0,1},B ={-1,0,1},f :A 中的数开方C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值 7.下列各组函数表示相等函数的是( )A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z8.求下列函数的定义域:(1)y =-x 2x 2-3x -2;(2)y =34x +83x -29.下列命题中,正确的是()A.函数y=1x是奇函数,且在定义域内为减函数B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数C.函数y=x2是偶函数,且在(-3,0)上为减函数D.函数y=ax2+c(ac≠0)是偶函数,且在(0,2)上为增函数10.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为()A.10B.-10C.-15 D.1511.f(x)=x3+1x的图象关于()A.原点对称B.y轴对称C.y=x对称D.y=-x对称12.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________. 13.①f(x)=x2(x2+2);②f(x)=x|x|;③f(x)=3x+x;④f(x)=1-x2x.以上函数中的奇函数是________.14.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则f(-32)与f(a2+2a+52)的大小关系是()A.f(-32)>f(a2+2a+52) B.f(-32)<f(a2+2a+52)C.f(-32)≥f(a2+2a+52) D.f(-32)≤f(a2+2a+52)15.已知函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.指数的运算及指数函数1.将532写为根式,则正确的是( ) A.352 B.35 C.532 D.53 2.根式 1a 1a (式中a >0)的分数指数幂形式为( ) A .a -43 B .a 43 C .a -34 D .a 343.(a -b )2+5(a -b )5的值是( )A .0B .2(a -b )C .0或2(a -b )D .a -b4.计算:(π)0+2-2×(214)12=________.5.下列各式正确的是( ) A.(-3)2=-3 B.4a 4=a C.22=2 D .a 0=16.若xy ≠0,那么等式 4x 2y 3=-2xy y 成立的条件是( )A .x >0,y >0B .x >0,y <0C .x <0,y >0D .x <0,y <07.计算(2n +1)2·(12)2n +14n ·8-2(n ∈N *)的结果为( ) A.164 B .22n +5 C .2n 2-2n +6 D .(12)2n -78.设a 12-a -12=m ,则a 2+1a =( )A .m 2-2B .2-m 2C .m 2+2D .m 29.根式a -a 化成分数指数幂是________. 10.化简求值:0.064-13-(-18)0+1634+0.2512;11.使不等式23x -1>2成立的x 的取值为( )A .(23,+∞)B .(1,+∞)C .(13,+∞)D .(-13,+∞)12.不论a 取何正实数,函数f (x )=a x +1-2恒过点( )A .(-1,-1)B .(-1,0)C .(0,-1)D .(-1,-3)13.为了得到函数y =3×(13)x 的图象,可以把函数y =(13)x 的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度14.在同一坐标系中,函数f (x )=ax 与g (x )=a x (a >0且a ≠1)的图象可能是( )15.当x >0时,指数函数f (x )=(a -1)x <1恒成立,则实数a 的取值范围是( )A .a >2B .1<a <2C .a >1D .a ∈R16.函数y =a x (a >0且a ≠1)在[0,1]上的最大值与最小值的和为3,a 的值为( )A.12 B .2 C .4 D.1417.函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .A <1C .0<a <1D .a ≠118.方程4x +1-4=0的解是x =________.19.函数y =(12)1-x 的单调增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)20.已知函数f (x )=a -12x +1,若f (x )为奇函数,则a =________.21.方程|2x -1|=a 有唯一实数解,则a 的取值范围是________.22.函数f (x )=⎩⎪⎨⎪⎧a x ,x >1(4-a 2)x +2,x ≤1是R 上的增函数,则a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8) D .[4,8)23.画出函数y =(12)|x |的图象,根据图象指出其值域和单调区间24.已知-1≤x ≤2,求函数f (x )=3+2·3x +1-9x 的值域.。
函数的概念及其表示考试要求 1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数. 3.函数的表示法表示函数的常用方法有解析法、图象法和列表法. 4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. 常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.( × ) (2)函数y =f (x )的图象可以是一条封闭曲线.( × ) (3)y =x 0与y =1是同一个函数.( × ) (4)函数f (x )=⎩⎪⎨⎪⎧x -1,x ≥0,x 2,x <0的定义域为R .( √ )教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )答案 C2.(多选)下列各组函数是同一个函数的是( ) A .f (x )=x 2-2x -1,g (s )=s 2-2s -1B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案 AC3.(2022·长沙质检)已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12等于( )A .-1B .2C.3D.12答案 D解析 ∵f ⎝ ⎛⎭⎪⎫12=log 312<0, ∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域例1 (1)(2022·武汉模拟)函数f (x )=1ln x +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 要使函数有意义,则需⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,解得-1<x ≤2且x ≠0, 所以x ∈(-1,0)∪(0,2].所以函数的定义域为(-1,0)∪(0,2].(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案 [1,3]解析 ∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3].延伸探究 将本例(2)改成“若函数f (x +1)的定义域为[0,2]”,则函数f (x -1)的定义域为________. 答案 [2,4]解析 ∵f (x +1)的定义域为[0,2], ∴0≤x ≤2, ∴1≤x +1≤3, ∴1≤x -1≤3, ∴2≤x ≤4,∴f (x -1)的定义域为[2,4]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是( ) A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案 B解析 由题意,得⎩⎪⎨⎪⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞).2.已知函数f (x )=x1-2x ,则函数f x -1x +1的定义域为( )A .(-∞,1)B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案 D解析 令1-2x>0, 即2x<1,即x <0.∴f (x )的定义域为(-∞,0).∴函数f x -1x +1中,有⎩⎪⎨⎪⎧x -1<0,x +1≠0,解得x <1且x ≠-1.故函数f x -1x +1的定义域为(-∞,-1)∪(-1,1).思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1 (1)函数f (x )=11-4x2+ln(3x -1)的定义域为( )A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12C.⎣⎢⎡⎭⎪⎫-12,14 D.⎣⎢⎡⎦⎥⎤-12,12 答案 B解析 要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎪⎨⎪⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12. (2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x的定义域为__________. 答案 [-1,0]解析 由条件可知,函数的定义域需满足⎩⎪⎨⎪⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2 (1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )的解析式为________.答案 f (x )=lg2x -1(x >1) 解析 令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg 2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________. 答案 x 2+2x +1解析 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b ,∴2ax +b =2x +2, 则a =1,b =2.∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1.(3)已知函数对任意的x 都有f (x )-2f (-x )=2x ,则f (x )=________. 答案 23x解析 ∵f (x )-2f (-x )=2x ,① ∴f (-x )-2f (x )=-2x ,② 由①②得f (x )=23x .教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案 -2x 3-43x解析 ∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x.思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2 (1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案 -x 2+2x ,x ∈[0,2] 解析 令t =1-sin x , ∴t ∈[0,2],sin x =1-t ,∴f (t )=1-sin 2x =1-(1-t )2=-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )=__________.答案 x 2-2,x ∈[2,+∞)解析 ∵f ⎝⎛⎭⎪⎫x 2+1x 2=⎝⎛⎭⎪⎫x 2+1x22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3 (1)已知f (x )=⎩⎪⎨⎪⎧cosπx ,x ≤1,f x -1+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f⎝ ⎛⎭⎪⎫-43的值为( ) A.12B .-12C .-1D .1 答案 D解析 f ⎝ ⎛⎭⎪⎫43=f⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3=cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知f (x )=⎩⎪⎨⎪⎧2x+3,x >0,x 2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________. 答案 1或-3 [-5,-1]解析 ①当a >0时,2a+3=5,解得a =1; 当a ≤0时,a 2-4=5, 解得a =-3或a =3(舍). 综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1. 由-3≤f (a )≤1,解得-5≤a ≤-1. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于( )A .-32B.22C.32D. 2 答案 B解析 f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22. 2.(2022·百校联盟联考)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案 0解析 当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3 (1)(2022·河北冀州一中模拟)设f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+1,x <1.则f (f (-1))=________,f (x )的最小值是________. 答案 0 22-3 解析 ∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3.(2)(2022·重庆质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案 ⎝ ⎛⎭⎪⎫-12,+∞解析 当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立.综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3]答案 D解析 ∵f (x )=3-xlg x,∴⎩⎪⎨⎪⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎪⎨⎪⎧4x -12,x <1,a x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于( ) A.12 B.34 C .1 D .2答案 D解析 f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=f (3)=a 3,得a 3=8,解得a =2.4.设函数f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A.1+x1-x(x ≠-1) B.1+xx -1(x ≠-1) C.1-x1+x(x ≠-1) D.2xx +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t1+t ,∴f (t )=1-t 1+t ,即f (x )=1-x1+x(x ≠-1).5.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是( )答案 A解析 由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.6.(多选)下列函数中,与y =x 是同一个函数的是( ) A .y =3x 3B .y =x 2C .y =lg10xD .y =10lg x答案 AC解析 y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =3x 3=x 的定义域为x ∈R ,故是同一函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是同一函数;对于C 选项,函数y =lg10x=x ,且定义域为R ,故是同一函数;对于D 选项,y =10lg x=x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是同一函数.7.(多选)(2022·张家界质检)设函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤a ,2x,x >a ,若f (1)=2f (0),则实数a可以为( ) A .-1B .0C .1D .2 答案 AB 解析 若a <0,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若0≤a <1,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若a ≥1,则f (0)=1,f (1)=0,f (1)=2f (0)不成立. 综上所述,实数a 的取值范围是(-∞,1).8.(多选)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是( ) A .f (x )=x -1xB .f (x )=ln1-x1+xC .f (x )=1ex x-D .f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1答案 AD解析 对于A ,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足题意; 对于B ,f (x )=ln1-x1+x,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于C ,f ⎝ ⎛⎭⎪⎫1x =111e xx -=ex -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于D ,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x )满足“倒负”变换,故选AD.9.已知f (x 5)=lg x ,则f (100)=________. 答案 25解析 令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案 (1,4]解析 依题意⎩⎪⎨⎪⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.(2022·广州质检)已知函数f (x )=⎩⎪⎨⎪⎧1-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-1,12 解析 ∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0).故⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎪⎨⎪⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案 [-2,0)∪(0,1] 解析 当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A .(-∞,-1] B .(0,+∞) C .(-1,0) D .(-∞,0)答案 D解析 当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0.14.设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1λ∈R,2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案 [2,+∞) 解析 当a ≥1时,2a≥2. ∴f (f (a ))=f (2a)=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a ,∴λ-a ≥1,即λ≥a +1恒成立, 由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.(多选)若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中具有H 性质的是( )A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0) D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2 答案 ACD解析 若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝⎛⎭⎪⎫其中a =f⎝ ⎛⎭⎪⎫x 1+x 22,b =f x 1+f x 22.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.16.设f (x )是定义在R 上的函数,且f (x +2)=2f (x ),f (x )=⎩⎪⎨⎪⎧2x +a ,-1<x <0,b e 2x,0≤x ≤1,其中a ,b 为正实数,e 为自然对数的底数,若f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,则a b 的取值范围为________. 答案 (2e ,+∞)解析 因为f (x +2)=2f (x ),所以f ⎝ ⎛⎭⎪⎫92=f⎝ ⎛⎭⎪⎫12+4=(2)2f ⎝ ⎛⎭⎪⎫12=2e b ,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12+2=2f ⎝ ⎛⎭⎪⎫-12 =2⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-12+a =2(a -1), 因为f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,所以2(a -1)=2e b , 所以a =2e b +1, 因为b 为正实数, 所以a b=2e b +1b=2e +1b∈(2e ,+∞),故a b的取值范围为(2e ,+∞).。
1.定义在R上的函f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,f(x)=2x+15,则f(log220)=( )A.-1 B.4 5C.1 D.-4 5答案 A解析由f(x-2)=f(x+2),得f(x+4)=f(x),∴f(x)的周期T=4,结合f(-x)=-f(x),有f(log220)=f(1+log210)=f(log210-3)=-f(3-log210),∵3-log210∈(-1,0),∴f(log220)=-23-log210-15=-45-15=-1.故选A.2.函f(x)=lg |sin x|是( )A.最小正周期为π的奇函B.最小正周期为2π的奇函C.最小正周期为π的偶函D.最小正周期为2π的偶函答案 C解析易知函的定义域为{x|x≠kπ,k∈Z},关于原点对称,又f(-x)=lg |sin(-x)|=lg |-sin x|=lg |sin x|=f(x),所以f(x)是偶函,又函y=|sin x|的最小正周期为π,所以函f(x)=lg |sin x|是最小正周期为π的偶函.故选C.3.已知函f(x)是(-∞,+∞)上的奇函,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,则f(2013)+f(2014)的值为( )点击观看解答视频A .-2B .-1C .0D .1答案 D解析 ∵函f (x )为奇函,则f (-x )=-f (x ),又函的图象关于x =1对称,则f (2+x )=f (-x )=-f (x ),∴f (4+x )=f [(2+x )+2]=-f (x +2)=f (x ).∴f (x )的周期为 4.又函的图象关于x =1对称,∴f (0)=f (2),∴f (2013)+f (2014)=f (1)+f (2)=f (1)+f (0)=21-1+20-1=1.故选D.4.已知定义在R 上的奇函f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝ ⎛⎭⎪⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .a >b =cB .b >a =cC .b >c >aD .a >c >b 答案 A解析 由题意得,f (x +2)=-f (x +1)=f (x ),即函f (x )是以2为周期的奇函,所以f (2)=f (0)=0.因为f (x +1)=-f (x ),所以f (3)=-f (2)=0.又f (x )在[0,1)上是增函,于是有f ⎝ ⎛⎭⎪⎫12>f (0)=f (2)=f (3),即a >b =c .故选A.5.已知函f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x,x ≥4,f x +,x <4,则f (2+log 23)的值为( ) A.124B.112C.16D.13答案 A解析∵2+log23<4,∴f(2+log23)=f(3+log23).∵3+log23>4,∴f(2+log23)=f(3+log23)=⎝⎛⎭⎪⎫123+log23=18×⎝⎛⎭⎪⎫12log23=18×13=124.故选A.6.若y=f(x)既是周期函,又是奇函,则其导函y=f′(x)( )A.既是周期函,又是奇函B.既是周期函,又是偶函C.不是周期函,但是奇函D.不是周期函,但是偶函答案 B解析因为y=f(x)是周期函,设其周期为T,则有f(x+T)=f(x),两边同时求导,得f′(x+T)(x+T)′=f′(x),即f′(x+T)=f′(x),所以导函为周期函.因为y=f(x)是奇函,所以f(-x)=-f(x),两边同时求导,得f′(-x)(-x)′=-f′(x),即-f′(-x)=-f′(x),所以f′(-x)=f′(x),即导函为偶函,选B.。
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ①得f (x )+2f (-x )=2-x ,②①×2-②,得3f (x )=2x +1-2-x .即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a -7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.考点一 确定函数的单调性(区间))[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值))[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52(3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3,又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13.所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -xB.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,。
课时作业(二十七)1.函数y =log (x -1)(3-x )的定义域为( ) A .(1,3) B .(-∞,3) C .(1,2)∪(2,3) D .(-∞,1)答案 C解析 由⎩⎨⎧x -1>0,x -1≠1,-x >0,得1<x <3且x ≠2,故选C.2.log 43,log 34,log 3443的大小顺序是( ) A .log 34<log 43<log 34 43B .log 34>log 43>log 34 43C .log 34>log 34 43>log 43D .log 3443>log 34>log 43答案 B解析 ∵log 34>1,0<log 43<1,log 3443<0,∴选B. 3.若log a 23<1,则a 的取值范围是( ) A .(0,23) B .(23,+∞) C .(23,1) D .(0,23)∪(1,+∞)答案 D解析 ∵log a 23<1=log a a ,当a >1时,⎩⎨⎧a >1,23<a ,得a >1;当0<a <1时,⎩⎨⎧0<a <1,23>a ,得0<a <23.综上,选D.4.如图,曲线是对数函数y =lo g a x 的图像,已知a 的取值有43,3,35,110,则相应c 1,c 2,c 3,c 4的a 的值依次是( )A.3,43,110,35 B.3,43,35,110 C.43,3,35,110 D.43,3,110,35 答案 B解析 利用例2中关于图像的结论,亦可用特殊值法,例如令x =2,则比较log 432,log 32,log 352,log 1102的大小.5.若log a (π-3)<log b (π-3)<0,a ,b 是不等于1的正数,则下列不等式中正确的是( )A .b >a >1B .a <b <1C .a >b >1D .b <a <1答案 A解析∵0<π-3<1,log a(π-3)<log b(π-3)<0,∴a,b∈(1,+∞)且b>a,∴选A.6.设P=log23,Q=log32,R=log2(log32),则() A.R<Q<P B.P<R<QC.Q<R<P D.R<P<Q答案 A解析P>1,0<Q<1,∵0<log32<1,∴log2(log32)<0,∴P>Q>R.7.若0<a<1,则函数y=log a(x+5)的图像不经过() A.第一象限B.第二象限C.第三象限D.第四象限答案 A解析∵y=log a(x+5)过定点(-4,0)且单调递减,∴不过第一象限,选A.8.已知f(x5)=lg x,则f(2)等于()A.lg2 B.lg32C.lg 132 D.15lg2答案 D解析令x5=2,∴x=21 5.∴f(2)=lg215=15lg2,故选D.9.函数y =1log 0.5(4x -3)的定义域为( )A .(34,1) B .(34,+∞) C .(1,+∞) D .(34,1)∪(1,+∞)答案 A10.若集合A =⎩⎨⎧⎭⎬⎫x |log 12x ≥12,则∁R A =( )A .(-∞,0]∪⎝ ⎛⎭⎪⎫22,+∞ B.⎝ ⎛⎭⎪⎫22,+∞C .(-∞,0]∪[22,+∞)D .[22,+∞) 答案 A11.函数y =a x 与y =-log a x (a >0且a ≠1)在同一坐标系中的图像只可能是( )答案 A12.函数y =log a (x -2)+3(a >0且a ≠1)恒过定点______. 答案 (3,3)13.比较大小,用不等号连接起来. (1)log 0.81.5________log 0.82; (2)log 25________log 75; (3)log 34________2; (4)log 35________log 64. 答案 (1)> (2)> (3)< (4)>14.求不等式log 2(2x -1)<log 2(-x +5)的解集. 解析∵⎩⎨⎧2x -1>0,-x +5>0,x -1<-x +5,得12<x <2.∴不等式的解集为{x |12<x <2}. 15.求函数y =2-xlg (x +3)的定义域.解析 要使函数有意义,必须且只需⎩⎨⎧2-x ≥0,x +3>0,x +3≠1,即⎩⎨⎧x ≤2,x >-3,x ≠-2.∴-3<x <-2或-2<x ≤2.∴f (x )的定义域为(-3,-2)∪(-2,2]. ►重点班·选做题16.函数y =log 2x 和y =log 124x 的图像关于直线( )对称( ) A .x =1 B .x =-1 C .y =1 D .y =-1 答案 D17.若正整数m 满足10m -1<2512<10m ,则m =______. (lg2≈0.301 0) 答案 155解析 由10m -1<2512<10m ,得m -1<512lg2<m . ∴m -1<154.12<m ,∴m =155.1.已知f (x )=1+lg(x +2),则f -1(1)的值是( ) A .1+lg3 B .-1 C .1 D .1+lg2答案 B2.求下列函数定义域. (1)f (x )=lg(x -2)+1x -3;(2)f (x )=log x +1(16-4x ).思路点拨 (1)真数要大于0,分式的分母不能为0,(2)底数要大于0且不等于1,真数要大于0.解析 (1)由⎩⎨⎧x -2>0,x -3≠0,得x >2且x ≠3. ∴定义域为(2,3)∪(3,+∞). (2)由⎩⎪⎨⎪⎧ 16-4x >0x +1>0x +1≠1,即⎩⎪⎨⎪⎧x <4x >-1x ≠0,解得-1<x <0或0<x <4. ∴定义域为(-1,0)∪(0,4).。
1.设函f (x )=ln (1+x )-ln (1-x ),则f (x )是( )
A .奇函,且在(0,1)上是增函
B .奇函,且在(0,1)上是减函
C .偶函,且在(0,1)上是增函
D .偶函,且在(0,1)上是减函
答案 A
解析 由题意可得,函f (x )的定义域为(-1,1),且f (x )=ln 1+x 1-x
=ln ⎝ ⎛⎭
⎪⎫21-x -1,易知y =21-x -1在(0,1)上为增函,故f (x )在(0,1)上为增函,又f (-x )=ln (1-x )-ln (1+x )=-f (x ),故f (x )为奇函,选A.
2.已知定义在R 上的函f (x )=2|x -m |-1(m 为实)为偶函.记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )
A .a <b <c
B .a <c <b
C .c <a <b
D .c <b <a 答案 C
解析 由f (x )=2|x -m |-1是偶函得m =0,则f (x )=2|x |-1.当x ∈[0,+∞)时,f (x )=2x -1递增,又a =f (log 0.53)=f (|log 0.53|)=f (log 23),c =f (0),且
0<log 23<log 25,则f (0)<f (log 23)<f (log 25),即c <a <b .
3.下列函中,满足“f (x +y )=f (x )·f (y )”的单调递增函是( )
A .f (x )=x
12 B .f (x )=x 3
C .f (x )=⎝ ⎛⎭
⎪⎫12x D .f (x )=3x 答案 D
解析 f (x )为指函模型,排除A 、B.又∵f (x )为单调递增函,排除C ,故选
D.
4.已知实x,y满足a x<a y(0<a<1),则下列关系式恒成立的是( )
点击观看解答视频
A.
1
x2+1
>
1
y2+1
B.ln (x2+1)>ln (y2+1)
C.sin x>sin y
D.x3>y3
答案 D
解析根据x>y,函f(x)=x3单调递增,故x3>y3,故选D.
5.已知偶函f(x)在[0,+∞)上单调递减,f(2)=0.若f(x-1)>0,则x 的取值范围是________.
答案(-1,3)
解析∵f(2)=0,f(x-1)>0,∴f(x-1)>f(2),
又∵f(x)是偶函且在[0,+∞)上单调递减,
∴f(|x-1|)>f(2),∴|x-1|<2,
∴-2<x-1<2,∴-1<x<3,
∴x∈(-1,3).。