对三种频域变换的理解
- 格式:doc
- 大小:454.82 KB
- 文档页数:6
三种信号处理方法的对比分析【摘要】本文主要对三种常见的信号处理方法进行了对比分析,分别是时域分析方法、频域分析方法和小波变换方法。
首先对每种方法的原理和特点进行了详细介绍,然后分别进行了它们的优缺点比较,从而为读者提供了更清晰的了解和选择依据。
最后通过案例分析,展示了这三种方法在实际应用中的不同情况。
通过本文的研究,读者能够更全面地了解三种信号处理方法的特点和优劣,为其在具体问题中的选择提供参考。
【关键词】信号处理方法、时域分析、频域分析、小波变换、优缺点比较、案例分析、对比分析、结论。
1. 引言1.1 三种信号处理方法的对比分析信号处理方法是一种重要的数据处理方法,广泛应用于通信、图像处理、音频处理等领域。
时域分析方法、频域分析方法和小波变换方法是三种常见的信号处理方法。
这三种方法各有特点,可以根据具体的需求选择合适的方法来处理信号数据。
时域分析方法是最常见的信号处理方法之一,通过对信号波形的时间属性进行分析来揭示信号的特征。
时域分析方法可以直观地显示信号的波形,有利于了解信号的变化规律和周期性特征。
频域分析方法则是通过将信号转换到频域来分析信号的频率成分和频域特征。
频域分析可以揭示信号的频率分布情况,有利于分析信号的频谱特性和频率成分。
小波变换方法是一种在时域和频域上都具有较好性能的信号处理方法,能够同时捕捉信号的时域和频域特征。
小波变换方法在信号去噪、压缩、特征提取等方面有着广泛的应用。
通过对这三种信号处理方法进行对比分析,可以更好地了解它们各自的优缺点,从而选择最适合具体应用场景的方法。
在本文中,将对这三种信号处理方法进行深入比较和分析,并结合案例分析来展现它们的实际应用效果。
2. 正文2.1 时域分析方法时域分析方法是一种常用的信号处理方法,它主要通过对信号在时间轴上的变化进行分析来提取有用的信息。
时域分析方法主要包括信号的平均值、方差、自相关函数、互相关函数等统计量的计算,以及滤波、时域窗函数等处理技术。
射频信号频域时域转换
首先,让我们来谈谈频域到时域的转换。
在频域中,信号可以
表示为幅度和相位随频率变化的函数。
通过傅里叶变换,我们可以
将频域中的信号转换为时域中的信号。
这种转换可以帮助我们理解
信号的波形特征以及信号中包含的频率成分。
在射频工程中,这种
转换可以用于分析射频信号的调制方式、频率成分以及噪声特性。
相反,从时域到频域的转换则是通过傅里叶逆变换来实现的。
时域信号可以表示为随时间变化的幅度,通过傅里叶逆变换,我们
可以将时域中的信号转换为频域中的信号,从而得到信号的频率成
分和相位信息。
这对于分析射频信号的频谱特性以及进行滤波和频
率域处理非常有用。
在射频工程中,频域时域转换还可以应用于各种信号处理技术,比如混频、解调、滤波等。
通过对信号进行频域分析,工程师可以
更好地理解信号的特性,并且可以根据需要对信号进行处理和优化。
总之,射频信号的频域时域转换是射频工程中非常重要的一部分,它可以帮助工程师理解和分析信号的特性,进行信号处理和优化,从而更好地满足实际应用的需求。
一、引言在数学和工程领域中,z变换和傅里叶变换是两个重要的概念。
它们在信号处理、控制系统、电路分析等领域有着广泛的应用。
本文将探讨z 变换和傅里叶变换的联系和差别,帮助读者更好地理解这两个概念。
二、z变换的概念和用途1. z变换是一种离散时间信号的转换方法,可以将离散时间域中的信号转换为z域中的信号。
它在数字滤波、数字信号处理等领域有着重要的应用。
2. z变换可以将离散时间域中的差分方程转换为z域中的代数方程,从而简化系统的分析和设计。
3. z变换的应用范围广泛,涉及数字滤波器的设计、控制系统的稳定性分析、信号的频域分析等多个领域。
三、傅里叶变换的概念和用途1. 傅里叶变换是一种连续时间信号的频域分析方法,可以将时域中的信号转换为频域中的信号,展现信号的频谱特性。
2. 傅里叶变换在通信、电子电路、光学等领域有着广泛的应用,可以用于信号的滤波、频谱分析、信号合成等方面。
3. 傅里叶变换可以将时域中的信号分解为不同频率的正弦和余弦信号,从而更直观地理解信号的频谱特性。
四、z变换和傅里叶变换的联系1. z变换和傅里叶变换都是一种信号分析的方法,z变换主要针对离散时间信号,而傅里叶变换主要针对连续时间信号。
2. 在频域中,z变换和傅里叶变换都可以将时域中的信号转换为频域中的信号,为信号的分析提供了重要手段。
3. 在数字信号处理中,z变换可以用于数字滤波器的设计和频域特性分析,而傅里叶变换可以用于时域信号的频谱分析和频率特性展现。
五、z变换和傅里叶变换的差别1. z变换是一种离散时间信号的频域分析方法,可以将差分方程转换为代数方程,而傅里叶变换是一种连续时间信号的频域分析方法,可以将时域信号分解为频域信号。
2. z变换适用于数字信号处理和数字系统分析,而傅里叶变换适用于模拟信号处理和连续系统分析。
3. z变换和傅里叶变换在数学形式上有所不同,z变换主要通过z域中的复平面上的积分来表示,而傅里叶变换主要通过复指数函数的积分来表示。
傅里叶变换、主成分变换和缨帽变换是信号处理领域中常用的一些变换方法,它们在处理不同类型的信号时有着各自的优势和局限性。
通过对这三种变换方法的效果进行对比和辨析,可以更好地理解它们的适用范围和特点,以及在实际应用中如何进行选择和使用。
下面将针对这三种变换方法的特点进行详细分析。
一、傅里叶变换1. 傅里叶变换是将一个信号分解成一系列不同频率的正弦和余弦函数的过程,可以将时域信号转换为频域信号。
通过对信号的频谱进行分析,可以得到信号的频率特征和谱密度,适用于频域分析和滤波。
2. 傅里叶变换的优点是能够清晰地展现信号的频率成分,对于周期性信号的分析效果尤为突出。
但是,傅里叶变换并不适用于非周期性信号的分析,且对信号长度和窗口函数的选择较为敏感。
二、主成分变换1. 主成分分析是一种多变量统计方法,它通过线性变换将原始数据转换为一组新的互相无关的变量,即主成分。
主成分变换可以用于降维和特征提取,对于高维数据的处理效果较好。
2. 主成分变换的优点是可以减少数据特征的冗余性,提取数据的主要特征,适用于数据压缩和特征分析。
但是,在实际应用中,主成分变换可能会丢失部分信息,且对于非线性数据的分析效果不佳。
三、缨帽变换1. 缨帽变换是一种局部信号分析方法,通过对信号进行时频变换,可以获得信号的瞬时频率和幅度。
缨帽变换对非平稳信号的分析效果较好,适用于时频域信号的分析和处理。
2. 缨帽变换的优点是能够同时展现信号的时域和频域特性,对于非平稳信号的局部特征分析效果显著。
然而,缨帽变换在算法实现和计算复杂度方面较高,对参数的选择和调整较为敏感。
通过对傅里叶变换、主成分变换和缨帽变换的效果进行对比和分析,可以得出以下结论:1. 傅里叶变换适用于周期性信号的频谱分析,主成分变换适用于多维数据的降维和特征提取,缨帽变换适用于非平稳信号的时频分析。
2. 在实际应用中,需要根据信号的特点和分析需求选择合适的变换方法,以达到最佳的分析效果。
理解傅⾥叶变换以及时域频域概念傅⽴叶变换(的三⾓函数形式)的基本原理是:多个正余弦波叠加(蓝⾊)可以⽤来近似任何⼀个原始的周期函数(红⾊)你可以简单地理解为,我们去菜市场买菜的时候,⽆论质量如何奇怪,都可以转变为“5个 1 ⽄的砝码,2个 1 两的砝码”来表⽰出来,那么上⾯的图我们也可以近似地想象成周期函数就是质量特别奇怪的物品,⽽正余弦波就是想像成成“我⽤了5个1号波、3个2号波”来表⽰这个周期函数。
我们⽇常遇到的琴⾳、震动等都可以分解为正弦波的叠加,电路中的周期电压信号等信号都可以分解为正弦波的叠加。
那么接下来,我们再深⼊讲⼀下,我们再来了解两个概念,时间是永远在流动的花谢花开、潮来潮往,世界永远在不停地变化,⽽以时间为参照系去看待这个世界,我们就叫它时域分析。
就好像⼼电图⼀样,⼼电图是记录⼼脏每⼀⼼动周期所产⽣的电活动变化,所以随着时间变化⼼电图也会变化。
这就是时域。
⽽频域呢,就是描述信号在频率⽅⾯特性时⽤到的⼀种坐标系,频域就是装着正弦函数的空间,⾃然⽽然的,正余弦波是频域中唯⼀存在的波形。
我们从时域我们可以观察到⼼脏随着时间变化在不停地跳动的情形,但是从频域来看,就是⼀个简单的⼼电图符号。
如果时域是运动永不停⽌的,那么频域就是静⽌的。
在很多领域我们都可以⽤到时域和频域,在时域,我们观察到钢琴的琴弦⼀会上⼀会下的摆动,就如同⼀⽀股票的⾛势;⽽在频域,只有那⼀个永恒的⾳符。
刚刚我们讲了多个正余弦波叠加可以⽤来近似任何⼀个原始的周期函数,我们⼼脏不同时间、不同强度的跳动就成了我们所看到的⼼电图。
就可以看作正余弦波叠加成的周期函数。
同样的,利⽤对不同琴键不同⼒度,不同时间点的敲击,可以组合出任何⼀⾸乐曲,也可以看作余弦波叠加成的周期函数。
⽽对于信号来说,信号强度随时间的变化规律就是时域特性,信号是由哪些单⼀频率的信号合成的就是频域特性傅⾥叶变换实质涉及的是频域函数和时域函数的转换。
那么正余弦波是如何叠加成周期函数的呢?随着正弦波数量逐渐的增长,他们最终会叠加成⼀个标准的矩形,不仅仅是矩形,你能想到的任何波形都是可以如此⽅法⽤正余弦波叠加起来的。
信号与系统—信号的频域分析频域分析是指将信号从时间域转换为频域的过程,并通过对信号在频域上的性质和特征进行分析与研究。
频域分析对于理解信号的频率特性、频谱分布等方面的特性有很大的帮助,是信号处理领域中不可或缺的分析工具。
频域分析的基本方法之一是傅里叶变换。
傅里叶变换可以将连续时间域中的信号转换为离散频域中的信号,也可以将离散时间域中的信号转换为连续频域中的信号。
它通过将信号分解为不同频率的正弦波的组合来分析信号的频谱分布。
傅里叶变换的基本公式为:两个公式其中,X(f)表示信号在频域中的频谱,x(t)表示信号在时间域中的波形,f表示频率。
傅里叶变换得到的频谱图可以展示信号在不同频率上的能量分布情况,从而能够更直观地了解信号的频率成分。
频谱图通常以频率为横轴,信号在该频率上的幅度或相位为纵轴,用于描述信号在频域中的变化情况。
除了傅里叶变换,还有其他一些常用的频域分析方法,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)等。
离散傅里叶变换是对离散时间域中的信号进行频域分析的方法,快速傅里叶变换是一种高效的计算离散傅里叶变换的方法。
频域分析主要包括信号的频谱分析和系统的频率响应分析两个方面。
在信号的频谱分析中,我们可以通过观察信号在频域上的能量分布情况来判断信号的频率成分、频率范围等信息。
而在系统的频率响应分析中,我们可以通过研究系统在不同频率上的响应特性来了解系统对不同频率信号的传输、增益、衰减等情况。
频域分析在实际应用中有着广泛的应用。
例如,在音频处理领域中,频域分析可以用于声音信号的频谱分析和音效处理等方面。
在通信系统中,频域分析可以用于信号的调制解调、信道估计、信号检测等。
在图像处理中,频域分析可以用于图像的锐化、降噪、压缩等方面。
总结起来,信号的频域分析是信号与系统课程中的重要内容,它通过将信号从时间域转换为频域来研究信号的频率特性和频谱分布等问题。
傅里叶变换是频域分析中常用的方法之一,它可以将信号分解为不同频率的正弦波的组合。
一、模拟信号的概念模拟信号是一种连续变化的信号,它可以在一定范围内任意取值。
模拟信号可以用数学函数形式表示,例如正弦波、余弦波等。
模拟信号可以是声音、图像、视瓶等各种形式的信号,它们都可以被表示为连续的波形。
二、时域分析1. 时域是指信号随时间变化的情况。
对模拟信号进行时域分析,主要是对信号的振幅、频率、相位等特征进行分析。
2. 时域分析可以用波形图来表示信号随时间的变化。
波形图可以直观地反映信号的幅度和波形,并且可以通过观察波形图来判断信号的周期性、稳定性等特征。
三、频域分析1. 频域是指信号在频率上的特性。
对模拟信号进行频域分析,主要是对信号的频率成分进行分析,包括信号的频谱、频率分量等。
2. 频域分析可以用频谱图来表示信号的频率成分。
频谱图可以直观地反映信号中各个频率成分的强弱,并且可以通过观察频谱图来识别信号中的主要频率成分及其分布规律。
四、时频域分析1. 时频域分析是对信号在时域和频域上进行联合分析。
它可以同时反映信号随时间变化的情况和在频率上的特性。
2. 时频域分析可以用时频谱图来表示信号在时域和频域上的特性。
时频谱图可以直观地反映信号在不同时间和频率上的能量分布情况,从而全面地揭示信号的动态特性。
总结:模拟信号的时域、频域和时频域分析,可以为我们深入了解信号的动态特性和频率成分提供重要的手段,从而为信号处理、通信系统设计等领域提供有力的支撑。
通过对模拟信号的时域、频域和时频域特性的分析,可以更好地理解和应用模拟信号的各种处理技术,推动相关领域的发展和进步。
对于模拟信号的时域、频域和时频域分析,我们还可以进一步深入了解各个分析方法的原理和应用。
我们来看一下时域分析的原理和应用。
时域分析是在时域上对信号进行分析,主要关注信号随时间变化的特性。
时域分析的核心是信号的波形,通过观察信号的波形可以获得信号的振幅、频率、相位等信息。
在实际应用中,时域分析常常用于信号的时序特征识别、波形重构、滤波器设计等方面。
傅立叶变换、拉普拉斯变换、Z变换最全攻略傅立叶变换、拉普拉斯变换、Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换。
研究的都是什么?从几方面讨论下。
这三种变换都非常重要!任何理工学科都不可避免需要这些变换。
傅立叶变换,拉普拉斯变换, Z变换的意义【傅里叶变换】在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。
理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。
我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。
傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。
傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。
这都是一个信号的不同表示形式。
它的公式会用就可以,当然把证明看懂了更好。
对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。
幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。
信号分析方法概述:通用的基础理论是信号分析的两种方法:1 是将信号描述成时间的函数 2 是将信号描述成频率的函数。
也有用时域和频率联合起来表示信号的方法。
时域、频域两种分析方法提供了不同的角度,它们提供的信息都是一样,只是在不同的时候分析起来哪个方便就用哪个。
思考:原则上时域中只有一个信号波(时域的频率实际上是开关器件转动速度或时钟循环次数,时域中只有周期的概念),而对应频域(纯数学概念)则有多个频率分量。
人们很容易认识到自己生活在时域与空间域之中(加起来构成了三维空间),所以比较好理解时域的波形(其参数有:符号周期、时钟频率、幅值、相位)、空间域的多径信号也比较好理解。
但数学告诉我们,自己生活在N维空间之中,频域就是其中一维。
时域的信号在频域中会被对应到多个频率中,频域的每个信号有自己的频率、幅值、相位、周期(它们取值不同,可以表示不同的符号,所以频域中每个信号的频率范围就构成了一个传输信道。
时域中波形变换速度越快(上升时间越短),对应频域的频率点越丰富。
所以:OFDM中,IFFT把频域转时域的原因是:IFFT的输入是多个频率抽样点(即各子信道的符号),而IFFT之后只有一个波形,其中即OFDM符号,只有一个周期。
时域时域是真实世界,是惟一实际存在的域。
因为我们的经历都是在时域中发展和验证的,已经习惯于事件按时间的先后顺序地发生。
而评估数字产品的性能时,通常在时域中进行分析,因为产品的性能最终就是在时域中测量的。
时钟波形的两个重要参数是时钟周期和上升时间。
时钟周期就是时钟循环重复一次的时间间隔,通产用ns度量。
时钟频率Fclock,即1秒钟内时钟循环的次数,是时钟周期Tclock的倒数。
Fclock=1/Tclock上升时间与信号从低电平跳变到高电平所经历的时间有关,通常有两种定义。
一种是10-90上升时间,指信号从终值的10%跳变到90%所经历的时间。
这通常是一种默认的表达方式,可以从波形的时域图上直接读出。
傅里叶变换拉普拉斯变换 z变换主题:傅里叶变换、拉普拉斯变换和z变换引言:在信号与系统领域,傅里叶变换、拉普拉斯变换和z变换是三种重要的数学工具。
它们被广泛应用于信号处理、图像处理、电路分析等领域。
本文将介绍这三种变换的基本概念和应用,并探讨它们之间的关系和特点。
一、傅里叶变换1.1 基本概念傅里叶变换是将一个函数表示为正弦和余弦函数的线性组合。
对于一个函数f(t),其傅里叶变换F(ω)定义如下:F(ω) = ∫[f(t)e^(-jωt)]dt其中,ω是频率,e^(-jωt)表示复指数函数。
1.2 特点和应用傅里叶变换具有如下特点:- 可以将一个信号分解成不同频率的分量,进而进行频谱分析。
- 可以将时域信号转换为频域信号,便于对信号的时频属性进行分析。
- 在信号处理中,傅里叶变换在滤波、频谱分析等方面有着重要的应用。
1.3 傅里叶变换的逆变换傅里叶变换的逆变换可以将频域信号恢复为时域信号。
逆变换的定义如下:f(t) = ∫[F(ω)e^(jωt)]dω二、拉普拉斯变换2.1 基本概念拉普拉斯变换是将一个函数表示为指数衰减函数的线性组合。
对于一个函数f(t),其拉普拉斯变换F(s)定义如下:F(s) = ∫[f(t)e^(-st)]dt其中,s是复数变量,表示频域变量。
2.2 特点和应用拉普拉斯变换具有如下特点:- 可以对连续时间信号进行频域分析,并描述系统的稳定性。
- 可以求解线性时不变系统的微分方程。
- 在控制系统、电路分析等方面有着广泛的应用。
2.3 拉普拉斯变换的逆变换拉普拉斯变换的逆变换可以将频域信号恢复为时域信号。
逆变换的定义如下:f(t) = (1/2πj)∫[F(s)e^(st)]d s,积分路径为垂直于Im(s)轴的线。
三、z变换3.1 基本概念z变换是傅里叶变换和拉普拉斯变换的离散形式,也是一种离散时间信号的频域分析方法。
对于一个离散时间信号f[n],其z变换F(z)定义如下:F(z) = ∑[f[n]z^(-n)]其中,z是复数变量。
对三种频域变换的理解
这三种变换都非常重要!任何理工学科都不可避免需要这些变换。
这三种变换的本质是将信号从时域转换为频域。
傅里叶变换的出现颠覆了人类对世界的认知:世界不仅可以看作虽时间的变化,也可以看做各种频率不同加权的组合。
举个不太恰当的例子:一首钢琴曲的声音波形是时域表达,而他的钢琴谱则是频域表达。
三种变换由于可以将微分方程或者差分方程转化为多项式方程,所以大大降低了微分(差分)方程的计算成本。
另外,在通信领域,没有信号的频域分析,将很难在时域理解一个信号。
因为通信领域中经常需要用频率划分信道,所以一个信号的频域特性要比时域特性重要的多。
具体三种变换的分析(应该是四种)是这样的:
傅里叶分析包含傅里叶级数与傅里叶变换。
傅里叶级数用于对周期信号转换,傅里叶变换用于对非周期信号转换。
但是对于不收敛信号,傅里叶变换无能为力,只能借助拉普拉斯变换。
(主要用于计算微分方程)
而z变换则可以算作离散的拉普拉斯变换。
(主要用于计算差分方程)
为什么要变换?
一切的变换的意义,都是为了能在数学上面表达一个波的形状到底是什么。
一开始我们可以用一个冲激函数以时间的顺序排成一排,再每个乘以各自的系数(线性组合),就能得到纸面上一个波的形状。
后来,伟大的傅里叶同学发现,不仅使冲激函数,用复指数信号叠加之后乘上各自的系数,也可以表达几乎所有的波的波形。
而且!用复指数信号表达的输出计算方式比卷积有规律很多,而这个规律可以从频域上面看出来。
这个发现,使得信号的变换进步了一大步。
周期信号可以用傅里叶级数表示,非周期信号用傅里叶变换表示。
这个再展开讲就偏题了。
奉上以前的傅里叶公式笔记一张(*^__^*)(来自知乎用户牛咩咩)
拉普拉斯变换:傅里叶变换对信号的要求比较高,适应于本身衰减得快的信号。
为了扩大傅里叶变换的应用范围,使其能用于更多不稳定系统的分析,人们在计算过程中人为的添上一个负指数函数作为系数,让一些不衰减的信号更快衰减,方便换算。
这就是拉布拉斯变换的由来。
拉普拉斯变换用于连续信号。
拉布拉斯变换:
其中
把带回公式可得
跟傅里叶变换的公式对比起来看,是不是只差了个系数?
因为变换要收敛才有意义,所以收敛域讨论的是让积分之后有意义。
这个稍微涉及了一点微积分的知识。
最后的答案在直角坐标系看,分界线平行于Y轴。
Z变换:和拉普拉斯变换的目的类似,把离散时间傅里叶变换公式的替换成为z,再乘以一个加权系数表示z的模(通常等于1),就进化成了z变换。
z变换用于离散信号。
z变换:
其中
带进去就可以还原了。
同样,Z变换的收敛域是要让算出的值有意义,通过等比公式展开之后可以看到,需要z小于或者大于某个值才可以,用极坐标来看,就是个圆域。
从复平面来说,傅里叶分析直注意虚数部分,拉普拉斯变换则关注全部复平面,而z 变换则是将拉普拉斯的复平面投影到z平面,将虚轴变为一个圆环。
(不恰当的比方就是那种一幅画只能通过在固定位置放一个金属棒,从金属棒反光才能看清这幅画的人物那种感觉。
)
怎么理解?
我假定现在大家对这些变换已有一些了解,至少知道这些变换怎么算。
好了,接下来我将从几个不同的角度来阐述这些变换。
一个信号,通常用一个时间的函数来表示,这样简单直观,因为它的函数图像可
以看做信号的波形,比如声波和水波等等。
很多时候,对信号的处理是很特殊的,比如说线性电路会将输入的正弦信号处理后,输出仍然是正弦信号,只是幅度和相位有一个变化(实际上从数学上看是因为指数函数是线性微分方程的特征函数,就好像矩阵的特征向量一样,而这个复幅度对应特征值)。
因此,如果我们将信号全部分解成正弦信号的线性组合(傅里叶变换)
那么就可以用一个传递函数
来描述这个线性系统。
倘若这个信号很特殊,例如,傅里叶变换在数学上不存在,这个时候就引入拉普拉斯变换来解决这个问题
这样一个线性系统都可以用一个传递函数
来表示。
所以,从这里可以看到将信号分解为正弦函数(傅里叶变换)或者复指数函数(拉普拉斯变换)对分析线性系统至关重要。
如果只关心信号本身,不关心系统,这几个变换的关系可以通过这样一个过程联系起来。
首先需要明确一个观点,不管使用时域还是频域(或s域)来表示一个信号,他们表示的都是同一个信号!关于这一点,你可以从线性空间的角度理解。
同一个信号,如果采用不同的坐标框架(或者说基向量),那么他们的坐标就不同。
例如,采用
作为坐标,那么信号就可以表示为,而采用则表示为傅里叶变换的形式。
线性代数里面讲过,两个不同坐标框架下,同一个向量的坐
标可以通过一个线性变换联系起来,如果是有限维的空间,则可以表示为一个矩阵,在这里是无限维,这个线性变换就是傅里叶变换。
如果我们将拉普拉斯的
域画出来,他是一个复平面,拉普拉斯变换是这个复平面上的一个复变函数。
而这个函数沿虚轴的值就是傅里叶变换。
到现在,对信号的形式还没有多少假定,如果信号是带宽受限信号,也就是说只在一个小范围内(如)不为0。
根据采样定理,可以对时域采样,只要采样的频率足够高,就可以无失真地将信号还原出来。
那么采样对信号的影响是什么呢?从s平面来看,时域的采样将沿虚轴方向作周期延拓!这个性质从数学上可以很容易验证。
z变换可以看做拉普拉斯变换的一种特殊形式,即做了一个代换,T是采样的周期。
这个变换将信号从s域变换到z域。
请记住前面说的那个观点,s域和z域表示的是同一个信号,即采样完了之后的信号。
只有采样才会改变信号本身!从复平面上来看,这个变换将与轴平行的条带变换到z平面的一个单叶分支
你会看到前面采样导致的周期延拓产生的条带重叠在一起了,因为具有周期性,所以z域
不同的分支的函数值是相同的。
换句话说,如果没有采样,直接进行z变换,将会得到一个多值的复变函数!所以一般只对采样完了后的信号做z变换!
这里讲了时域的采样,时域采样后,信号只有间的频谱,即最高频率只有采样频率一半,但是要记录这样一个信号,仍然需要无限大的存储空间,可以进一步
对频域进行采样。
如果时间有限(这与频率受限互相矛盾)的信号,那么通过频域采样(时域做周期扩展)可以不失真地从采样的信号中恢复原始信号。
并且信号长度是有限的,这就是离散傅里叶变换(DFT),它有著名的快速算法快速傅里叶变换(FFT)。
为什么我要说DFT呢,因为计算机要有效地对一般的信号做傅里叶变换,都是用DFT来实现的。
除非信号具有简单的解析表达式!
总结起来说,就是对于一个线性系统,输入输出是线性关系的,不论是线性电路还是光路,只要可以用一个线性方程或线性微分方程(如拉普拉斯方程、泊松方程等)来描述的系统,都可以通过傅里叶分析从频域来分析这个系统的特性,比单纯从时域分析要强大得多!两个著名的应用例子就是线性电路和傅里叶光学(信息光学)。
甚至非线性系统,也在很多情况里面使用线性系统的东西!所以傅里叶变换才这么重要!你看最早傅里叶最早也是为了求解热传导方程(那里其实也可以看做一个线性系统)!
傅里叶变换的思想还在不同领域有很多演变,比如在信号处理中的小波变换,它也是采用一组基函数来表达信号,只不过克服了傅里叶变换不能同时做时频分析的问题。
最后,我从纯数学的角度说一下傅里叶变化到底是什么。
还记得线性代数中的代数方程吗?如果A是对称方阵,可以找到矩阵A的所有互相正交的特征向量和特征值,然后将向量x和b表示成特征向量的组合
由于特征向量的正交关系,矩阵的代数方程可以化为n个标量代数方程,是不是很神奇!!你会问这跟傅里叶变换有毛关系啊?别急,再看非齐次线性常微分方程
可以验证指数函数是他的特征函数,如果把方程改写为算子表示,那么有,这是不是和线性方程的特征向量特征值很像。
把y 和 z都表示为指数函数的线性组合,那么经过这种变换之后,常微分方程变为标量代数方程了!!而将y和z表示成指数函数的线性组合的过程就是傅里叶变换(或拉普拉斯变换)。
在偏微分方程如波动方程中也有类似结论!这是我在上数理方程课程的时候体会到的。
归纳起来,就是说傅里叶变换就是线性空间中的一个特殊的正交变换!他之所以特殊是因为指数函数是微分算子的特征函数!。