六年级数学下册-《比例问题》练习及答案
- 格式:doc
- 大小:19.00 KB
- 文档页数:4
第四单元:比例第7课时:用比例解决问题班级:姓名: 等级:【基础训练】一、选择题1.甲有图书120本,乙有图书60本,甲给乙()本后,乙的图书与甲的图书比是4∶5。
A.20 B.40 C.602.一块长方形的耕地(如图),已知其中三小块长方形的面积分别是15km2、16km2和20km2,则阴影部分的面积是()km2A.19 B.12 C.11 D.213.一个玻璃瓶内原有一些盐水,盐与盐水的质量比为1∶12,加入15克盐后,盐与盐水的质量比为1∶9。
瓶内原有盐水()克。
A.480 B.440 C.360 D.3004.如下图:一辆汽车早上8:00从A地出发,以平均每小时60千米的速度行驶,11:30到达目的地.目的地应该是().A.甲城B.乙城C.丙城5.下面的问题,还需要确定一个信息才能解决,是()B.玫瑰、三种花总数的比是1:3C.三种花的数量是百合的6倍D.玫瑰的数量是百合的二、填空题6.一个三角形中三个内角的度数的比是2∶3∶7,它最大内角的度数是( ),这是一个( )三角形。
7.某小学五、六年级参加数学竞赛的人数比是8∶7,六年级获奖人数是五年级获奖人数的37,两个年级各有50名同学未获奖,六年级有( )名同学获奖。
8.甲、乙两人从武汉长江大桥的两端出发,相向而行,乙先走556.8米,然后甲从桥的另外一端开始出发。
已知甲、乙两人的速度是3∶2,甲、乙相遇时所走的路程是2∶3,问武汉长江大桥全长( )米。
9.已知平行四边形ABCD周长为80厘米,以BC为底时,高为21厘米.以CD为底时高为27厘米,那么平行四边形的面积为()平方厘米.10.甲、乙、丙三人进行200米赛跑,当甲到达终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑时的速度都不变,那么,当乙到达终点时,丙离终点还有( )米。
三、判断题11.时间和速度成反比例.( )12.变速自行车蹬同样的圈数时,前后轮齿数比的比值越大,自行车走得越远。
人教版六年级数学下册第四单元《比例》课后练习(共十练附答案)4.1 比例的意义1.判断两个比能否组成比例,并把组成的比例写出来,不能的说出理由。
(1)0.9︰1.2和8︰6(2) 0.22.5 和 450(3)6︰45和0.8︰6 (4)12︰1.2和1︰1102.写出比值是14的两个比: 和 ,组成的比例是 。
3.连一连。
(将两个能组成比例的比连起来)2︰3 0.5︰0.20.6︰0.8 13︰1103︰1.2 4︰623︰15 35︰454.在( )里填上适当的数。
(1)3︰( )= ( )︰12(2)24︰9 = 8︰( )(3)( )︰3 = 8︰( )填完之后,将各组比例中的第一项与第四项相乘,第二项与第三项相乘,算一算,你有什么发现?4.2 比例的基本性质1.填一填。
(1)如果a ︰b =c ︰d ,那么,( )×( )=( )×( )。
(b 、d 都不为0)(2)一个比例的两个内项分别是5和a ,则两个外项的积是( )。
2.应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
(1)23 ︰ 14 和 45 ︰310(2)34 ︰1.2和 54︰1.63.根据等式,改写成比例式。
(1)14×12=21×8 (2)A ×B=C ×D4、用8,40,32再找上一个数组成比例,可以找哪些数?请写出组成的比例。
1.解比例。
(1)34 ︰56 =X ︰23 (2)1.5X =6122.根据下列条件列出比例,并解比例。
(1)8与X 的比等于13 与 56的比。
(2)什么数与314 的比值等于 79与1.2的比值?3.轮船模型是按照与实物大小1︰400的比例做成的,它的长是20.5cm ,这艘轮船的实际长多少米?4.下图是一个山坡的示意图,如果A 点的高度是40米,B 点的高度应是多少米?1.上表中,路程是随着 的变化而变化的, 和 是两种相关联的量,路程和时间的比值 ,也就是 和 成正比例关系,和 是成 的量。
比例的应用【运用比例解决问题】(2019﹒天河区模拟)晴晴全家“五一”到中山公园游玩,拍了许多照片,她买了一本相册,如果每页放6张照片,刚好放16页,现在晴晴打算每页只放4张,25页够放下这些照片吗?(用比例解)【考点】比例的应用.用比例解决问题【分析】根据照片的数量是一定的,每页放相片的张数×放照片的页数=照片的数量(一定),由此判断每页放相片的张数与放照片的页数成反比例,设出未知数,列出比例解答即可.【解答】解:设每页只放4张,可以放x 页,4x =6×16,x =6×164, x =24,因为25>24,所以25页够放下这些照片,答:25页够放下这些照片.【点评】解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.例2 (2019春﹒法库县期末)淘气和笑笑收集的邮票张数的比是3:5.淘气收集了36张邮票,笑笑收集了多少张邮票?【用比例解】【考点】比例的应用.比例的应用【专题】比和比例应用题.【分析】已知淘气和笑笑收集的邮票张数的比是3:5.淘气收集了36张邮票,设笑笑收集了x 张邮票,据此列比例解答.【解答】解:设笑笑收集了x 张邮票,3:5=36:x3x =5×36x =5×363x =60.答:笑笑收集了60张邮票.【点评】此题考查的目的是理解掌握比例的意义、比例的基本性质及应用.例3 一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。
如果要4小时到达,每小时要行多少千米?(1)这道题里的路程是一定的,________和________成_______比例。
所以两次行驶的________和________的________________是相等的。
(2)如果设每小时需要行驶X 千米答:每小时需要行驶 千米。
(3)如果把例2中的第三个已知条件和问题互换一下:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。
六年级数学下册《用比例解决问题》练习题及答案解析学校:___________姓名:___________班级:_____________一、选择题1.一条2厘米的线段,选用下面比例尺()画出的平面图最大。
A.1∶200B.1∶5000C.1∶1D.2∶12.老师买了同样数目的田格本、横线本和练习本。
他发给每个同学1个田格本、3个横线本和5个练习本。
这时横线本还剩24个,那么田格本和练习本共剩了()个。
A.48B.50C.54D.563.把一个圆柱削成一个最大的圆锥,削去的体积是48立方分米,圆柱的体积是()立方分米。
A.144B.24C.724.一幅地图的比例尺是1∶1000000,下列说法不正确的是()。
A.这是一个数值比例尺B.说明要把实际距离缩小为11000000后,再画在图纸上C.图上距离相当于实际距离的1 1000000D.图上1厘米相当于实际1000000米5.下列各数中,()不能与2、8、10组成比例。
A.58B.85C.52D.406.甲乙两个容积相同的瓶子分别装满盐水,已知甲瓶中盐、水的比是2∶3,乙瓶中盐、水的比是3∶5,现在把甲、乙两瓶水混合在一起,则混合盐水中,盐与盐水的比是()。
A.519B.521C.524D.31807.一个水池有甲乙两个水管。
单独开甲管,2小时可以把空池注满;单独开乙管,3小时可以把空池注满。
如果同时打开甲乙两管,()小时可以把空池注满。
A.1B.15C.115D.58.希望小学合唱队共有队员108人,则()一定不是男队员和女队员人数的比。
A.5∶4B.7∶5C.8∶7D.19∶17 9.表示x和y成正比例关系的式子是().A.x+y=9B.y=1.5x C.=0D.xy+1=510.学校把560棵树的种植任务,按照六年级三个班的人数分配给各班。
一班有47人,二班有45人,三班有48人。
二班应种树()。
A.192棵B.188棵C.180棵11.在一幅地图上,用20厘米的线段表示50千米的实际距离,那么这幅地图的比例尺是()。
每日一练 六下第4单元4-4课时《解比例》班级 姓名一、 基础练习1.解比例。
2、 0.3:34 错误!未定义书签。
=2÷( )=( ):( )=( )10 =( )%3、学校合唱组男生与女生人数的比是3:4,合唱组男生有24人,女生有多少人?(你会用不同的方法解答吗?)二、 拓展练习1、解比例X :34 =56 3:5=(X+6):20 1.6:2.4=Y 4.52、选择(1)一杯牛奶,牛奶与水的比是1:6,喝掉一半后,牛奶与水的比是( )A.1:6B.1:3C.1:12D.6:1(2)不能与3、6、9组成比例的数是( )。
A.2B.12C.18D. 92(3)如果54:a 和152:b 能组成比例,那么,( )。
A.b a 32=B.b a 6=C.a b 32= D.b=6a (4)甲年龄的34 等于乙年龄的23,那么甲、乙的年龄比是( ) A. 34 :23 B.9:8 C.8:9 D. 23 :343、填空1.两个圆的直径比是5:3,大圆的周长是15.7厘米,小圆的周长是( )厘米。
2.一个比例中,两个外项都是15,两个比的比值都是20,这个比例是( )3. 5、3、0.6和a 可以组成一个比例,a 可以是( ),可以是( ),还可以是( )三、 强化巩固★一个长5厘米、宽3厘米的长方形按4:1的比放大,得到的图形的周长是( )厘米,面积是( )平方厘米。
★比例5:3=15:9的内项3增加6,要使比例成立,外项9应该增加( )。
★3X-4Y=0,那么X:Y=( );如果a 3=b 15 ,那么a:b=( ) ★★如果n m 5243=(m 、n 都不等于0),那么m :n=( ):( ),=mn ( )。
四、 解决实际问题(运用比例的基本性质解答)1、 两杯水,第一杯加了20克糖,糖水共重170克。
第二杯水重210克,按照第一杯糖水中糖和水的质量比计算,第二杯水中要加入多少克糖?2、果园里种植苹果树棵树的23 和桃树棵树的34 相等,已知苹果树和桃树一共有340棵。
苏教版数学六年级下册专项-比例解决问题1.一个精密零件,长5厘米,画在图纸上长0.4米.这张图纸的比例尺是多少?2.填空并按要求作图。
(1)以AB为轴,将三角形ABC旋转一周能形成________。
(填几何体名称)(2)在适当的位置按2∶1的比画出三角形ABC放大后的图形。
(3)在适当的位置按1∶2的比画出长方形缩小后的图形。
3.在一幅比例尺是1∶4000000的地图上量得甲、乙两地的距离是16厘米。
若画在比例尺是1∶8000000的地图上,两地间的图上距离是多少厘米?4.画一画,填一填。
(1)按3∶1的比画出图形A放大后得到的图形B。
(2)按1∶2的比画出图形B缩小后得到的图形C。
我发现:放大或缩小前后的图形()变了,但()没有变,而且图形各部分长度是按一定的比变化的。
5.在一张比例尺是1∶150的建筑图纸上,量得一座大楼的长是6分米,这座大楼的实际长与宽的比是3∶1,这座大楼的实际宽是多少米?6.下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。
(单位:分米)12.根据图中提供的信息,完成下列问题。
(1)自来水厂要从水库取水,取水管道怎样铺最短,请在图中画出来。
(2)自来水厂到城区的送水管道经测算最短是2000米,请你测算:自来水厂到水库的取水管道最短需多少米?13.在一幅地图上,用5厘米长的线段表示实际距离100千米,这幅地图的比例尺是多少?如果甲市至乙市的铁路线路长150千米,那么这段铁路线路在这幅地图上的长度是多少厘米?14.江苏省云龙湖景区杏花坞广场是人们夏天避暑纳凉的佳处。
广场绿地面积与铺装面积的比是6∶5,其中铺装面积共5000平方米,绿地面积有多少平方米?15.甲乙两城相距150千米,在一幅地图上量得甲乙两城之间的距离是5厘米,同时在这幅地图上量得乙丙两城之间的距离是8厘米。
乙丙两城之间的实际距离是多少千米?20.下图中A点是游乐场所在的位置,B点是电影院所在的位置,两地实际距离相距2千米。
人教版六年级下册数学用正比例解决问题一.解比例。
51=25x x 2=5.311.2 32=15x x 5.2=4.01二、填空1.车轮直径一定,所行的路程和车轮的转数成( )比例。
2.因为每度电的价格一定,所以电费和用电的度数成( )比例。
3. 把下面的数量关系式补充完整路程÷( )=时间 路程÷( )=速度总价÷( )=数量 总价÷ ( )=单价 三、判断1.两种相关联的量,不成正比例,就成反比例。
( )2.图上距离和实际距离成正比例。
( )3.X 和Y 表示两种变化的相关联的量,同时5X -7Y =0,X 和Y 不成比例。
( )4.分数的大小一定,它的分子和分母成正比例。
( )5.在一定的距离内,车轮周长和它转动的圈数成反比例。
( ) 四、解决问题 1.2.小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少元?3.小明买9本练习本花了4.5元,如果用20元钱买同样的练习本,可以买多少本?4.运一批煤,18次运了90吨,照这样计算,14次可以运多少吨?5.运一批煤,18次运了90吨,照这样计算,多少次才能运完140吨煤?6.用8辆卡车每天可运货128吨,照这样计算,用同样的卡车11辆,每天可运货多少吨?7.一种水管,40米重60千克。
现称得一捆水管重270千克,这捆水管共长多少米?8.华南服装厂3天加工西装180套,照这样计算,要生产540套西装,需要多少天?9.王师傅生产25个零件需要1.5小时,照这样计算,生产125个零件需要多少小时?10.把一根3m长的标杆直立在地上,测得影长2.7m,同时测得旁边一棵树的影长比标杆影长多3.6m,这棵树高多少米?11.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地的距离是400千米,需要行驶多少小时?12.一个修路队,原计划每天修400m,15天可以修完。
结果12天就完成任务,实际每天修多少米?参考答案:人教版六年级下册数学用正比例解决问题一.解比例。
六年级比例练习题带答案1. 题目:小明拥有5本英语书和3本数学书,求其英语书与数学书的比例。
解答:英语书与数学书的数量比为5:3,即英语书数 ÷数学书数 = 5 ÷ 3。
约分后得到英语书与数学书的比值为5:3。
2. 题目:某班级有60名男生和40名女生,请问男生和女生的比例是多少?解答:男生与女生的数量比为60:40,即男生数 ÷女生数 = 60 ÷ 40。
约分后得到男生和女生的比值为3:2。
3. 题目:一辆汽车经过一段路程用时6小时,如果速度提高一倍,则经过同样路程需要多少时间?解答:原速度为1单位路程/1小时,提高一倍后速度为2单位路程/1小时。
根据比例关系,原用时 ÷提高后用时 = 原速度 ÷提高后速度。
代入数值计算得到 6 ÷ x = 1 ÷ 2,求得 x = 12。
因此,提高后的速度下经过同样路程需要12小时。
4. 题目:在一家商店中,某商品售价为100元,若商家打八折出售,求打折后的售价。
解答:打八折意味着商品售价的80%,即打折后售价 = 商品售价 ×打折比例 = 100 × 80% = 80元。
5. 题目:某商品原价为120元,经过折扣出售后,售价为96元,求折扣比例。
解答:折扣比例 = 折扣金额 ÷商品原价 = (商品原价 - 折后售价) ÷商品原价 = (120 - 96) ÷ 120 = 24 ÷ 120 = 0.2。
因此,折扣比例为20%。
6. 题目:甲、乙两人分别走了12公里和15公里的路程,求他们的路程比。
解答:甲、乙两人的路程比为12:15,即甲走的路程 ÷乙走的路程= 12 ÷ 15。
约分后得到甲、乙两人的路程比为4:5。
7. 题目:一桶油漆可以涂刷80平方米的墙面,求涂刷100平方米墙面需要多少桶油漆?解答:1桶油漆可以涂刷80平方米的墙面,因此涂刷100平方米墙面需要的油漆桶数为 100 ÷ 80 = 1.25(桶)。
六年级下册数学《比例》易错题含答案一、填空1.4:5=24÷( 30 ); 3.5:( 4.9 )=5:7。
2.图上距离3厘米表示实际距离180千米,这幅图的比例尺是( 1:6000000)。
3.如果x÷y=320×2,那么x和y成(正)比例;如果x:3=6:y,那么x和y成(反)比例。
4.一本书的总页数一定,看的天数与平均每天看的页数成(反)比例,总路程一定,已行的路程与未行的路程(不成)比例,长方体的体积一定,底面积和高成(反)比例。
5.小正方形和大正方形边长的比是4:5,小正方形和大正方形面积的比是( 16:25 )。
6.在一个比例中,两个内项的积是5.6,如果一个外项是2.8,另一个外项是(2 )。
7.A×B=C,当C一定时,A和B成(反)比例;当B一定时,A与C成(正)比例。
8. 甲数/乙数=3/5,乙数比甲数多(40%)。
(填百分数)二、判断。
(对的画“√”,错的画“×”)1.数值比例尺都是写成前项是1的比。
( × )2.被除数一定,商和除数成正比例。
( × )3.六年级男生和女生的比是5:3,则女生比男生少52。
( √ )5.在比例中,两个外项是互质数,那么两个内项也一定是互质数。
( × )6.26只小鸟飞进5个笼子里,有一个笼子里至少飞进5只小鸟。
( × )三、解比例96:x=16:5解答:16x=96×5 ;16x÷16=96×5÷16;x=300.6:4.8=12:x解答:0.6x=4.8×12;0.6x÷0.6=57.6÷0.6;x=961.25:0.25=x:1.6解答:0.25x=1.25×1.6;0.25x÷0.25=2÷0.25;x=8四、解决问题1.修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)解:设x天可以修完;120×8=150x;150x=960;x=6.4答:6.4天可以修完。
第1课时比例的意义1.算一算下面哪两幅图片的长和宽的比值是相同的。
2.下面各组的两个比能组成比例吗?如果能,在括号里画“ ”。
6∶8和9∶12( ) 1.2∶0.6和38∶34( ) 56∶57和7∶6( ) 3.用右图中的4个数据可以组成多少个比例?答案:1.2.4∶1.8=2∶1.5 第一幅图和第二幅图是相同的。
2.( )( )( )3.解答:一共可以组成8个比例,分别是6∶3=8∶4 3∶6=4∶8 6∶8=3∶4 8∶6=4∶3 8∶4=6∶3 4∶8=3∶63∶4=6∶84∶3=8∶6第2课时比例的基本性质1.在比例9∶6=12∶8中,两个内项分别是( )和( ),两个外项分别是( )和( )。
把这个比例写成乘法等式为( )。
2.根据比例的基本性质,在括号里填上合适的数。
1.2∶67=2.4∶( ) 58=( )243∶9=( )∶1514( )=73 ( )∶3=4∶( )0.5∶( )=( )∶123.判断:12∶13=64是比,而不是比例。
答案:1.6 12 9 8 6×12=9×82.127 15 5 6 后两题答案不唯一,如:2 6 2 33.错解分析:错误解答错在只把64看作了比值,没有理解比例的含义。
64既可以看作比值,也可以看作6与4的比。
如果64看作6与4的比,那么12∶13与6∶4能组成比例,因此,12∶13=64可以看作是比,也可以看作是比例。
正确解答:✕第3课时解比例1.在下面的括号里填上合适的数。
8∶2=24∶( )( )15=451.5∶3=( )∶34 48∶( )=3.6∶92.解比例。
0.7∶x =48∶4858∶5=24∶x67∶56=65∶x 56∶14=x ∶23 3.按照下面的条件列出比例,然后解比例。
(1)6与5的比等于30与x 的比。
(2)等号左边的比是2∶1.5,等号右边的比的前项和后项分别是6和x 。
答案:1.6 12 17 1202.x=750 x=15 x=76 x=2093.(1)6∶5=30∶x x=25(2)2∶1.5=6∶x x=4.5第4课时练习课1.照这样计算,小雪15分钟行多少米?2.某美术组男生与女生的人数比是6∶7,男生有12人,女生有多少人?3.一幅画,长与宽的比是3∶2,已知这幅画的宽是80厘米,这幅画的长是多少厘米?答案:1.解:设小雪15分钟行x米。
《比例问题》练习
1. 有两堆棋子,A堆有黑子350个,白子500个;B堆有黑子400个,白子100个。
为使A 堆中黑子占A堆的1/2,B堆中黑子占3/4,要从B堆中拿到A堆黑子、白子各多少个?
2. 张家与李家的收入钱数之比是8:5,开支钱数之比是8:3,结果张家结余240元,李家结余270元,问每家各收入多少元?
3. A,B两数的比是8:5,每一数都减少34后,A是B的2倍,求A,B。
4. 小明和小强原有图纸之比是4:3,小明又买来15张,小强用掉8张,现有的图纸之比是5:2.问原来二人各有多少张?
5. 粗蜡烛、细蜡烛一样长,粗的可以点5小时,细的可以点4小时。
同时点燃,一段时间后,粗的是细的长的2倍,问这两只蜡烛点了多长时间?
6. 有一些画片,小明取了其中的1/3还多3张,小强取了剩下的1/3再加33张,他们取的一样多,问这些画片多少张?
7. 一个容器内储有一些水,现倒掉其中2/7的水,剩下的水和容器共重7.2千克,再倒掉剩下水的2/3.此时水与容器的重量是原来(第一次倒掉水之前)的1/3,问原来容器中有多少千克的水?
8. 甲有50张画片,甲拿出乙有的画片数的8倍给乙,现在乙有的画片数是甲的2倍,问乙原来有多少张画片?
9. 哥哥要做384道题,弟弟要做180道题,每分钟哥哥做18道,弟弟做15道,几分钟后哥哥剩下的题数是弟弟剩下题数的4倍?
10. 入学考试参加的男生与女生人数比是4:3,结果录取91人,其中男生与女生之比是8:5,未被录取的学生中,男女生比是3:4,问报考的共多少人?
参考答案
1.解:总的黑子比白子多150个,由于A堆黑白子同样多,那么第二堆黑子比白子多150个。
第二堆中的黑子个数是白子的3倍,第二堆剩下150÷(3-1)=75个白子,75×3=225个黑子。
拿出的就是175个黑子,25个白子。
2.解:李家如果少剩下270-240÷8×3=180元,开支还是8:3,那么收入比也就还是8:3,每份就是180÷2=90元,那么李家收入是90×5=450元,张家收入是90×8=720元。
3.解:如果B减少34÷2=17,且剩下的A是B的2倍,那么原来A也是B的2倍,所以原来A是17÷(5/8-1/2)=136,B是136×5/8=85。
4.解:如果小强也买来15×2/5=6张,且剩下的也是5:2,那么原来小强就是小明的2/5,所以小明原有(8+6)÷(3/4-2/5)=40张,小强原有40×3/4=30张。
5.解:增加一蜡烛,长度是细蜡烛的2倍,每小时燃细蜡烛的2倍,则有(2-1)÷(1/4×2-1/5)=10/3小时。
6.解:如果增加9张卡片,每个人都拿到总数的1/3,小强拿到剩下的1/3多33-3=30张,小强拿到的张数是30张的1/2÷(1/2-1/3)=3倍,所以小强拿到30×3=90张,总共的花盆共有90×3-9=261张。
7.解:剩下的水的1/3和容器,相当于原来的水的1/3和容器的1/3,容器的2/3相当于原来的水的2/7×1/3=2/21,所以容器相当于原来的水的2/21÷2/3=1/7。
原来的水有7.2÷(1-2/7+1/7)=8.4千克。
8.解:把乙的看作1份,那么甲原有(8+1)÷2+8=12.5份,所以乙原来有50÷12.5=4张。
9.解:假设姐姐做180×4=720道,姐姐每分钟做15×4=60道,这样姐姐剩下的都是弟弟的4倍,当哥哥和姐姐剩下相同的时候,就满足条件了。
所以(720-384)÷(60-18)=8分钟。
10.解:按比例分配,录取的男生56人,女生35人。
报考的女生有(56-35×3/4)÷(4/3-3/4)=51人,所以总人数是51÷3/7=119人。