6预处理_几何校正
- 格式:ppt
- 大小:724.00 KB
- 文档页数:38
几何校正操作步骤实验目的:通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。
实验内容:ERDAS软件中图像预处理模块下的图像几何校正。
几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。
而将地图投影系统赋予图像数据的过程,称为地里参考(Geo-referencing)。
由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。
1、图像几何校正的途径ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图2-1)。
ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图2-1)。
在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况:其一:首先确定来自视窗(FromViewer),然后选择显示图像视窗。
其二:首先确定来自文件(From Image File),然后选择输入图像。
2、图像几何校正的计算模型(Geometric Correction Model)ERDAS提供的图像几何校正模型有7种,具体功能如下:3、图像校正的具体过程第一步:显示图像文件(Display Image Files)首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作过程如下:ERDAS图表面板菜单条:Session→Title Viewers然后,在Viewer1中打开需要校正的Lantsat图像:xiamen,img在Viewer2中打开作为地理参考的校正过的(图象或)矢量图层:xmdis3.shp第二步:启动几何校正模块(Geometric Correction Tool)Viewer1菜单条:Raster→Geometric Correction→打开Set Geometric Model对话框(2-2)→选择多项式几何校正模型:Polynomial→OK→同时打开Geo Correction Tools对话框(2-3)和Polynomial Model Properties对话框(4)。
1.几何校正:几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,同时也是将图像投影到平面上,使其符合地图投影系统的过程。
2.图像镶嵌:指在一定的数学基础控制下,把多景相邻遥感影像拼接成一个大范围、无缝的图像的过程。
3.图像裁剪:图像裁剪的目的是将研究之外的区域去除。
常用方法是按照行政区划边界或自然区划边界进行图像裁剪。
在基础数据生产中,还经常要进行标准分幅裁剪。
按照ENVI 的图像裁剪过程,可分为规则裁剪和不规则裁剪。
4.图像分类:遥感图像分类也称为遥感图像计算机信息提取技术,是通过模式识别理论,分析图像中反映同类地物的光谱、空间相似性和异类地物的差异,进而将遥感图像自动分成若干地物类别。
5.正射校正:正射校正是对图像空间和几何畸变进行校正生成多中心投影平面正射图像的处理过程。
6.面向对象图像分类技术:是集合邻近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。
7.DEM:数字高程模型是用一组有序数值阵列形式表示地面高程的一种实体地面模型。
8.立体像对:从两个不同位置对同一地区所摄取的一对相片。
9.遥感动态监测:从不同时间或在不同条件获取同一地区的遥感图像中,识别和量化地表变化的类型、空间分布情况和变化量,这一过程就是遥感动态监测过程。
10.高光谱分辨率遥感:是用很窄而连续的波谱通道对地物持续遥感成像的技术。
在可见光到短波红外波段,其波谱分辨率高达纳米数量级,通常具有波段多的特点,波谱通道多达数十甚至数百个,而且各波谱通道间往往是连续的,因此高光谱遥感又通常被称为"成像波谱遥感"。
11.端元波谱:端元波谱作为高光谱分类、地物识别和混合像元分解等过程中的参考波谱,与监督分类中的分类样本具有类似的作用,直接影响波谱识别与混合像元分解结果的精度。
12.可视域分析:可视域分析工具利用DEM数据,可以从一个或多个观察源来确定可见的地表范围,观测源可以是一个单点,线或多边形13.三维可视化:ENVI的三维可视化功能可以将DEM数据以网格结构、规则格网或点的形式显示出来或者将一幅图像叠加到DEM数据上。
遥感影像预处理的正确步骤遥感影像预处理是遥感技术中的重要环节,它对于后续的遥感影像分析和应用具有至关重要的作用。
正确的预处理能够提高遥感影像的质量和准确度,为后续的数据分析提供有力支持。
下面将介绍遥感影像预处理的正确步骤。
一、获取遥感影像数据遥感影像数据可以通过卫星、飞机等遥感平台获取。
在获取数据时,需要确保数据的准确性和完整性,并且注意选择合适的数据源和分辨率。
二、辐射校正遥感影像数据在获取过程中受到了大气、地表反射等因素的影响,需要对数据进行辐射校正。
辐射校正可以消除大气散射和吸收引起的影响,使得遥感影像能够更准确地反映地物的真实特征。
三、几何校正遥感影像在获取过程中存在着不可避免的几何畸变,需要进行几何校正。
几何校正可以将遥感影像的像素位置与地理位置进行对应,使得影像能够与地理信息数据相匹配。
四、影像拼接如果获取到的遥感影像数据较大,需要进行影像拼接。
影像拼接可以将多个影像拼接成一个完整的影像,提供更广阔的地理范围和更丰富的信息。
五、影像增强影像增强是为了提高遥感影像的视觉效果和信息提取能力。
常见的影像增强方法包括直方图均衡化、滤波等。
六、去噪处理遥感影像数据中常常包含各种噪声,需要进行去噪处理。
去噪处理可以提高影像的清晰度和信息质量。
七、影像切割根据具体的需求,可以对遥感影像进行切割,提取感兴趣的区域或目标。
影像切割可以减少后续处理的数据量,提高处理效率。
八、数据格式转换根据不同的应用需求,遥感影像的数据格式可能需要进行转换。
数据格式转换可以使得遥感影像能够被不同的软件和平台所识别和使用。
九、数据融合多源遥感影像数据可以通过数据融合的方法进行融合,提供更综合、全面的信息。
常见的数据融合方法包括像素级融合、特征级融合等。
遥感影像预处理的正确步骤包括获取遥感影像数据、辐射校正、几何校正、影像拼接、影像增强、去噪处理、影像切割、数据格式转换和数据融合。
这些步骤可以保证遥感影像的质量和准确度,为后续的数据分析和应用提供有力支持。
遥感影像数据发布流程-概述说明以及解释1.引言1.1 概述概述部分的内容可以介绍遥感影像数据发布流程的背景和概念。
以下是一个可能的内容:遥感影像数据是指通过卫星、无人机等遥感技术获取的地球表面的图像数据。
这些数据可以提供丰富的地理信息,并广泛应用于农业、城市规划、自然资源管理等领域。
遥感影像数据发布流程是指将获取到的遥感影像数据经过一系列的处理和整理,然后以适当的方式发布和共享给相关用户和利益相关者。
这个流程涉及到数据的获取、处理、存储、传输和发布等环节。
在遥感影像数据的获取阶段,需要使用遥感传感器来采集地球表面的图像。
遥感传感器可以是卫星上的遥感仪器,也可以是无人机等飞行器上的相机。
这些传感器会收集到大量的图像数据,包括不同波段的光谱数据、高分辨率图像等。
在遥感影像数据处理阶段,需要对获取的图像数据进行一系列的处理和分析。
这包括图像预处理、几何校正、辐射校正、数据融合等过程,以及特定的遥感算法和技术的应用,从而得到更加精确和可用性高的影像数据。
遥感影像数据的发布是为了让用户和利益相关者能够方便地获取和使用这些数据。
发布的方式可以是通过在线地图服务、数据共享平台、数据库等形式。
同时,为了方便用户的查询和使用,还需要对数据进行元数据描述和标准化,以及制定相应的数据访问和使用政策。
总而言之,遥感影像数据发布流程是一个涉及到数据获取、处理、存储和发布等环节的复杂过程。
通过合理的流程和方法,可以保证数据的准确性和可用性,进一步提升遥感影像数据的应用价值。
在接下来的文章中,我们将详细介绍遥感影像数据发布流程的各个环节和关键技术。
1.2 文章结构本文将按照以下结构来进行描述和解释遥感影像数据发布流程:1. 引言:首先介绍本文的概述,即遥感影像数据发布流程的基本概念和重要性。
同时,说明本文的章节安排和内容目的。
2. 正文:2.1 遥感影像数据获取:详细介绍遥感影像数据获取的方法和技术,包括遥感卫星、航空摄影和无人机遥感等。
几何校正的步骤几何校正是遥感影像处理中的一项重要技术,用于消除影像中的几何畸变,使得影像能够准确地反映地面实际情况。
下面将介绍几何校正的步骤。
一、获取校正控制点在几何校正之前,首先需要获取一些准确的控制点信息。
这些控制点可以是地面上的人工标志物,如地面控制点(GCP),也可以是已知坐标的地物,如道路交叉口、建筑物角点等。
通过测量或其他手段,得到这些控制点的像素坐标和地理坐标。
二、建立几何模型根据所采集的控制点信息,可以建立几何模型。
常用的几何模型包括多项式模型、透视模型等。
通过几何模型,可以将像素坐标与地理坐标之间建立起映射关系。
三、校正影像在校正影像之前,需要对影像进行预处理,包括去除影像中的噪声、辐射校正等。
然后,根据建立的几何模型,对影像进行校正。
校正的过程就是将像素坐标通过几何模型转换为地理坐标。
校正后的影像能够更加准确地反映地面实际情况。
四、评估校正效果校正后,需要对校正效果进行评估。
评估的方法包括视觉评估和定量评估。
视觉评估是通过观察校正后的影像与实际地物进行比较,判断是否存在畸变。
定量评估是通过计算校正前后地物的形状、大小等指标,来评估校正的效果。
五、优化校正结果根据评估结果,如果发现校正效果不理想,可以对校正模型进行调整,以获得更好的校正结果。
常见的调整方法包括增加控制点的数量、改变几何模型的阶数等。
六、输出校正结果校正完成后,需要将校正结果输出。
输出的结果包括校正后的影像和校正模型等。
校正后的影像可以用于后续的遥感分析和应用。
总结:几何校正是遥感影像处理中的重要步骤,通过获取控制点、建立几何模型、校正影像、评估校正效果、优化校正结果和输出校正结果等步骤,可以消除影像中的几何畸变,使得影像能够准确地反映地面实际情况。
几何校正的步骤需要严谨地进行,以确保校正结果的准确性和可靠性。
卫片预处理流程
卫片预处理流程是卫星遥感图像分析前必须进行的一系列技术处理步骤,其目的是消除或减少原始卫星图像中的各种噪声、失真和非物理信息,以便更好地提取有效信息。
以下是一个基本的卫片预处理流程:
1. 辐射校正:
目的是消除传感器响应的不均匀性和大气对电磁波传播的影响,如大气散射、吸收等,使得不同时间获取的图像具有可比性。
2. 几何校正(正射校正):
由于卫星姿态、地形起伏等因素导致的图像几何变形,通过地理坐标系下的控制点来实现几何纠正,使图像符合实际地表情况。
3. 图像融合(多光谱数据时适用):
将同一区域多个波段的数据融合成一个彩色合成图像,如RGB假彩色合成、NDVI植被指数计算等。
4. 去噪处理:
包括去除热噪声、斑点噪声、条带噪声等影响图像质量的各类噪声。
5. 云雾剔除:
对含有大量云层覆盖的卫星影像进行云区检测和剔除,确保有效地区域的清晰度。
6. 镶嵌处理:
当需要对相邻轨道或者不同时间获取的多幅图像进行拼接时,需要进行图像的镶嵌以形成连续无缝的大范围图像。
7. 图像增强:
提高图像对比度、亮度调整、边缘增强等,使得图像细节更加明显,便于后续的信息提取工作。
8. 感兴趣区域裁剪:
根据研究目标和需求,裁剪出特定的研究区域,减小后续处理的数据量。
以上每一个步骤都需要利用专业的遥感图像处理软件完成,并且根据不同的卫星数据源和应用需求可能还需要进行其他定制化的预处理操作。
几何校正操作步骤实验目的:通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。
实验内容:ERDAS软件中图像预处理模块下的图像几何校正。
几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。
而将地图投影系统赋予图像数据的过程,称为地里参考(Geo-referencing)。
由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。
1、图像几何校正的途径ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图2-1)。
ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图2-1)。
在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况:其一:首先确定来自视窗(FromViewer),然后选择显示图像视窗。
其二:首先确定来自文件(From Image File),然后选择输入图像。
2、图像几何校正的计算模型(Geometric Correction Model)ERDAS提供的图像几何校正模型有7种,具体功能如下:3、图像校正的具体过程第一步:显示图像文件(Display Image Files)首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作过程如下:ERDAS图表面板菜单条:Session→Title Viewers然后,在Viewer1中打开需要校正的Lantsat图像:xiamen,img在Viewer2中打开作为地理参考的校正过的(图象或)矢量图层:xmdis3.shp第二步:启动几何校正模块(Geometric Correction Tool)Viewer1菜单条:Raster→Geometric Correction→打开Set Geometric Model对话框(2-2)→选择多项式几何校正模型:Polynomial→OK→同时打开Geo Correction Tools对话框(2-3)和Polynomial Model Properties对话框(4)。
遥感技术中遥感影像的处理方法详解遥感技术是利用遥感设备获取地球上的图像和数据,以了解地球表面的各种特征和现象。
遥感影像是遥感技术的核心输出,它通过对地球表面进行高分辨率的拍摄和记录,提供了丰富的地理信息。
在遥感技术中,遥感影像的处理方法至关重要。
正确的处理方法可以提取出影像中有价值的信息,帮助我们深入了解地球表面的特征和变化。
下面将详细介绍几种常用的遥感影像处理方法。
1. 遥感影像的预处理遥感影像在传输和记录过程中可能会受到一些噪声和干扰的影响,因此需要进行预处理。
预处理的目标是去除噪声、调整图像的对比度和亮度,使得影像更适合进行后续的处理和分析。
常见的预处理方法包括数字滤波、辐射定标和大气校正等。
2. 遥感影像的几何校正遥感影像获取时可能会受到地球表面形变、传感器姿态等因素的影响,导致影像出现几何失真。
几何校正的目标是将影像的几何特征恢复到真实地面情况下的状态,使得影像能够准确地反映地面特征。
常见的几何校正方法包括地面控制点的定位和影像配准等。
3. 遥感影像的分类遥感影像的分类是将影像中的像素按照一定的特征进行划分和归类的过程。
根据不同的应用需求,遥感影像的分类可以包括地物类别的划分、植被覆盖度的估计、土地利用类型的分析等。
常见的分类方法包括基于像素的分类、基于对象的分类和基于深度学习的分类等。
4. 遥感影像的变化检测遥感影像的变化检测是指比较不同时段的遥感影像,分析地表特征在时间上的变化情况。
变化检测可以用于监测自然灾害、城市扩张、森林砍伐等方面的变化。
常见的变化检测方法包括像素级变化检测和基于对象的变化检测等。
5. 遥感影像的数据融合遥感影像的数据融合是将多源、多光谱或多分辨率的遥感影像进行融合,以提高遥感影像的空间和光谱分辨率。
数据融合可以增强遥感影像的细节信息,改善遥感影像的可视化效果,提高遥感影像在各种应用中的精度和效果。
常见的数据融合方法包括主成分分析、小波变换和多尺度分析等。
6. 遥感影像的特征提取遥感影像的特征提取是从遥感影像中提取出目标物体的特征信息的过程。