山东省泰安市高考一轮复习金榜聚焦:第7讲 三角函数新题赏析 精品讲义
- 格式:doc
- 大小:32.62 KB
- 文档页数:2
专题24三角函数的图象与性质(新高考专用)【知识梳理】 (2)【真题自测】 (3)【考点突破】 (10)【考点1】三角函数的定义域和值域 (10)【考点2】三角函数的周期性、奇偶性、对称性 (15)【考点3】三角函数的单调性 (22)【分层检测】 (27)【基础篇】 (27)【能力篇】 (34)【培优篇】 (38)考试要求:1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数、正切函数的性质.1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0)(π,0)(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π,-1),(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.正切曲线相邻两对称中心之间的距离是半个周期.2.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,偶函数一般可化为y =A cos ωx +b 的形式.3.对于y =tan x 不能认为其在定义域上为增函数,π-π2,k πk ∈Z )内为增函数.一、单选题1.(2023·全国·高考真题)函数()y f x =的图象由函数πcos 26y x ⎛⎫=+ ⎪⎝⎭的图象向左平移π6个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A .1B .2C .3D .42.(2023·全国·高考真题)已知函数()()()sin ,0f x x ωϕω=+>在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A .B .12-C .12D .23.(2022·全国·高考真题)设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤ ⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦4.(2022·全国·高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .5.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭()A .1B .32C .52D .3二、多选题6.(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则()A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线2y x =-是曲线()y f x =的切线三、填空题7.(2023·全国·高考真题)已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是.8.(2023·全国·高考真题)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf =.9.(2022·全国·高考真题)记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =9x π=为()f x 的零点,则ω的最小值为.10.(2021·全国·高考真题)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为.参考答案:1.C【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.2.D【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2T ω==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5πsin 123f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭故选:D.3.C【分析】由x 的取值范围得到3x ω+【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈ ⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .4.A【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.5.A【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A6.AD【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:2π4πsin 033f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z ,即4ππ,3k k ϕ=-+∈Z ,又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛⎫=+ ⎪⎝⎭.对A ,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,2π2π3π2,332x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =在5π0,12⎛⎫ ⎪⎝⎭上是单调递减;对B ,当π11π,1212x ⎛⎫∈- ⎪⎝⎭时,2ππ5π2,322x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点;对C ,当7π6x =时,2π23π3x +=,7π(06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y x ⎛⎫'=+=- ⎪⎝⎭得:2π1cos 232x ⎛⎫+=- ⎪⎝⎭,解得2π2π22π33x k +=+或2π4π22π,33x k k +=+∈Z ,从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点0,2⎛ ⎝⎭处的切线斜率为02π2cos 13x k y =='==-,切线方程为:(0)y x -=--即2y x =-.故选:AD .7.[2,3)【分析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[2,3).8.【分析】设1211,,,22A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,依题可得,21π6x x -=,结合1sin 2x =的解可得,()212π3x x ω-=,从而得到ω的值,再根据2π03f ⎛⎫= ⎪⎝⎭以及()00f <,即可得2()sin 4π3f x x ⎛⎫=- ⎪⎝⎭,进而求得()πf .【详解】设1211,,,22A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,由π6AB =可得21π6x x -=,由1sin 2x =可知,π2π6x k =+或5π2π6x k =+,Z k ∈,由图可知,()215π2ππ663x x ωϕωϕ+-+=-=,即()212π3x x ω-=,4ω∴=.因为28ππsin 033f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以8ππ3k ϕ+=,即8ππ3k ϕ=-+,Z k ∈.所以82()sin 4ππsin 4ππ33f x x k x k ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭,所以()2sin 4π3f x x ⎛⎫=- ⎪⎝⎭或()2sin 4π3f x x ⎛⎫=-- ⎪⎝⎭,又因为()00f <,所以2()sin 4π3f x x ⎛⎫=- ⎪⎝⎭,()2πsin 4ππ32f ⎛⎫∴=-=- ⎪⎝⎭.故答案为:【点睛】本题主要考查根据图象求出ω以及函数()f x 的表达式,从而解出,熟练掌握三角函数的有关性质,以及特殊角的三角函数值是解题关键.9.3【分析】首先表示出T ,根据()2f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解:因为()()cos f x x ωϕ=+,(0ω>,0πϕ<<)所以最小正周期2πT ω=,因为()()2πcos cos 2πcos 2f T ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈,因为0ω>,所以当0k =时min 3ω=;故答案为:310.2【分析】先根据图象求出函数()f x 的解析式,再求出7((43f f π4π-的值,然后求解三角不等式可得最小正整数或验证数值可得.【详解】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=;由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,(2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <;因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭,解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2.故答案为:2.【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解ω,根据特殊点求解ϕ.【考点1】三角函数的定义域和值域一、单选题1.(23-24高一上·河北邢台·阶段练习)函数()f x =)A .()ππ2π,2π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()5ππ2π,2π66k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .()π2π2π,2π63k k k ⎡⎤++∈⎢⎥⎣⎦Z D .()π7π2π,2π66k k k ⎡⎤++∈⎢⎥⎣⎦Z 2.(23-24高一上·北京朝阳·期末)函数()|sin |cos f x x x =+是()A .奇函数,且最小值为BC .偶函数,且最小值为D二、多选题3.(23-24高三下·江苏南通·开学考试)已知函数()cos 22sin f x x x =+,则()A .()f x 的最小正周期为2πB .()f x 关于直线π2x =对称C .()f x 关于点π,02⎛⎫⎪⎝⎭中心对称D .()f x 的最小值为3-4.(2024·贵州贵阳·二模)函数()tan()(0,0π)f x A x ωϕωϕ=+><<的部分图象如图所示,则()A .2π3ωϕ⋅=B .()f x在π0,3⎡⎤⎢⎥⎣⎦上的值域为(,)∞∞-⋃+C .函数|()|y f x =的图象关于直线5π3x =对称D .若函数|()|()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调,则实数λ的取值范围是[1,1]-三、填空题5.(2024·辽宁·二模)如图,在矩形ABCD 中,4,2AB BC ==,点,E F 分别在线段,BC CD 上,且π4EAF ∠=,则AE AF ⋅的最小值为.6.(2021·河南郑州·二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是.参考答案:1.A【分析】首先求出定义域,再根据复合函数单调性即可得到单调增区间.【详解】令sin 03x π⎛⎫+≥ ⎪⎝⎭,可得22,3k x k k ππππ≤+≤+∈Z .当22,232k x k k πππππ-≤+≤+∈Z 时,函数sin 3y x π⎛⎫=+ ⎪⎝⎭单调递增.所以当22,32k x k k ππππ≤+≤+∈Z 时,()f x 单调递增.故()f x 在()2,236k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 上单调递增.故选:A.2.D【分析】根据题意,结合函数的奇偶性,判定A 、B 不正确;再结合三角函数的图象与性质,求得函数()f x 的最大值和最小值,即可求解.【详解】由函数()|sin |cos f x x x =+,可得其定义域x ∈R ,关于原点对称,且()|sin()|cos()|sin |cos ()f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,因为()()()()2πsin 2πcos 2πsin cos f x x x x x f x +=+++=+=,所以2π为()y f x =的一个周期,不妨设[0,2π]x ∈,若[0,π]x ∈时,可得π()sin cos )4f x x x x =++,因为[0,π]x ∈,可得ππ5π[,444x +∈,当ππ42x +=时,即π4x =时,可得max ()f x =当π5π44x +=时,即πx =时,可得min ()1f x =-;若[]π,2πx ∈,可得π()sin cos )4f x x x x =-+=+,因为[π,2π]x ∈,可得π5π9π[,]444x +∈,当π2π4x +=时,即7π4x =时,可得max ()f x =当π5π44x +=时,即πx =时,可得()min 1f x =-,综上可得,函数()f x ,最小值为1-.故选:D.3.ABD【分析】将函数()cos 22sin f x x x =+可变形为213()2sin 22f x x ⎛⎫=--+ ⎪⎝⎭,结合函数性质逐项分析计算即可得.【详解】2213()cos 22sin 12sin 2sin 2sin 22f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,由sin y x =的最小正周期为2π,故()f x 的最小正周期为2π,故A 正确;()()221313(π)2sin π2sin 2222f x x x f x ⎡⎤⎛⎫-=---+=--+= ⎪⎢⎥⎣⎦⎝⎭,且()(π)f x f x -≠-,故()f x 关于直线π2x =,不关于点π,02⎛⎫ ⎪⎝⎭对称,故B 正确,C 错误;由213()2sin 22f x x ⎛⎫=--+ ⎪⎝⎭,且[]sin 1,1x ∈-,故2min13()21322f x ⎛⎫=-⨯--+=- ⎪⎝⎭,故D 正确.故选:ABD.4.CD【分析】根据正切型三角函数的图象性质确定其最小正周期,从而得ω的值,再根据函数特殊点求得,A ϕ的值,从而可得解析式,再由正切型三角函数的性质逐项判断即可.【详解】函数的最小正周期为T ,则有ππ5π166T ωω⎛⎫==--⇒= ⎪⎝⎭,即()tan()f x A x ϕ=+,由函数的图象可知:πππ623ϕϕ+=⇒=,即π()tan 3f x A x ⎛⎫=+ ⎪⎝⎭,由图象可知:π(0)tan23f A A ===,所以π3ωϕ⋅=,因此A 不正确;关于πB,()2tan 3f x x ⎛⎫=+ ⎪⎝⎭,当π6x =时,ππ32x +=,故()f x 在π6x =处无定义,故B 错误.因为55ππ5π5ππ2tan 2tan ,2tan 2tan 333333f x x x f x x x π⎛⎫⎛⎫⎛⎫⎛⎫-=-+=+=++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以5533f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,所以函数|()|y f x =的图象关于直线5π3x =对称,C 正确;ππ()()2tan 2tan 33y f x f x x x λλ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭,当ππ,36x ⎛⎫∈- ⎪⎝⎭时,|()|()y f x f x λ=+=ππππ2tan 2tan 2tan 2tan (22)tan 33333x x x x x πλλλ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=+++=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,当5,63x ππ⎛⎤∈-- ⎥⎝⎦时,()()2tan 2tan 2tan 333y f x f x x x x πππλλ⎛⎫⎛⎫⎛⎫=+=+++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππ2tan (22)tan 33x x λλ⎛⎫⎛⎫++=-++ ⎪ ⎪⎝⎭⎝⎭,当函数|()|()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调时,则有(22)(22)011λλλ+-+≤⇒-≤≤,故D 正确.故选:CD .5.)161【分析】根据锐角三角函数可得,πcos cos 4ABAD AE AF θθ==⎛⎫- ⎪⎝⎭,即可由数量积的定义求解,结合和差角公式以及三角函数的性质即可求解最值.【详解】设π02BAE θθ⎛⎫∠=<< ⎪⎝⎭,则π4DAF θ∠=-,故,πcos cos 4ABAD AE AF θθ==⎛⎫- ⎪⎝⎭,故π42cos π42cos cos 4AE AF AE AF θθ=⎛⎫- ⎪⋅⋅⎝⎭ππcos cos 44θθθθ=⎡⎤⎡⎤⎛⎫⎛⎫+-+-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎝⎭当π2π,Z 4k k θ-=∈时,πcos 214θ⎛⎫-= ⎪⎝⎭,即π8θ=时,此时AE AF ⋅)1612=-.故答案为:)161.【点睛】关键点点睛:本题解决的关键是将所求转化为关于θ的表达式,从而得解,6.2⎛ ⎝【分析】由正弦定理可得sinB sin b cC=b c λ+sin()B θ=+且tan θ=0,4B π⎛⎫∈ ⎪⎝⎭,可知b c λ+存在最大值即2B πθ+=,进而可求λ的范围.【详解】∵1a =,34A π=,由正弦定理得:sinB sin 2b c C =∴)sin sin sin sin cos sin 422b c B C B B B B B πλλ⎫⎛⎫+=+=-=-⎪ ⎪⎪⎝⎭⎭1)sin cos sin()B B B θ=-+⋅+,其中tan θ=0,4B π⎛⎫∈ ⎪⎝⎭,∴b c λ+存在最大值,即2B πθ+=有解,即,42ππθ⎛⎫∈ ⎪⎝⎭,10->,解得2λ>1>,解得λ<,故λ的范围是2⎛ ⎝.故答案为:2⎛ ⎝.【点睛】关键点点睛:应用正弦定理边角关系、辅助角公式,结合三角形内角和、三角函数的性质列不等式组求参数范围.反思提升:1.求三角函数的定义域通常要解三角不等式(组),解三角不等式(组)常借助三角函数的图象.2.求解三角函数的值域(最值)常见的几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【考点2】三角函数的周期性、奇偶性、对称性一、单选题1.(2024·重庆·模拟预测)将函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后,所得图象关于坐标原点对称,则ϕ的值可以为()A .2π3B .π3C .π6D .π42.(2024·湖北武汉·模拟预测)若函数()()ππ3cos 022f x x ωϕωϕ⎛⎫=+<-<< ⎪⎝⎭,的最小正周期为π,在区间ππ,66⎛⎫- ⎪⎝⎭上单调递减,且在区间π0,6⎛⎫ ⎪⎝⎭上存在零点,则ϕ的取值范围是()A .ππ,62⎛⎫ ⎪⎝⎭B .3π,2π⎛⎤-- ⎥⎝⎦C .ππ,32⎡⎫⎪⎢⎣⎭D .π0,3⎛⎤⎥⎝⎦3.(2024·北京西城·二模)将函数()tan f x x =的图象向右平移1个单位长度,所得图象再关于y 轴对称,得到函数()g x 的图象,则()g x =()A .1tan -xB .1tan --xC .tan (1)--x D .tan (1)-+x 二、多选题4.(2024·河南洛阳·模拟预测)已知函数3ππsin ,2π2π44()()π5πcos ,2π2π44x k x k f x k x k x k ⎧-≤≤+⎪⎪=∈⎨⎪+<<+⎪⎩Z ,则()A .()f x 的对称轴为()ππ,Z 4x k k =+∈B .()f x 的最小正周期为4πC .()f x 的最大值为1,最小值为2-D .()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增5.(2024·辽宁·二模)已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭满足πππ(),263f x f x f f ⎛⎫⎛⎫⎛⎫-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0,且在π5π,1212⎛⎫⎪⎝⎭上单调递减,则()A .函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称B .ϕ可以等于π4-C .ω可以等于5D .ω可以等于36.(23-24高三上·山西运城·期末)已知函数()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭,则()A .()f x 的一个周期为2B .()f x 的定义域是1,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭C .()f x 的图象关于点1,12⎛⎫⎪⎝⎭对称D .()f x 在区间[]1,2上单调递增三、填空题7.(2024·全国·模拟预测)已知函数()()21cos cos 02f x x x x ωωωω=->,若()f x 的图象在[]0,π上有且仅有两条对称轴,则ω的取值范围是.8.(2024·四川雅安·三模)已知函数()e cos2e x x a f x x ⎛⎫=- ⎪⎝⎭是偶函数,则实数=a .9.(2023·四川达州·一模)函数()2lntan 32x f x m x x -=+++,且()6f t =,则()f t -的值为.参考答案:1.B【分析】由三角函数的平移变化结合奇函数的性质可得π2π3k k ϕ+=∈Z ,,解方程即可得出答案.【详解】因为()f x 向右平移ϕ个单位后解析式为π=sin 223y x ϕ⎛⎫-- ⎪⎝⎭,又图象关于原点对称,πππ2π,01362k k k k k ϕϕϕ∴+=∈∴=-+∈>∴=Z Z ,,,,时,π3ϕ=,故选:B.2.B【分析】根据给定周期求得2ω=-,再结合余弦函数的单调区间、单调性及零点所在区间列出不等式组,然后结合已知求出范围.【详解】由函数()f x 的最小正周期为π,得2ππ||ω=,而0ω<,解得2ω=-,则()3cos(2)3cos(2)f x x x ϕϕ=-+=-,由2π22ππ,Z k x k k ϕ≤-≤+∈,得2π+22ππ,Z k x k k ϕϕ≤≤++∈,又()f x 在ππ(,)66-上单调递减,因此π2π+3k ϕ≤-,且π2ππ,Z 3k k ϕ≤++∈,解得2ππ2π2π,Z 33k k k ϕ--≤≤--∈①,由余弦函数的零点,得π2π,Z 2x n n ϕ-=+∈,即π2π,Z 2x n n ϕ=++∈,而()f x 在(0,)6π上存在零点,则ππ0π,Z 23n n ϕ<++<∈,于是ππππ,Z 26n n n ϕ--<<--∈②,又ππ22ϕ-<<,联立①②解得ππ23ϕ-<≤-,所以ϕ的取值范围是ππ(,]23--.故选:B 3.D【分析】根据正切函数图象的平移变换、对称变换即可得变换后的函数()g x 的解析式.【详解】将函数()tan f x x =的图象向右平移1个单位长度,所得函数为()(1)tan 1f x x -=-,则函数()(1)tan 1f x x -=-的图象再关于y 轴对称得函数()()()()1tan 1tan 1g x f x x x =--=--=-+.故选:D.4.AD【分析】作出函数()f x 的图象,对于A ,验算()π2π2f k x f x ⎛⎫+-= ⎪⎝⎭是否成立即可;对于B ,由(),(2π)x f x f x ∈+=R 即可判断;对于CD ,借助函数单调性,只需求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值验算即可判断CD.【详解】作出函数()f x 的图象如图中实线所示.对于A ,由图可知,函数()f x 的图象关于直线3ππ5π,,444x x x =-==对称,对任意的k ∈Z ,π1ππ1ππ2πsin 2πcos 2πsin 2πcos 2π2222222f k x k x k x k x k x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-=+-++--+--+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1111(cos sin )cos sin |(sin cos )|sin cos |()2222x x x x x x x x f x =+--=+--=,所以函数()f x 的对称轴为()ππ,Z 4x k k =+∈,A 正确;对于B ,对任意的11,(2π)[sin(2π)cos(2π)]sin(2π)cos(2π)22x f x x x x x ∈+=+++-+-+R 11(sin cos )|sin cos |()22x x x x f x =+--=,结合图象可知,函数()f x 为周期函数,且最小正周期为2π,故B 错误;对于C ,由A 选项可知,函数()f x 的对称轴为()ππ,Z 4x k k =+∈,且该函数的最小正周期为2π,要求函数()f x 的最大值和最小值,只需求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值,因为函数()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,所以当π5π,44x ⎡⎤∈⎢⎥⎣⎦时,min ()(π)cos πf x f ==1=-,因为ππ5π5ππsin sin sin 4424442f f ⎛⎫⎛⎫====-=- ⎪ ⎪⎝⎭⎝⎭,所以max π()42f x f ⎛⎫== ⎪⎝⎭,因此()f x ,最小值为-1,故C 错误;对于D ,由C 选项可知,函数()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,D 正确,故选:AD .【点睛】关键点点睛:判断C 选项的关键是求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值即可,由此即可顺利得解.5.ABD【分析】根据题意,可得函数()y f x =的图象关于π4x =-对称,关于点π,04⎛⎫ ⎪⎝⎭对称,由三角函数的对称性性质可得π4ϕ=±,从而判断选项A 、B ;再根据函数的单调性,可求出ω的值,从而判定选项C 、D.【详解】由π()2f x f x ⎛⎫-=- ⎪⎝⎭,则ππππ(4424f x f x f x ⎛⎫⎛⎫-=+-=-- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的图象关于π4x =-对称,又πππ5π126312<<<,且ππ063f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则1πππ02634f f ⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称,故A 正确;根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,可得,()()2121ππ,1242k k k k ϕω-=+=+-,由于π||2ϕ<,所以π4ϕ=±,故B 正确;当π4ϕ=时,由π5π1212x <<,得πππ5ππ1244124x ωωω+<+<+,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧+≥⎪⎪⎨⎪+≤+⎪⎩,即92424355k ω-≤≤+,又0ω>,所以90,05k ω=<<,又()2112k k ω=+-,所以1ω=,当π4ϕ=-时,由π5π1212x <<,得πππ5ππ1244124x ωωω-<-<-,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧-≥⎪⎪⎨⎪-≤+⎪⎩,即2424335k k ω+≤≤+,又0ω>,所以0,3k ω==,故C 错误,D 正确.故选:ABD【点睛】关键点点睛:根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫ ⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,从而()()2121ππ,1242k k k k ϕω-=+=+-.6.ACD 【分析】利用正切函数的图象与性质一一判定选项即可.【详解】对于A ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知其最小正周期π2π2T ==,故A 正确;对于B ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知πππ1π2,Z 2422x k x k k +≠+⇒≠+∈,故B 错误;对于C ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知1πππ2242x x =⇒+=,此时()f x 的图象关于点1,12⎛⎫⎪⎝⎭对称,故C 正确;对于D ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知[]ππ3π5π1,2,2444x x ⎡⎤∈⇒+⎢⎥⎣⎦,又tan y x =在π3π,22⎡⎤⎢⎥⎣⎦上递增,显然3π5π,44⎡⎤⊂⎢⎥⎣⎦π3π,22⎡⎤⎢⎥⎣⎦,故D 正确.故选:ACD 7.54,63⎡⎫⎪⎢⎣⎭【分析】运用正余弦二倍角公式及辅助角公式化简()f x ,由已知条件结合正弦函数性质可得结果.【详解】因为()211πcos cos sin2cos2sin 22226f x x x x x x x ωωωωωω⎛⎫=-=-=- ⎪⎝⎭,因为()f x 的图象在[]0,π上有且仅有两条对称轴,所以3ππ5π2π262ω≤-<,解得5463ω≤<,所以ω的取值范围是54,63⎡⎫⎪⎢⎣⎭.故答案为:54,63⎡⎫⎪⎢⎣⎭.8.1-【分析】根据偶函数的定义,即可列关系式求解.【详解】()f x 定义域为R ,()()()1e cos 2e cos2e cos2e e e x xx xx xa af x x a x f x x --⎛⎫⎛⎫⎛⎫-=--=-+==- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()1111e e e e 1e 0e e e e e xxx xx x x x xx a a a a ⎛⎫⎛⎫-+=-⇒-=-⇒+-= ⎪ ⎪⎝⎭⎝⎭,故1a =-,故答案为:1-9.0【分析】构造()()3g x f x =-,得到()g x 为奇函数,从而根据()6f t =得到()3g t =,由()3g t -=-求出()f t -.【详解】令()()23lntan 2x g x f x m x x -=-=++,定义域为{|2x x <-或2x >且ππ,Z}2x k k ≠+∈,关于原点对称,则()()()222lntan ln tan ln tan 222x x x g x m x m x m x g x x x x --+--=+-=-=--=--+-+,故()g x 为奇函数,又()()3633g t t f =-=-=,故()()33t g t f -=--=-,解得()0f t -=.故答案为:0反思提升:(1)三角函数周期的一般求法①公式法;②不能用公式求周期的函数时,可考虑用图象法或定义法求周期.(2)对于可化为f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z )(或令ωx +φ=k π(k ∈Z )),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ωx +φ=π2+k π(k ∈Z x 即可.(3)对于可化为f (x )=A tan(ωx +φ)形式的函数,如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π2(k ∈Z ),求x 即可.(4)三角函数型奇偶性的判断除可以借助定义外,还可以借助其图象与性质,在y =A sin(ωx +φ)中代入x =0,若y =0则为奇函数,若y 为最大或最小值则为偶函数.若y =A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),若y =A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z ).【考点3】三角函数的单调性一、单选题1.(2024·云南·模拟预测)已知函数()f x 为R 上的偶函数,且当()1212,,0,x x x x ∞∈-≠时,()()12120f x f x x x ->-,若12log 3a f ⎛⎫= ⎪⎝⎭,()()0.20.5,sin1b f c f ==,则下列选项正确的是()A .c b a <<B .b<c<aC .a b c<<D .c<a<b2.(2024·陕西榆林·三模)已知()0,2πα∈,若当[]0,1x ∈时,关于x 的不等式()()2sin cos 12sin 1sin 0x x αααα++-++>恒成立,则α的取值范围为()A .π5π,1212⎛⎫⎪⎝⎭B .π5π,66⎛⎫ ⎪⎝⎭C .ππ,63⎛⎫ ⎪⎝⎭D .π5π,36⎛⎫ ⎪⎝⎭二、多选题3.(2022·湖北武汉·三模)已知函数()2cos f x x x =-的零点为0x ,则()A .012x <B .013>xC .0tan 2x >D .001<sin 4x x -4.(2024·湖南长沙·一模)已知函数()()tan (0,0π)f x A x ωϕωϕ=+><<的部分图象如图所示,则()A .π6A ωϕ⋅⋅=B .()f x 的图象过点11π6⎛ ⎝⎭C .函数()y f x =的图象关于直线5π3x =对称D .若函数()()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调,则实数λ的取值范围是[]1,1-三、填空题5.(2023·陕西西安·模拟预测)已知函数()()cos f x A x b ωϕ=++,(0A >,0ω>,π2ϕ<)的大致图象如图所示,将函数()f x 的图象上点的横坐标拉伸为原来的3倍后,再向左平移π2个单位长度,得到函数()g x 的图象,则函数()g x 的一个单调递增区间为.6.(2022·上海闵行·模拟预测)已知[0,π]∈,若sin cos 0αα->,则α的取值范围是.参考答案:1.C【分析】根据条件判断函数的单调性,结合函数奇偶性和单调性的关系进行转化求解即可.【详解】当()12,,0x x ∞∈-时,()()12120f x f x x x ->-,所以()f x 在(),0∞-上单调递增;又有()f x 为R 上的偶函数,所以()f x 在()0,∞+上单调递减.由于我们有()11100.2555522πlog 3log 210.50.50.50.4984210.870.87sin sin 1023>==>=>==>=>>,即0.22sin10log 30.5>>>,故()()()0.22log 30.5sin1f f f <<.而()()1222log 3log 3log 3a f f f ⎛⎫==-= ⎪⎝⎭,()0.20.5b f =,()sin1c f =,故a b c <<.故选:C.2.A【分析】令()()()2sin cos 12sin 1sin f x x x αααα=++-++,易得()f x 的对称轴为()1sin 20,1sin cos 1x ααα+=∈++,则()()00101sin 20sin cos 1f f f ααα⎧⎪⎪⎪>⎪⎪>⎨⎪⎛⎫⎪+ ⎪⎪> ⎪⎪++ ⎪⎪⎝⎭⎩,进而可得出答案.【详解】令()()()2sin cos 12sin 1sin f x x x αααα=++-++,由题意可得()()0010f f ⎧>⎪⎨>⎪⎩,则sin 0cos 0αα>⎧⎨>⎩,又因为()0,2πα∈,所以π0,2α⎛⎫∈ ⎪⎝⎭,函数()f x 的对称轴为()1sin 20,1sin cos 1x ααα+=++,则()()2sin 0cos 011sin sin 22sin cos 12sin 1sin 0sin cos 1sin cos 1αααααααααααα⎧⎪⎪⎪>⎪⎪>⎨⎪⎛⎫⎪++ ⎪⎪++-+⋅+> ⎪⎪++++ ⎪⎪⎝⎭⎩,即()2sin 0cos 0(2sin 1)4sin sin cos 10αααααα⎧>⎪>⎨⎪+-++<⎩,即sin 0cos 01sin22ααα⎧⎪>⎪>⎨⎪⎪>⎩,结合π0,2α⎛⎫∈ ⎪⎝⎭,解得π5π1212α<<.故选:A.3.ABD【分析】对AB ,求导分析可得()f x 为增函数,再根据零点存在性定理可判断;对C ,根据AB 得出的01132x <<结合正切函数的单调性可判断;对D ,构造函数()111sin ,432g x x x x ⎛⎫=--∈ ⎪⎝⎭,再根据零点存在性定理,放缩判断()g x 的正负判断即可【详解】对AB ,由题()2sin 0f x x '=+>,故()f x 为增函数.又111cos 022f ⎛⎫=-> ⎪⎝⎭,12122cos cos 03333632f π⎛⎫=-<-=-< ⎪⎝⎭,故01132x <<,故AB 正确;对C ,因为01132x <<,所以01tan tan 2t n 14a x π<=<1>,故C 错误;对D ,构造函数()111sin ,432g x x x x ⎛⎫=--∈ ⎪⎝⎭,则()1cos 0g x x '=->,故()g x 为增函数.故()111111sin sin sin2424124344g x g πππ⎛⎫⎛⎫<=-<-=--= ⎪ ⎪⎝⎭⎝⎭,因为(2130-=<,故1<,故104<,即()0g x <,故111sin 0,,432x x x ⎛⎫--<∈ ⎪⎝⎭,故001<sin 4x x -,D 正确;故选:ABD【点睛】本题主要考查了利用导数分析函数零点的问题,一般需要用零点存在性定理判断零点所在的区间,同时在判断区间端点正负时,需要适当放缩,根据能够确定取值大小的三角函数值进行判断,属于难题4.BCD【分析】根据函数图象所经过的点,结合正切型函数的对称性、单调性逐一判断即可.【详解】对于A :设该函数的最小正周期为T ,则有ππ5π166T ωω⎛⎫==--⇒= ⎪⎝⎭,即()()tan f x A x ϕ=+,由函数的图象可知:πππππ623k k ϕϕ+=+⇒=++,又0πϕ<<,所以π3ϕ=,即()πtan 3f x A x ⎛⎫=+ ⎪⎝⎭,由图象可知:()π0tan 23f A A ===,所以2π3A ωϕ⋅⋅=,因此A 不正确;对于B :11π11ππ13ππ2tan 2tan 2tan 26636633f ⎛⎫⎛⎫=+===⨯= ⎪⎪⎝⎭⎝⎭,所以B 正确;对于C :因为5π5ππ2tan 2tan 333f x x x ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,5π5ππ2tan 2tan 333f x x x ⎛⎫⎛⎫+=++= ⎪ ⎪⎝⎭⎝⎭,所以5π5π33f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的图象关于直线5π3x =对称,因此C 正确;对于D :()()ππ2tan 2tan 33y f x f x x x λλ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭当ππ,36x ⎛⎫∈- ⎪⎝⎭时,()()ππππ2tan 2tan 2tan 2tan 3333y f x f x x x x x λλλ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()π22tan 3x λ⎛⎫=++ ⎪⎝⎭,当5ππ,63x ⎛⎤∈-- ⎥⎝⎦,()()ππππ2tan 2tan 2tan 2tan 3333y f x f x x x x x λλλ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()π22tan 3x λ⎛⎫=-++ ⎪⎝⎭,当函数()()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调时,则有()()2222011λλλ+-+≤⇒-≤≤,D 正确.故选:BCD【点睛】关键点睛:运用函数对称性、函数单调性的性质是解题的关键.5.7ππ,44⎡⎤--⎢⎥⎣⎦(答案不唯一)【分析】先根据()f x 的部分图象得到函数的周期、振幅、初相,进而求出()f x 的解析式,再根据函数图象的伸缩变换和平移变换得到()g x 的解析式,后可求()g x 的单调递增区间.【详解】由图可知πππ==43124T -,得=πT ,所以2π==2Tω,()112A =--=,1b =-,所以()()2cos 21f x x ϕ=+-,由图ππ2cos 2111212f ϕ⎛⎫⎛⎫=⨯+-= ⎪ ⎪⎝⎭⎝⎭,得π2π6k ϕ=-+,Z k ∈,又π2ϕ<,所以π6ϕ=-,故()π2cos 216f x x ⎛⎫ -⎪⎝⎭=-,由题意()1ππ2π2cos 212cos 132636g x x x ⎡⎤⎛⎫⎛⎫=⨯+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令2ππ2π2π36k x k -+≤+≤,Z k ∈,得7ππ3π3π44k x k -+≤≤-+,Z k ∈故函数()g x 的单调递增区间为7ππ3π,3π44k k ⎡⎤-+-+⎢⎥⎣⎦,Z k ∈,当0k =时,函数()g x 的一个单调递增区间为7ππ,44⎡⎤--⎢⎥⎣⎦,故答案为:7ππ,44⎡⎤--⎢⎥⎣⎦(答案不唯一)6.π3π(,)44【分析】根据角的范围分区间讨论,去掉绝对值号,转化为不含绝对值的三角不等式,求解即可.【详解】由题,当π[0,]2α∈时,原不等式可化为sin cos αα>,解得ππ42α<≤,当ππ2α<≤时,由原不等式可得tan 1α<-,解得π3π24α<<,综上π3π(,44α∈.故答案为:π3π(,)44反思提升:1.求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题,利用特值验证排除法求解更为简捷.【基础篇】一、单选题1.(2024·福建·模拟预测)若函数()sin23f x A x =-在3π5π,812⎛⎫ ⎪⎝⎭上有零点,则整数A 的值是()A .3B .4C .5D .62.(2024·贵州黔南·二模)若函数()πcos 3f x x ϕ⎛⎫=-+ ⎪⎝⎭为偶函数,则ϕ的值可以是()A .5π6B .4π3C .πD .π23.(2024·安徽·三模)“ππ,4k k ϕ=-+∈Z ”是“函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(22-23高一下·湖北武汉·期中)若函数()sin 0y x x ωωω=->在区间π,03⎛⎫- ⎪⎝⎭上恰有唯一对称轴,则ω的取值范围为()A .17,22⎡⎫⎪⎢⎣⎭B .17,36⎛⎤ ⎥⎝⎦C .17,33⎛⎤ ⎥⎝⎦D .17,22⎛⎤ ⎥⎝⎦二、多选题5.(2024·云南·模拟预测)已知函数()()()sin ,0,0,πf x x ωϕωϕ=+>∈,如图,图象经过点π,112A ⎛⎫ ⎪⎝⎭,π,03B ⎛⎫⎪⎝⎭,则()A .2ω=B .π6ϕ=C .11π12x =是函数()f x 的一条对称轴D .函数()f x 在区间7π13π,1212⎛⎫⎪⎝⎭上单调递增6.(2023·辽宁·模拟预测)已知定义域为I 的偶函数0(),f x x I ∃∈,使()00f x <,则下列函数中符合上述条件的是()A .2()3f x x =-B .()22x xf x -=+C .2()log||f x x =D .()cos 1f x x =+7.(23-24高一上·广东肇庆·期末)关于函数πtan 3y x ⎛⎫=- ⎪⎝⎭,下列说法中正确的有()A .是奇函数B .在区间ππ,66⎛⎫- ⎪⎝⎭上单调递增C .5π,06⎛⎫⎪⎝⎭为其图象的一个对称中心D .最小正周期为π三、填空题8.(2022·江西·模拟预测)将函数()tan2f x x =的图像向左平移t (0t >)个单位长度,得到函数g (x )的图像,若12g π⎛⎫= ⎪⎝⎭,则t 的最小值是.9.(2022·重庆沙坪坝·模拟预测)若函数cos y x ω=在,06π⎛⎫- ⎪⎝⎭单调递增,在0,3π⎛⎫ ⎪⎝⎭单调递减,则实数ω的取值范围是.10.(21-22高三上·河南·阶段练习)已知函数()3cos 2n f x x x p ⎛⎫=+ ⎪⎝⎭为偶函数,且当()0,x π∈时,()0f x >,则n 的值可能为.四、解答题11.(2022·北京门头沟·一模)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,6x π=是函数()f x 的对称轴,且()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调.(1)从条件①、条件②、条件③中选一个作为已知,使得()f x 的解析式存在,并求出其解析式;条件①:函数()f x 的图象经过点10,2A ⎛⎫⎪⎝⎭;条件②:,03π⎛⎫⎪⎝⎭是()f x 的对称中心;条件③:5,012π⎛⎫ ⎪⎝⎭是()f x 的对称中心.(2)根据(1)中确定的()f x ,求函数()0,2y f x x π⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的值域.12.(2021·浙江·模拟预测)已知函数()22sin 263f x x x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的最小正周期和单调递减区间.(2)若对任意的()2,2m ∈-,方程()f x m =(其中[)0,x a ∈)始终有两个不同的根1x ,2x .①求实数a 的值;②求12x x +的值.参考答案:1.C【分析】将函数的零点问题转化为sin2y x =与3y A =在3π5π,812⎛⎫⎪⎝⎭上的交点问题,求出sin2y x =的值域即可.【详解】由于函数()sin23f x A x =-在3π5π,812⎛⎫⎪⎝⎭上有零点,所以方程sin230A x -=在3π5π812⎛⎫⎪⎝⎭,上有实数根,即sin2y x =与3y A =在3π5π,812⎛⎫⎪⎝⎭上有交点,令2t x =,则3π5π46t <<,当3π5π46t <<,sin y t =单调递减,故在区间上最多只有1个零点,又1sin 2t ⎛∈ ⎝⎭,即312A ⎛∈ ⎝⎭,解得()6A ∈,由于A 是整数,所以5A =.故选:C.2.B【分析】由题意可知:0x =为函数()f x 的对称轴,结合余弦函数对称性分析求解.【详解】由题意可知:0x =为函数()f x 的对称轴,则ππ,3k k ϕ-+=∈Z ,则ππ,3k k ϕ=+∈Z ,对于选项A :令π5ππ36k ϕ=+=,解得12k =∉Z ,不合题意;对于选项B :令π4ππ33k ϕ=+=,解得1k =∈Z ,符合题意;对于选项C :令πππ3k ϕ=+=,解得23k =∉Z ,不合题意;对于选项D :令πππ32k ϕ=+=,解得16k =∉Z ,不合题意;故选:B.3.A【分析】若函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称,根据正切函数的对称性可得ππ,42k k ϕ=-+∈Z ,再根据充分、必要条件结合包含关系分析求解.【详解】若函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称,则ππ,42k k ϕ+=∈Z ,解得ππ,42k k ϕ=-+∈Z ,因为π|π,4k k ϕϕ⎧⎫=-+∈⎨⎬⎩⎭Z 是ππ|,42k k ϕϕ⎧⎫=-+∈⎨⎬⎩⎭Z 的真子集,所以“ππ,4k k ϕ=-+∈Z ”是“函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称”的充分不必要条件.故选:A.4.D【分析】利用辅助角公式化简得到π2cos 6y x ω⎛⎫=+ ⎪⎝⎭,再求出ππππ,6366x ωω⎛⎫ ⎪⎝+∈-⎭+,结合对称轴条数得到不等式,求出答案.【详解】πsin 2cos 6y x x x ωωω⎛⎫=-=+ ⎪⎝⎭,。
2025年新人教版高考数学一轮复习讲义含答案解析§4.5三角函数的图象与性质课标要求 1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数在[0,2π]-π2,知识梳理1.用“五点法”作正弦函数和余弦函数的简图(1)在正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),(π,0),(2π,0).(2)在余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),(π,-1),(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)|π方程常用结论1.对称性与周期性(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是12个周期.2.与三角函数的奇偶性相关的结论(1)若y=A sin(ωx+φ)为偶函数,则φ=kπ+π2(k∈Z);若为奇函数,则φ=kπ(k∈Z).(2)若y=A cos(ωx+φ)为偶函数,则φ=kπ(k∈Z);若为奇函数,则φ=kπ+π2(k∈Z).(3)若y=A tan(ωx+φ)为奇函数,则φ=kπ(k∈Z).自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)函数y=sin x,x∈[0,2π],y=cos x,x∈[0,2π]的五个关键点是零点和极值点.(×)(2)函数y=sin x图象的对称轴方程为x=2kπ+π2(k∈Z).(×)(3)若f(2x+T)=f(2x),则T是函数f(2x)的周期.(×)(4)函数y=tan x在整个定义域上是增函数.(×)2.(多选)已知函数f(x)=x∈R),下列结论正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)在区间0,π2上单调递增C.函数f(x)的图象关于直线x=0对称D.函数f(x)是奇函数答案ABC解析由题意得f(x)=-cos x,对于A,T=2π1=2π,故A正确;对于B,因为y=cos x在0,π2上单调递减,所以函数f(x)在0,π2上单调递增,故B正确;对于C,f(-x)=-cos(-x)=-cos x=f(x),所以函数f(x)是偶函数,所以其图象关于直线x=0对称,故C 正确,D 错误.3.函数f (x )=2tan x ()π+π6,k ∈Z+π6,k ∈Z+π6,k ∈Z 答案D解析令2x -π3=k π2,k ∈Z ,解得x =k π4+π6,k ∈Z ,所以函数f (x )=2tanx +π6,k ∈Z .4.(必修第一册P213T4改编)函数y =3-2cos ______,此时x =________.答案53π4+2k π(k ∈Z )解析函数y =3-2cos 3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).题型一三角函数的定义域和值域例1(1)函数y =cos x -32的定义域为()A.-π6,π6B.k π-π6,k π+π6(k ∈Z )C.2k π-π6,2k π+π6(k ∈Z )D .R 答案C解析由cos x -320,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6(k ∈Z ).(2)如果函数f (x )=+32+a 在区间-π3,5π6上的最小值为3,则a 的值为()A.3+12B.32C.2+32D.3-12答案A解析因为当x ∈-π3,5π6时,x +π3∈0,7π6,所以-12,1,当x =5π6时,sin 有最小值-12.可得f (x )=+32+a 的最小值为-12+32+a =3,解得a =3+12.思维升华三角函数值域的不同求法(1)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域.(2)把sin x 或cos x 看作一个整体,转换成二次函数求值域.(3)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.跟踪训练1(1)函数y =tan ()|x ≠π4|x ≠3π4|x ≠π4+k π,k ∈Z|x ≠3π4+k π,k ∈Z 答案D解析函数y =令x -π4≠π2+k π,k ∈Z ,解得x ≠3π4+k π,k ∈Z ,∴函数y |x ≠3π4+k π,k ∈Z(2)函数f (x )=cos 2x +6cos ()A .4B .5C .6D .7答案B解析因为f (x )=cos 2x +=cos 2x +6sin x =1-2sin 2x +6sin x=-x +112,又sin x ∈[-1,1],所以当sin x =1时,f (x )取得最大值5.题型二三角函数的周期性、对称性与奇偶性例2(1)(多选)(2023·合肥模拟)已知函数f (x )=sin x (sin x -cos x ),则下列说法正确的是()A .函数f (x )的最小正周期为πB -π8,y =f (x )图象的对称中心C y =f (x )图象的对称中心D .直线x =5π8是y =f (x )图象的对称轴答案AD解析f (x )=sin x (sin x -cos x )=sin 2x -sin x cos x =1-cos 2x 2-12sin 2x =-22sin x +12,T =2π2=π,故A 正确;当x =-π8时,2x +π4=0,此时x 0,-π8,B 错误;当x =π8时,2x +π4=π2,此时x 1,则函数关于直线x =π8对称,故C 错误;当x =5π8时,2x +π4=3π2,此时x 1,则函数关于直线x =5π8对称,故D 正确.(2)已知函数f (x )=2cos +π4+φ∈-π2,π2,则φ的值为________.答案π4解析由已知,得π4+φ=k π+π2(k ∈Z ),所以φ=k π+π4(k ∈Z ),又因为φ∈-π2,π2,所以当k =0时,φ=π4符合题意.思维升华(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.(3)对称轴、对称中心的求法:对于可化为f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z )(或令ωx +φ=k π(k ∈Z )),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ωx +φ=π2+k π(k ∈Z x 即可.对于可化为f (x )=A tan(ωx +φ)形式的函数,如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π2(k ∈Z ),求x 即可.跟踪训练2(1)(多选)下列函数中,最小正周期为π的是()A .y =cos|2x |B .y =|cos x |C .y =xD .y =x答案ABC解析A中,y=cos|2x|=cos2x,最小正周期为π;B中,由图象知y=|cos x|的最小正周期为π;C中,y=cosxT=2π2=π;D中,y=tanxT=π2.(2)(2023·日照模拟)已知函数f(x)=2sin(ωx+φ>0,|φπ,其图象关于直线x=π6对称,则f________.答案3解析函数f(x)=2sin(ωx+φ>0,|φπ,其图象关于直线x=π6对称,π,φ=π2+kπ,k∈Z,∵|φ|<π2,∴ω=2,φ=π6,故f(x)=x则f×π4+=3.题型三三角函数的单调性命题点1求三角函数的单调区间例3(1)(2022·北京)已知函数f(x)=cos2x-sin2x,则()A.f (x)-π2,-B.f (x)-π4,C.f(x)D.f(x)答案C解析依题意可知f(x)=cos2x-sin2x=cos2x.对于A 选项,因为x -π2,-2x πf (x )=cos 2x -π2,-单调递增,所以A 选项不正确;对于B 选项,因为x -π4,2x -π2,f (x )=cos 2x -π4,调,所以B 选项不正确;对于C 选项,因为x 2x f (x )=cos 2x 以C 选项正确;对于D 选项,因为x 2x f (x )=cos 2x 以D 选项不正确.(2)函数f (x )=sin 2________.答案k π-π12,k π+5π12,k ∈Z解析f (x )=sin 2g (x )=sin x 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调递减区间为k π-π12,k π+5π12,k ∈Z .延伸探究若例3(2)中的函数不变,求其在[0,π]上的单调递减区间.解令A =k π-π12,k π+5π12,k ∈Z ,B =[0,π],∴A ∩B =0,5π12∪11π12,π,∴f (x )在[0,π]上的单调递减区间为0,5π12和11π12,π.命题点2根据单调性求参数例4已知f (x )=sin(2x -φφ在0,π3上单调递增,且f (x )φ的取值范围是()A.π6,B.π6,C.π3,D.π4,答案B解析由x ∈0,π3,可得2x -φ∈-φ,2π3-φ,又由0<φ<π2,且f (x )在0,π3上单调递增,可得2π3-φ≤π2,所以π6≤φ<π2.当x 2x -φφ,7π4-由f (x )上有最小值,可得7π4-φ>3π2,所以φ<π4.综上,π6≤φ<π4.思维升华(1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数先求出函数的单调区间,然后利用集合间的关系求解.跟踪训练3(1)设函数f (x )=2f (x )在0,π2上的单调递减区间是()A.0,π8B.0,π4C.π4,π2 D.π8,π2答案D解析由已知f (x )=x 得2k π≤2x -π4≤2k π+π,k ∈Z ,则k π+π8≤x ≤k π+5π8,k ∈Z ,又x ∈0,π2,∴f (x )在0,π2上的单调递减区间为π8,π2.(2)若f (x )=cos x -sin x 在[-a ,a ]上单调递减,则a 的最大值是()A.π4B.π2C.3π4D .π答案A解析f(x)=cos x-sin x=2cos由题意得a>0,因为f(x)=2cos[-a,a]上单调递减,a+π4≥0,+π4≤π,>0,解得0<a≤π4,所以a的最大值是π4.课时精练一、单项选择题1.若函数y=3cosωxω>0)两对称中心间的最小距离为π2,则ω等于() A.1B.2C.3D.4答案A解析因为函数y=3cosωxω>0)两对称中心间的最小距离为π2,所以T2=π2,则T=π,所以T=2π2ω=π,解得ω=1.2.(2023·焦作模拟)已知函数f(x)=xf(x)在[-2,0]上()A.单调递增B.单调递减C.先增后减D.先减后增答案D解析∵x∈[-2,0],∴2x-π6∈-4-π6,-π6,∵-3π2<-4-π6<-π<-π6<0,∴函数f (x )=cos x [-2,0]上先减后增.3.已知函数f (x )=a =f b =f c =f a ,b ,c 的大小关系是()A .a >b >cB .a >c >bC .c >a >bD .b >a >c 答案A解析a =f 2cos 13π42,b =f 2cos π3,c =f 2cos 5π12,因为y =cos x 在[0,π]上单调递减,又0<13π42<π3<5π12<π,所以a >b >c .4.(2023·全国乙卷)已知函数f (x )=sin(ωx +φ)x =π6和x =2π3为函数y =f (x )的图象的两条相邻对称轴,则f ()A .-32B .-12 C.12 D.32答案D 解析因为直线x =π6和x =2π3为函数y =f (x )的图象的两条相邻对称轴,所以T 2=2π3-π6=π2,不妨取ω>0,则T =π,ω=2πT=2,由题意知,当x =π6时,f (x )取得最小值,则2×π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f (x )=x则f =32.5.(2023·抚州模拟)已知函数f (x )=sin|x |-cos 2x ,则下列结论错误的是()A .f (x )为偶函数B .f (x )的最小正周期为πC .f (x )的最小值为-98D .f (x )的最大值为2答案B 解析因为f (-x )=sin|-x |-cos(-2x )=sin|x |-cos 2x =f (x ),所以f (x )是偶函数,则A 正确;若f (x )的最小正周期为π,则f (x +π)=f (x )恒成立,即sin|x +π|-cos 2(x +π)=sin|x |-cos 2x ,即sin|x +π|=sin|x |恒成立,而当x =π2时,sin 3π2≠sin π2,所以“f (x )的最小正周期为π”是错误的,则B 错误;由f (x )是偶函数,只需考虑x ≥0时的最值即可,当x ≥0时,f (x )=sin x -cos 2x =2sin 2x +sin x-1=x -98,因为sin x ∈[-1,1],所以x -98∈-98,2,即f (x )的值域为-98,2,则C 和D 正确.6.(2023·安康模拟)记函数f (x )=b (ω∈N *)的最小正周期为T ,若π2<T <π,且y =f (x )的最小值为1.则y =f (x )图象的一个对称中心为()-π12,答案C 解析由函数的最小正周期T 满足π2<T <π,得π2<2πω<π,解得2<ω<4,又因为ω∈N *,所以ω=3,所以f (x )=x b ,又函数y =f (x )的最小值为1,所以b =2,所以f (x )=x 2,令3x +π4=k π,k ∈Z ,解得x =k π3-π12,k ∈Z ,-π12,k ∈Z ),只有C 符合题意(k =2).二、多项选择题7.(2024·株洲模拟)下列关于函数f (x )=cos x +a sin x (a ≠0)的说法正确的是()A .存在a ,使f (x )是偶函数B .存在a ,使f (x )是奇函数C .存在a ,使f (x +π)=f (x )D .若f (x )的图象关于直线x =π4a =1答案AD 解析函数f (x )=cos x +a sin x =1+a 2sin(x +θ),其中sin θ=11+a 2,cos θ=a1+a 2,θ∈(0,π),当a =0时,f (x )=cos x 为偶函数,故A 正确;对于B ,无论a 取何值,函数f (x )=1+a 2sin(x +θ)都不可能为奇函数,故B 错误;对于C ,f (x +π)=1+a 2sin(x +π+θ)=-1+a 2sin(x +θ)≠f (x ),故C 错误;对于D ,当x =π4时,函数f (x )取得最大值或最小值,故22+22a =±1+a 2,解得a =1,故D 正确.8.(2023·西安模拟)已知函数f (x )=sin(ωx +φ>0,0<|φ且f-f 1,则()A .ω=3B .φ=-π6C .ω=2D .φ=π6答案CD解析因为函数f (x )=sin(ωx +φ>0,0<|φ所以T 2=12·2πω≥2π3-π6=π2,所以0<ω≤2,因为f f 1,所以++1,所以π6ω+φ=π2+2k 1π,2π3ω+φ=3π2+2k 2π,k 1,k 2∈Z ,故π2ω=π+2(k 2-k 1)π,所以ω=2+4(k 2-k 1),k 2,k 1∈Z ,因为0<ω≤2,k 2-k 1∈Z ,所以ω=2,则φ=π6+2k 1π,k 1∈Z ,又0<|φ|<π2,所以φ=π6.三、填空题9.函数y =sin x -cos x 的定义域为________.答案2k π+π4,2k π+5π4(k ∈Z )解析方法一要使函数有意义,必须使sin x -cos x ≥0.在同一直角坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为2k π+π4,2k π+5π4(k ∈Z ).方法二要使函数y =sin x -cos x 有意义,即使sin x -cos x ≥0,即2sin 0,即2k π≤x -π4≤2k π+π(k ∈Z ),即原函数的定义域为2k π+π4,2k π+5π4(k ∈Z ).10.写出一个同时满足下列两个条件的函数f (x )=________.①∀x ∈R ,f f (x );②∀x ∈R ,f (x )≤f 答案-cos 4x (答案不唯一)解析由∀x ∈R ,f f (x )可知,函数的周期为π2,由∀x ∈R ,f (x )≤f x =π4处取到最大值,则f (x )=-cos 4x 满足题意,一方面根据余弦函数的周期公式,T =2π4=π2,满足∀x ∈R ,f f (x ),另一方面,f cos π=1=f (x )max ,满足∀x ∈R ,f (x )≤f11.若函数f (x )=7sin在区间π2,a 上单调,则实数a 的最大值为________.答案7π5解析因为x ∈π2,a ,所以x +π10∈3π5,a +π10,又3π5在y =sin x 的单调递减区间π2,3π2内,所以a +π10≤3π2,解得a ≤7π5,所以a 的最大值为7π5.12.已知sin x +cos y =14,则sin x -sin 2y 的最大值为________.答案916解析∵sin x +cos y =14,sin x ∈[-1,1],∴sin x =14-cos y ∈[-1,1],∴cos y ∈-34,54,即cos y ∈-34,1,∵sin x -sin 2y =14-cos y -(1-cos 2y )=cos 2y -cos y -34=y -1,又cos y ∈-34,1,利用二次函数的性质知,当cos y =-34时,sin x -sin 2y 取最大值,(sin x -sin 2y )max -34--1=916.四、解答题13.设函数f (x )=ωx m 的图象关于直线x =π对称,其中0<ω<12.(1)求函数f (x )的最小正周期;(2)若函数y =f (x )的图象过点(π,0),求函数f (x )在0,3π2上的值域.解(1)由直线x =π是y =f (x )图象的一条对称轴,可得ωπ±1,所以2ωπ-π6=k π+π2(k ∈Z ),解得ω=k 2+13(k ∈Z ).又0<ω<12,所以ω=13,所以函数f (x )的最小正周期为3π.(2)由(1)知f (x )=m ,因为f (π)=0,所以m =0,解得m =-2,所以f (x )=2,当0≤x ≤3π2时,-π6≤23x -π6≤5π6,可得-12≤ 1.所以-3≤f (x )≤0,故函数f (x )在0,3π2上的值域为[-3,0].14.(2023·新乡模拟)已知函数f (x )=a x 2cos a >0),且满足________.从①f (x )的最大值为1;②f (x )的图象与直线y =-3的两个相邻交点的距离等于π;③f (x )的图(1)求函数f (x )的解析式及最小正周期;(2)若关于x 的方程f (x )=1在区间[0,m ]上有两个不同解,求实数m 的取值范围.注:如果选择多个条件分别解答,则按第一个解答计分.解(1)函数f (x )=a x 2cos=a x x 1=a x x +π2-1=a x x 1=(a +x 1,若选择条件①f (x )的最大值为1,则a +1=2,解得a =1,所以f (x )=x 1,则函数f (x )的最小正周期T =2π2=π.若选择条件②f (x )的图象与直线y =-3的两个相邻交点的距离等于π,且f (x )的最小正周期T =2π2=π,所以-(a +1)-1=-3,解得a =1,所以f (x )=x 1.若选择条件③f (x )则f (a +1)sin π6-1=0,解得a =1.所以f (x )=x 1,则函数f (x )的最小正周期T =2π2=π.(2)令f (x )=1,得x 1,解得2x -π6=π2+2k π,k ∈Z ,即x =π3+k π,k ∈Z .若关于x 的方程f (x )=1在区间[0,m ]上有两个不同解,则x =π3或x =4π3,所以实数m 的取值范围是4π3,15.(2024·抚顺模拟)已知函数f (x )=|,则下列说法正确的是()A .f (x )的周期是π2B .f (x )的值域是{y |y ≠0,y ∈R }C .直线x =5π3是函数f (x )图象的一条对称轴D .f (x )k π-2π3,2k πk ∈Z答案D 解析函数f (x )的周期是2π,故A 错误;f (x )的值域是[0,+∞),故B 错误;当x =5π3时,12x -π6=2π3≠k π2,k ∈Z ,∴直线x =5π3不是函数f (x )图象的一条对称轴,故C 错误;令k π-π2<12x -π6<k π,k ∈Z ,可得2k π-2π3<x <2k π+π3,k ∈Z ,∴f (x )k π-2π3,2k πk ∈Z ,故D 正确.16.(2023·无锡模拟)设函数f (x )=sinx α,α+π3上的值域为[M ,N ],则N -M 的取值范围是______.答案12,3解析函数f (x )=sin x T =π,α=π3<T 2,当函数f (x )在α,α+π3上单调时,N -M =|f (α)-f=|αα=3|cos 2α|≤3,当函数f (x )在α,α+π3上不单调时,由正弦函数的图象性质知,当f (x )在α,α+π3上的图象关于直线x =α+π6对称时,N -M 最小,此时-π3=k π+π2,k ∈Z ,即α=k π2+π4,k ∈Z ,因此(N -M )min =|f (α)-f=|αsin 2α|=|ππ=|12cos k π-cos k π|=12,所以N -M 的取值范围是12,3.。
三角函数一、知识点 (一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角; ②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl =α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ; rad 01745.01801≈π= 。
3、特殊角的三角函数值0 3045 60 90 120 135 150 1800 6π4π 3π 2π 32π 43π 65ππ sin 0 2122 23 1 232221 0 cos 1 232221 0 21- 22- 23- 1- tan 0 331 3 ⨯3- 1- 33- 0210 225 240 270 300 315 330 36067π 45π 34π 23π 35π 47π 611ππ2sin21- 22- 23- 1- 23- 22- 21- 04、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅nπk 2 第一象限角平分线36045⋅+nπ+πk 24 x 轴负半轴 360180⋅+n π+πk 2 第二象限角平分线 360135⋅+nπ+πk 243 x 轴 180⋅n πk 第三象限角平分线 360225⋅+nπ+πk 245 y 轴正半轴 36090⋅+n π+πk 22第四象限角平分线 360315⋅+nπ+πk 247 y 轴负半轴 360270⋅+n π+πk 223 第一、三象限角平分线 18045⋅+n π+πk 4y 轴 18090⋅+nπ+πk 2 第二、四象限角平分线 180135⋅+n π+πk 43 坐标轴 90⋅n 2πk 象限角平分线 9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
高考一轮复习专题——三角函数第1讲 任意角、弧度制及任意角的三角函数基础梳理1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=yr ,cos α=x r,tan α=y x,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT为正切线一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=k π,k ∈Z };终边落在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+=Z k k ,2ππββ;终边落在坐标轴上的角的集合可以表示为⎭⎬⎫⎩⎨⎧∈=Z k k ,2πββ.两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与9π4的终边相同的角的表达式是( ).A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)2.若α=k·180°+45°(k∈Z),则α在( ).A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限3.若sin α<0且tan α>0,则α是( ).A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知角α的终边过点(-1,2),则cos α的值为( ).A.-55B.255C.-255D.-125.(2011·江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.重点突破——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P (不与原点重合)的坐标为(x ,y ),它到原点的距离是r (r =x 2+y 2>0),则sin α=yr、cos α=x r 、tan α=y x分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x ,y 的符号由α终边所在象限确定,r 的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011·龙岩月考)已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.【试一试】已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.第2讲 同角三角函数的基本关系与诱导公式基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z .公式二:sin(π+α)=-sin α,cos(π+α)=-cos α, tan(π+α)=tan α.公式三:sin(-α)=-sin α,cos(-α)=cos α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos α.公式五:sin )2(απ-=cos α,cos )2(απ-=sin α.公式六:sin )2(απ+=cos α,cos )2(απ+=-sin α.诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有: (1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12 C.32 D .±322.(2012·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知cos α=45,α∈(0,π),则tan α的值等于( ).A.43B.34 C .±43 D .±344.cos )417(π--sin )417(π-的值是( ). A. 2 B .- 2 C .0 D.225.已知α是第二象限角,tan α=-12,则cos α=________.考向一 利用诱导公式化简、求值【例1】►已知)tan()2sin()2cos()sin()(απαπαπαπα++--=f ,求【训练1】已知角α终边上一点P (-4,3),则的值为________.考向二 同角三角函数关系的应用)3(πf )29sin()211cos()sin()2cos(απαπαπαπ+---+【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α.【训练2】已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.考向三 三角形中的诱导公式【例3】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.【训练3】若将例3的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角.重点突破——忽视题设的隐含条件致误【问题诊断】涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.,【防范措施】一要考虑题设中的角的范围;二要考虑题设中的隐含条件 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根, θ∈(0,π),求cos 2θ的值.【试一试】已知sin θ+cos θ=713,θ∈(0,π),求tan θ.第3讲 三角函数的图象与性质基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质 函数 性质y =sin x y =cos x y =tan x定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:)0,2(πk(k∈Z)周期2π2ππ单调性单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππkk(k∈Z);单调减区间⎥⎦⎤⎢⎣⎡++ππππ232,22kk(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间)2,2(ππππ+-kk(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A 版教材习题改编)函数y =cos )3(π+x ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数 2.函数y =tan )4(x -π的定义域为( ). A.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,4ππB.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,42ππC.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ3.(2011·全国新课标)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(20πϕω<,>)的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在)2,0(π单调递减B .f (x )在)43,4(ππ单调递减C .f (x )在)2,0(π单调递增D .f (x )在)43,4(ππ单调递增4.y =sin )4(π-x 的图象的一个对称中心是( ). A .(-π,0) B.)0,43(π-C.)0,23(π D.)0,2(π5.(2011·合肥三模)函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的定义域与值域【例1】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x (4π≤x )的最大值与最小值.【训练1】(1)求函数y =sin x -cos x 的定义域. (2)已知函数f (x )=cos )32(π-x +2sin )4(π-x ·sin )4(π+x ,求函数f (x )在区间⎥⎦⎤⎢⎣⎡-2,12ππ上的最大值与最小值.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y =2cos 2)4(π-x -1是( ). A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【训练2】已知函数f (x )=(sin x -cos x )sin x ,x ∈R ,则f (x )的最小正周期是________.考向三 三角函数的单调性【例3】►已知f (x )=sin x +sin )2(x -π,x ∈[0,π],求f (x )的单调递增区间.【训练3】函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12【训练4】(1)函数y =2sin(3x +φ)(2πϕ<)的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.重点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析. 一、根据三角函数的单调性求解参数【示例】►(2011·镇江三校模拟)已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为⎥⎦⎤⎢⎣⎡+-12,125ππππk k (k ∈Z ),单调递减区间为⎥⎦⎤⎢⎣⎡++127,12ππππk k (k ∈Z ),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ). A.π6 B.π3 C .-π6 D .-π3▲根据三角函数的周期性求解参数【示例】► (2011·合肥模拟)若函数y =sin ωx ·sin )2(πω+x (ω>0)的最小正周期为π7,则ω=________.▲根据三角函数的最值求参数【示例】► (2011·洛阳模拟)若函数f(x)=a sin x-b cos x在x=π3处有最小值-2,则常数a、b的值是( ).A.a=-1,b= 3 B.a=1,b=- 3C.a=3,b=-1 D.a=-3,b=1第4讲正弦型函数y=A sin(ωx+φ)的图象及应用基础梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示x 0-φωπ2-φω错误!错误!错误!ωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤3.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定. 一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin )42(π-x 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)(2πϕ<)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ). A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin )3(πω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .35.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)(02-0<<,>ϕπω)的最小正周期为π,且)4(πf =32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】已知函数f (x )=3sin )421(π-x ,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M )2,32(-π. (1)求f (x )的解析式;(2)当x ∈⎥⎦⎤⎢⎣⎡2,12ππ时,求f (x )的值域.【训练3】(2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π. (1)求函数的解析式; (2)求函数f (x )的递增区间.重点突破——怎样求解三角函数的最值问题【问题研究】(1)求三角函数的最值是高考的一个热点.在求解中,一定要注意其定义域,否则容易产生错误.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题.【解决方案】①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角 Φ(2222sin ,cos b a b b a a +=+=φφ),将原式化为y =a 2+b 2·sin(x +φ)+c 的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【示例】►(本题满分12分)(2011·北京)已知函数f (x )=4cos x sin )6(π+x -1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.【试一试】是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎥⎦⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.第5讲 两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)C (α+β):cos(α+β)=cos αcos β-sin αsin β; (3)S (α+β):sin(α+β)=sin αcos β+cos_αsin β; (4)S (α-β):sin(α-β)=sin αcos β-cos αsin β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=)2(βα+-)2(βα+.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6 3.已知sin α=23,则cos(π-2α)等于( ).A .-53 B .-19 C.19 D.534.(2011·辽宁)设sin )4(θπ+=13,则sin 2θ=( ).A .-79B .-19 C.19 D.795.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ.【训练1】化简:ααααα2sin )1cos )(sin 1cos (sin +--+.考向二 三角函数式的求值【例2】►已知0<β<π2<α<π,且cos )2(βα-=-19,sin )2(βα-=23,求cos(α+β)的值.【训练2】已知α,β∈)2,0(π,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.【训练3】已知α,β∈)2,2(ππ-,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f )3(π的值;(2)求f (x )的最大值和最小值.【训练4】已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-2,6ππ上的最大值和最小值.重点突破——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan )4(π+x =2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈)2,0(π.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲正弦定理和余弦定理基础梳理1.正弦定理:asin A =bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 62.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30° B.45° C.60° D.90°3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ). A.30° B.45° C.60° D.75°4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A.3 3 B.2 3 C.4 3 D. 35.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,tan A=2,则sin A=________;a=________.考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.【训练3】在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ). A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形考向四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练4】(2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b,c,且cos B=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.重点突破——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a ;(2)若c2=b2+3a2,求B.第7讲正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ). A.α>β B.α=βC.α+β=90° D.α+β=180°3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10°D.北偏西10°4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里B.53海里C.10海里D.103海里5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC =75°,则B,C间的距离是________海里.考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.重点突破——如何运用解三角形知识解决实际问【问题研究】1.解三角形实际应用问题的一般步骤是:审题————求解——检验作答;2.三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.。
2019新课标高考数学(文)一轮复习讲义(带详细解析):第三编 三角函数§3.1 任意角及任意角的三角函数一、填空题(本大题共9小题,每小题6分,共54分) 1.(2009·江苏常州一模)已知角α是第三象限角,则角-α的终边在第________象限. 解析 ∵α是第三象限角,∴k·360°+180°<α<k·360°+270°,k ∈Z ,则-k ·360°-270°< -α<-k ·360°-180°,k ∈Z ,则-α的终边在第二象限. 答案 二 2.(2019·连云港模拟)与610°角终边相同的角表示为______________.解析 与610°角终边相同的角为n ·360°+610°=n ·360°+360°+250°=(n +1)·360°+250°=k ·360°+250° (k ∈Z ,n ∈Z ). 答案 k ·360°+250°(k ∈Z )3.(2019·浙江潮州月考)已知⎝⎛⎭⎫12sin 2θ<1,则θ所在象限为第________象限.解析 ∵⎝⎛⎭⎫12sin 2θ<1=⎝⎛⎭⎫120,∴sin 2θ>0, ∴2k π<2θ<π+2k π (k ∈Z ),∴k π<θ<π2+k π (k ∈Z ).∴θ表示第一或第三象限的角. 答案 一或三4.(2019·南通模拟)已知角θ的终边经过点P (-4cos α,3cos α)(π2<α<3π2),则sin θ+cos θ=________. 解析 ∵r =(-4cos α)2+(3cos α)2=5|cos α|=-5cos α,∴sin θ=3cos α-5cos α=-35,cos θ=-4cos α-5cos α=45.∴sin θ+cos θ=45-35=15.答案 155.(2019·福州调研)已知θ∈⎝⎛⎭⎫-π2,π2且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值, 以下四个答案中,可能正确的是________(填序号).①-3 ②3或13 ③-13 ④-3或-13解析 在单位圆中,由三角函数线可知a <1,第三编 三角函数∴θ不在第一象限,θ∈⎝⎛⎭⎫-π2,0, 又∵a >0,∴sin θ+cos θ>0,∴θ∈⎝⎛⎭⎫-π4,0,∴tan θ∈(-1,0). 答案 ③ 6.(2009·江西九江模拟)若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =________.解析 依题意知⎩⎪⎨⎪⎧n =3m ,m 2+n 2=10.解得m =1,n =3或m =-1,n =-3, 又sin α<0,∴α的终边在第三象限, ∴n <0,∴m =-1,n =-3,∴m -n =2.答案 27.(2019·山东济南月考)已知角α的终边落在直线y =-3x (x <0)上,则|sin α|sin α-|cos α|cos α=________.解析 ∵角α的终边落在直线y =-3x (x <0)上, 在角α的终边上取一点P (x 0,-3x 0)(x 0<0), ∴-3x 0>0,∴P 在第二象限,∴|sin α|sin α-|cos α|cos α=sin αsin α--cos αcos α=1+1=2. 答案 2 8.(2019·南京模拟)某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋 转,当时间t =0时,点A 与钟面上标12的点B 重合.将A 、B 两点间的距离d (cm)表示 成t (s)的函数,则d =________,其中t ∈[0,60].解析 将解析式可写为d =A sin(ωt +φ)的形式,由题意易知A =10,当t =0时,d =0,得φ=0;当t =30时,d =10,可得ω=π60,故d =10sin πt60.答案 10sin πt609.(2019·泰州模拟)若0<x <π2,则sin x ______4π2x 2(用“>”,“<”或“=”填空).解析 利用数形结合,作出22π4x y =在 )2π,0(k 的图象,同时作出 )2π,0(∈x 内的正弦线,由图象易得答案.答案 >二、解答题(本大题共3小题,共46分)10.(14分)(2019·镇江模拟)已知角θ的终边上一点P (-3,m ),且sin θ=24m ,求cos θ与tan θ的值. 解 ∵r =m 2+3,∴mm 2+3=24m , 若m =0,则cos θ=-1,tan θ=0.若m ≠0,则m =±5.当m =5时,cos θ=-38=-64,tan θ=-153,当m =-5时,cos θ=-64,tan θ=153,综上可知,当m =0时,cos θ=-1,tan θ=0;当m =5时,cos θ=-64,tan θ=-153; 当m =-5时,cos θ=-64,tan θ=153.11.(16分)(2019·江苏南京模拟)在单位圆中画出适合下列条件的角α的终边的范围,并由此 写出角α的集合:(1)sin α≥32;(2)cos α≤-12.解 (1) 作直线23=y 交单位圆于A 、B 两点,连结OA 、OB ,则 OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的 集合为⎩⎨⎧⎭⎬⎫α|2k π+π3≤α≤2k π+23π,k ∈Z .(2)作直线21-=x 交单位圆于C 、D 两点,连结OC 、OD ,则OC 与 OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α|2k π+23π≤α≤2k π+43π,k ∈Z .12.(16分)(2019·佳木斯模拟)角α终边上的点P 与A (a,2a )关于x 轴对称(a ≠0),角β终边上的点Q 与A 关于直线y =x 对称,求sin α·cos α+sin β·cos β+tan α·tan β的值. 解 由题意得,点P 的坐标为(a ,-2a ), 点Q 的坐标为(2a ,a ). sin α=-2a a 2+(-2a )2=-2a5a 2, cos α=aa 2+(-2a )2=a5a 2, tan α=-2a a =-2,sin β=a(2a )2+a 2=a5a 2, cos β=2a(2a )2+a 2=2a5a 2, tan β=a 2a =12,故有sin α·cos α+sin β·cos β+tan α·tan β=-2a 5a2·a 5a 2+a 5a 2·2a 5a 2+(-2)×12=-1.§3.2 同角三角函数的基本关系及诱导公式一、填空题(本大题共9小题,每小题6分,共54分)1.(2019·南通模拟)cos(-174π)-sin(-174π)的值为___________________________.解析 cos(-17π4)-sin(-17π4)=cos 174π+sin 17π4=cos(4π+π4)+sin(4π+π4)=cos π4+sin π4=22+22= 2. 答案 22.(2019·江苏镇江一模)设tan(5π+α)=m ,则sin(α-3π)+cos(π-α)sin(-α)-cos(π+α)的值为__________.解析 sin(α-3π)+cos(π-α)sin(-α)-cos(π+α)=sin(-4π+π+α)-cos α-sin α+cos α=sin(π+α)-cos α-sin α+cos α=-sin α-cos α-sin α+cos α =sin α+cos αsin α-cos α=tan α+1tan α-1. 又tan(5π+α)=m ,∴tan(π+α)=m ,tan α=m , ∴原式=m +1m -1.答案m +1m -13.(2009·辽宁沈阳四校联考)已知sin α+cos αsin α-cos α=2,则sin αcos α=________.解析 由已知得:sin α+cos α=2(sin α-cos α),平方得:1+2sin αcos α=4-8sin αcos α,∴sin αcos α=310.答案 3104.(2019·浙江理,8)若cos α+2sin α=-5,则tan α=__________.解析 由已知得5sin(α+φ)=-5(其中tan φ=12),即有sin(α+φ)=-1,所以α+φ=2k π-π2,α=2k π-π2-φ(k ∈Z ),所以tan α=tan ⎝⎛⎭⎫-π2-φ=1tan φ=2. 答案 2 5.(2019·四川理,5)设0≤α<2π,若sin α>3cos α,则α的取值范围是____________. 解析 由sin α>3cos α且0≤α<2π,当cos α>0时,tan α>3,∴π3<α<π2;当cos α<0时,tan α<3,∴π2<α<4π3;当cos α=0时,sin α=1满足条件,此时α=π2.答案 ⎝⎛⎭⎫π3,4π36.(2019·吉林长春调研)若sin α+cos α=tan α ⎝⎛⎭⎫0<α<π2,则α的取值范围是__________. 解析 由sin α+cos α=tan α,0<α<π2,∴tan 2α=1+2sin αcos α=1+sin 2α,∵0<α<π2,∴0<2α<π,∴0<sin2α≤1,∴1<tan 2α≤2,∵0<α<π2,∴tan α>0,∴1<tan α≤2,而2<3,∴π4<α<π3.答案 ⎝⎛⎭⎫π4,π3 7.(2009·苏州二模)sin 21°+sin 22°+sin 23°+…+sin 289°=________. 解析 sin 21°+sin 22°+sin 23°+…+sin 289°=sin 21°+sin 22°+…+sin 245°+…+sin 2(90°-2°)+sin 2(90°-1°) =sin 21°+sin 22°+…+(22)2+…+cos 22°+cos 21° =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 244°+cos 244°)+12=44+12=892.答案 8928.(2019·浙江嘉兴月考)已知f (x )= 1-x 1+x ,若α∈(π2,π),则f (cos α)+f (-cos α)=________.解析 f (cos α)+f (-cos α)=1-cos α1+cos α+1+cos α1-cos α=1-cos α|sin α|+1+cos α|sin α|=2|sin α| ∵α∈(π2,π),∴sin α>0,∴f (cos α)+f (-cos α)=2sin α.答案 2sin α9.(2009·北京)若sin θ=-45,tan θ>0,则cos θ=____________________________________.解析 ∵sin θ=-45,tan θ>0,∴cos θ<0,∴cos θ=-1-sin 2θ=-35.答案 -35二、解答题(本大题共3小题,共46分) 10.(14分)(2019·泰州模拟)化简:(1)1-cos 4α-sin 4α1-cos 6α-sin 6α; (2)2sin(π4-x )+6cos(π4-x ).解 (1)方法一 原式=(cos 2α+sin 2α)2-cos 4α-sin 4α(cos 2α+sin 2α)3-cos 6α-sin 6α=2cos 2α·sin 2α3cos 2αsin 2α(cos 2α+sin 2α)=23. 方法二 原式=(1-cos 2α)(1+cos 2α)-sin 4α(1-cos 2α)(1+cos 2α+cos 4α)-sin 6α=sin 2α(1+cos 2α-sin 2α)sin 2α(1+cos 2α+cos 4α-sin 4α)=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. (2)原式=22[12sin(π4-x )+32·cos(π4-x )]=22[sin π6sin(π4-x )+cos π6cos(π4-x )]=22cos(π6-π4+x )=22cos(x -π12).11.(16分)(2019·盐城模拟)已知sin 22α+sin 2αcos α-cos 2α=1,α∈(0,π2),求sin α、tan α的值.解 由sin 22α+sin 2αcos α-cos 2α=1,得 4sin 2αcos 2α+2sin αcos 2α-2cos 2α=0 2cos 2α(2sin 2α+sin α-1)=02cos 2α(2sin α-1)(sin α+1)=0.因为α∈(0,π2),所以sin α+1≠0,且cos α≠0,所以2sin α-1=0,即sin α=12,所以α=π6,即tan α=33.12.(16分)(2009·福建宁德模拟)已知0<α<π2,若cos α-sin α=-55,试求2sin αcos α-cos α+11-tan α的值.解 ∵cos α-sin α=-55,∴1-2sin α·cos α=15,∴2sin α·cos α=45,∴(sin α+cos α)2=1+2sin αcos α=1+45=95.∵0<α<π2,∴sin α+cos α=355,与cos α-sin α=-55联立解得:cos α=55,sin α=255.∴2sin αcos α-cos α+11-tan α=cos α(2sin αcos α-cos α+1)cos α-sin α=55×⎝⎛⎭⎫45-55+1-55=55-95.§3.3 和差倍角的三角函数一、填空题(本大题共9小题,每小题6分,共54分) 1.(2019·山东青岛模拟)cos 43°cos 77°+sin 43°·cos 167°的值为________. 解析 原式=cos 43°cos 77°+sin 43°cos(90°+77°)=cos 43°cos 77°-sin 43°sin 77°=cos(43°+77°)=cos 120°=-12.答案 -122.(2019·南京模拟)已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________. 解析 ∵cos(α+β)=sin(α-β),∴cos αcos β-sin αsin β=sin αcos β-cos αsin β, 即cos β(sin α-cos α)+sin β(sin α-cos α)=0, ∴(sin α-cos α)(cos β+sin β)=0, ∵α、β均为锐角,∴cos β+sin β>0,∴sin α-cos α=0,∴tan α=1. 答案 1 3.(2009·湖北四校联考)在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则∠C 的大小为________.解析 两式平方相加可得9+16+24sin(A +B )=37,sin(A +B )=sin C =12,所以C =π6或56π.如果C =56π,则0<A <π6,从而cos A >32,3cos A >1与4sin B +3cos A =1矛盾(因为4sin B >0恒成立),故C =π6.答案 π64.(2009·湖南长沙调研)在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x ,y 的大小关系是________.解析 方法一 ∵△ABC 为锐角三角形,∴A +B >π2,∴cos(A +B )<0,即cos A cos B -sin A sin B <0,∴cos A cos B <sin A sin B ,即y <x . 方法二 特殊值法 令A =60°,B =45° x =32×22=64 y =12×22=24 ∴x >y . 答案 y <x 5.(2009·广东韶关模拟)已知tan α=2,则sin 2α-cos 2α1+cos 2α=________.解析 原式=2sin αcos α-(cos 2α-sin 2α)(sin 2α+cos 2α)+cos 2α=2sin αcos α-cos 2α+sin 2αsin 2α+2cos 2α=2tan α-1+tan 2αtan 2α+2=2×2-1+44+2=76.答案 766.(2019·无锡模拟)若1+tan x 1-tan x =2 010,则1cos 2x +tan 2x 的值为________.解析 1cos 2x +tan 2x =1+sin 2x cos 2x =(sin x +cos x )2cos 2x -sin 2x =cos x +sin x cos x -sin x =1+tan x1-tan x=2 010.答案 2 010 7.(2019·苏州调研)若锐角α、β满足(1+3tan α)·(1+3tan β)=4,则α+β=________. 解析 由(1+3tan α)(1+3tan β)=4, 可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),∴α+β=π3.答案 π38.(2009·江苏南通二模)已知sin αcos β=12,则cos αsin β的取值范围是____________.解析 方法一 设x =cos αsin β,则sin(α+β)=sin αcos β+cos αsin β=12+x ,sin(α-β)=sin αcos β-cos αsin β=12-x .∵-1≤sin(α+β)≤1,-1≤sin(α-β)≤1,∴⎩⎨⎧-1≤12+x ≤1-1≤12-x ≤1∴⎩⎨⎧-32≤x ≤12-12≤x ≤32∴-12≤x ≤12.方法二 设x =cos αsin β, 则sin αcos βcos αsin β=12x .即sin 2αsin 2β=2x .由|sin 2αsin 2β|≤1,得|2x |≤1,∴-12≤x ≤12.答案 [-12,12]9.(2019·苏、锡、常、镇四市调研)若tan(α+β)=25,tan(β-π4)=14,则tan(α+π4)=________.解析 tan(α+π4)=tan[(α+β)-(β-π4)]=tan(α+β)-tan(β-π4)1+tan(α+β)tan(β-π4)=25-141+25×14=322. 答案 322二、解答题(本大题共3小题,共46分) 10.(14分)(2019·广东)已知函数f (x )=A sin(x +φ) (A >0,0<φ<π) (x ∈R )的最大值是1,其图象经过点M ⎝⎛⎭⎫π3,12. (1)求f (x )的解析式;(2)已知α、β∈⎝⎛⎭⎫0,π2,且f (α)=35,f (β)=1213,求f (α-β)的值. 解 (1)依题意知A =1,则f (x )=sin(x +φ).将点M ⎝⎛⎭⎫π3,12代入得sin ⎝⎛⎭⎫π3+φ=12, 而0<φ<π,∴π3+φ=56π.∴φ=π2,故f (x )=sin ⎝⎛⎭⎫x +π2=cos x . (2)依题意有cos α=35,cos β=1213,而α、β∈⎝⎛⎭⎫0,π2, ∴sin α= 1-⎝⎛⎭⎫352=45,sin β= 1-⎝⎛⎭⎫12132=513,∴f (α-β)=cos(α-β)=cos αcos β+sin αsin β =35×1213+45×513=5665. 11.(16分)(2019·宿迁模拟)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=41313. (1)求cos(α-β)的值;(2)若0<α<π2,-π2<β<0,且sin β=-45,求sin α的值.解 (1)a -b =(cos α-cos β,sin α-sin β). |a -b |2=(cos α-cos β)2+(sin α-sin β)2 =2-2cos(α-β),∴1613=2-2cos(α-β),∴cos(α-β)=513. (2)∵0<α<π2,-π2<β<0且sin β=-45,∴cos β=35,且0<α-β<π.又∵cos(α-β)=513,∴sin(α-β)=1213.∴sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=1213×35+513×(-45)=1665. 12.(16分)(2019·常州模拟)求证:cos 2α1tan α2-tan α2=14sin 2α.证明 方法一 左边=cos 2αcos α2sin α2-sin α2cos α2=cos 2αcos 2α2-sin 2α2sin α2cos α2=cos 2αsin α2cos α2cos 2α2-sin2α2=cos 2αsin α2cosα2cos α=sin α2cos α2cos α=12sin αcos α=14sin 2α=右边. ∴原式成立.方法二 左边=cos 2α1+cos αsin α-1-cos αsin α=cos 2αsin α2cos α=12sin αcos α=14sin2α=右边. ∴原式成立.方法三 左边=cos 2αtan α21-tan 2α2=12cos 2α·2tan α21-tan 2α2=12cos 2α·tan α=12cos αsin α =14sin 2α=右边. ∴原式成立.§3.4 三角函数的图象与性质一、填空题(本大题共9小题,每小题6分,共54分)1.(2009·大连一模)y =sin(2x +π6)的最小正周期是_____________________________. 解析 ∵y =sin x 的周期为2π,∴y =sin(2x +π6)的周期为2π2=π. 答案 π2.(2019·扬州模拟)y =2-cos x 3的最大值为__________,此时x =________. 解析 y =2-cos x 3的最大值为3,此时cos x 3=-1, ∴x 3=2k π+π,k ∈Z ,∴x =6k π+3π(k ∈Z ). 答案 3 6k π+3π(k ∈Z )3.(2019·盐城模拟)函数y =tan(π4-x )的定义域是________________. 解析 y =tan(π4-x )=-tan(x -π4). 要使y =tan(π4-x )有意义,即y =-tan(x -π4)有意义, 则x -π4≠k π+π2,∴x ≠k π+3π4(k ∈Z ). 答案 {x |x ≠k π+3π4,k ∈Z ,x ∈R } 4.(2009·牡丹江调研)已知函数y =2cos x (0≤x ≤1 000π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是________.解析 如图,y =2cos x 的图象在[0,2π]上与直线y =2围成封闭图形的面积为S =4π,所以 在[0,1 000π]上封闭图形的面积为4π×500=2 000π.答案 2 000π5.(2019·江苏盐城月考)已知函数y =tan ωx 在(-π2,π2)内是减函数,则ω的取值范围是 ________________.解析 由已知条件ω<0,又π|ω|≥π, ∴-1≤ω<0.答案 -1≤ω<06.(2019·辽宁理,16)已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最 小值,无最大值,则ω=________.解析 如图所示,∵f (x )=sin ⎝⎛⎭⎫ωx +π3, 且f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,又f (x )在区间⎝⎛⎭⎫π6,π3内只有最小值、无最大值,∴f (x )在π6+π32=π4处取得最小值. ∴π4ω+π3=2k π-π2(k ∈Z ). ∴ω=8k -103(k ∈Z ). ∵ω>0,∴当k =1时,ω=8-103=143; 当k =2时,ω=16-103=383,此时在区间⎝⎛⎭⎫π6,π3内已存在最大值.故ω=143. 答案 1437.(2009·浙江宁波检测)定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为________. 解析 由已知得:f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫2π-π3=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32. 答案 328.(2019·连云港模拟)sin 2,cos 1,tan 2的大小顺序是________________.解析 sin 2>0,cos 1>0,tan 2<0.∵cos 1=sin(π2-1),sin 2=sin(π-2), 又0<π2-1<π-2<π2且y =sin x 在(0,π2)上是增函数, 从而sin(π2-1)<sin(π-2),即cos 1<sin 2. 故tan 2<cos 1<sin 2.答案 tan 2<cos 1<sin 29.(2019·全国Ⅱ理)若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两 点,则|MN |的最大值为________.解析 设x =a 与f (x )=sin x 的交点为M (a ,y 1),x =a 与g (x )=cos x 的交点为N (a ,y 2),则|MN |=|y 1-y 2|=|sin a -cos a |=2⎪⎪⎪⎪sin ⎝⎛⎭⎫a -π4≤ 2. 答案 2 二、解答题(本大题共3小题,共46分)10.(14分)(2009·福建莆田模拟)是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎣⎡⎦⎤0,π2上的最大值是1?若存在,求出对应的a 值;若不存在,说明理由. 解 y =1-cos 2x +a cos x +58a -32 =-⎝⎛⎭⎫cos x -a 22+a 24+5a 8-12当0≤x ≤π2时,0≤cos x ≤1, 若a 2>1,即a >2,则当cos x =1时 y max =a +58a -32=1,∴a =2013<2(舍去). 若0≤a 2≤1即0≤a ≤2,则当cos x =a 2时, y max =a 24+58a -12=1, ∴a =32或a =-4(舍去). 若a 2<0,即a <0时,则当cos x =0时, y max =58a -12=1, ∴a =125>0(舍去). 综上所述,存在a =32符合题设. 11.(16分)(2019·陕西)已知函数f (x )=2sin x 4·cos x 4+3cos x 2. (1)求函数f (x )的最小正周期及最值;(2)令g (x )=f ⎝⎛⎭⎫x +π3,判断函数g (x )的奇偶性,并说明理由. 解 (1)∵f (x )=sin x 2+3cos x 2=2sin ⎝⎛⎭⎫x 2+π3, ∴f (x )的最小正周期T =2π12=4π. 当sin ⎝⎛⎭⎫x 2+π3=-1时,f (x )取得最小值-2;当sin ⎝⎛⎭⎫x 2+π3=1时,f (x )取得最大值2.(2)g (x )是偶函数.理由如下:由(1)知f (x )=2sin ⎝⎛⎭⎫x 2+π3,又g (x )=f ⎝⎛⎭⎫x +π3, ∴g (x )=2sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +π3+π3 =2sin ⎝⎛⎭⎫x 2+π2=2cos x 2. ∵g (-x )=2cos ⎝⎛⎭⎫-x 2=2cos x 2=g (x ), ∴函数g (x )是偶函数.12.(16分)(2019·山东济宁第一次月考)设a =⎝⎛⎭⎫sin 2π+2x 4,cos x +sin x ,b =(4sin x ,cos x - sin x ),f (x )=a·b .(1)求函数f (x )的解析式;(2)已知常数ω>0,若y =f (ωx )在区间⎣⎡⎦⎤-π2,2π3上是增函数,求ω的取值范围; (3)设集合A =⎩⎨⎧⎭⎬⎫x |π6≤x ≤2π3,B ={x ||f (x )-m |<2},若A ⊆B ,求实数m 的取值范围.解 (1)f (x )=sin 2π+2x 4·4sin x +(cos x +sin x )·(cos x -sin x ) =4sin x ·1-cos ⎝⎛⎭⎫π2+x 2+cos 2x =2sin x (1+sin x )+1-2sin 2x =2sin x +1,∴f (x )=2sin x +1.(2)∵f (ωx )=2sin ωx +1,ω>0.由2k π-π2≤ωx ≤2k π+π2, 得f (ωx )的增区间是⎣⎡⎦⎤2k πω-π2ω,2k πω+π2ω,k ∈Z .∵f (ωx )在⎣⎡⎦⎤-π2,2π3上是增函数, ∴⎣⎡⎦⎤-π2,2π3⊆⎣⎡⎦⎤-π2ω,π2ω. ∴-π2≥-π2ω且2π3≤π2ω, ∴ω∈⎝⎛⎦⎤0,34. (3)由|f (x )-m |<2,得-2<f (x )-m <2,即f (x )-2<m <f (x )+2.∵A ⊆B ,∴当π6≤x ≤23π时, 不等式f (x )-2<m <f (x )+2恒成立.∴f (x )max -2<m <f (x )min +2,∵f (x )max =f ⎝⎛⎭⎫π2=3,f (x )min =f ⎝⎛⎭⎫π6=2,∴m ∈(1,4).§3.5 三角函数的最值及应用一、填空题(本大题共9小题,每小题6分,共54分)1.(2019·连云港模拟)函数y =3sin(π3-2x )-cos 2x 的最小值为________. 解析 y =3sin(π3-2x )-cos 2x =12cos 2x -32sin 2x =cos(2x +π3),其最小值为-1. 答案 -12.(2019·泰州模拟)若函数y =2cos ωx 在区间[0,2π3]上递减,且有最小值1,则ω的值可以 是________.解析 由y =2cos ωx 在[0,23π]上是递减的,且有最小值为1,则有f (23π)=1,即2×cos(ω×23π)=1,即cos 2π3ω=12,23πω=π3,即ω=12. 答案 123.(2019·湖北黄石调研)设函数f (x )=2sin(π2x +π5).若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.解析 f (x )的周期T =4,|x 1-x 2|min =T 2=2. 答案 24.(2009·湖南株州模拟)函数y =sin 2x 按向量a 平移后,所得函数的解析式是y =cos 2x +1, 则模最小的一个向量a =________.解析 ∵y =sin2(x +π4)=cos 2x , ∴a =(-π4,1). 答案 (-π4,1) 5.(2009·广东惠州二模)函数y =A sin(ωx +φ)(ω>0,|φ|<π2)在同一单调区间内的x =π9处取得最 大值12,在x =4π9处取得最小值-12,则函数的解析式是________________________. 解析 由函数最大值可知A =12,由于函数值当x =π9时最大,当x =4π9时最小,可知T =2π3, 则ω=3,再由x =π9时,y =12可确定φ=π6. 答案 y =12sin(3x +π6) 6.(2019·广西南宁检测)定义运算a *b =⎩⎪⎨⎪⎧a +b , ab ≤0,a b, ab >0,则函数f (x )=(sin x )*(cos x )的 最小值为________. 解析 f (x )=⎩⎪⎨⎪⎧sin x +cos x , sin x cos x ≤0sin x cos x , sin x cos x >0 =⎩⎨⎧2sin ⎝⎛⎭⎫x +π4,k π+π2≤x ≤k π+π,k ∈Z ,tan x ,k π<x <k π+π2,k ∈Z ,可得最小值为-1.答案 -17.(2019·苏州调研)一半径为10的水轮,水轮的圆心距水面7,已知水轮每分钟旋转4圈, 水轮上点P 到水面距离y 与时间x (s)满足函数关系y =A sin(ω+φ)+7(A >0,ω>0),则A = ________,ω=________.解析 由已知P 点离水面的距离的最大值为17,∴A =10,又水轮每分钟旋转4圈,∴T =604=15,∴ω=2π15. 答案 10 2π158.(2009·徐州二模)函数y =(sin x -a )2+1,当sin x =a 时有最小值,当sin x =1时有最大值, 则a 的取值范围是________________.解析 ∵函数y =(sin x -a )2+1当sin x =a 时有最小值,∴-1≤a ≤1,∵当sin x =1时有最大值,∴a ≤0,∴-1≤a ≤0.答案 [-1,0]9.(2009·江苏)函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω= .解析 由函数y =A sin(ωx +φ)的图象可知,3ππ)32()3π(2=---=T 答案 3二、解答题(本大题共3小题,共46分)10.(14分)(2019·镇江模拟)已知函数f (x )=A 2-A 2cos(2ωx +2φ) (A >0,ω>0,0<φ<π2),且y =f (x ) 的最大值为2,其图象上相邻两对称轴间的距离为2,并过点(1,2).(1)求φ;(2)计算f (1)+f (2)+…+f (2 008).解 (1)∵y =A 2-A 2cos(2ωx +2φ), 且y =f (x )的最大值为2,A >0,∴A 2+A 2=2,A =2. 又∵其图象上相邻两对称轴间的距离为2,ω>0,∴12⎝⎛⎭⎫2π2ω=2,ω=π4. ∴f (x )=22-22cos ⎝⎛⎭⎫π2x +2φ=1-cos ⎝⎛⎭⎫π2x +2φ. ∵y =f (x )过(1,2)点,∴cos ⎝⎛⎭⎫π2+2φ=-1.∴π2+2φ=2k π+π,k ∈Z . 即φ=k π+π4,k ∈Z . 又∵0<φ<π2,∴φ=π4. (2)∵φ=π4,∴f (x )=1-cos ⎝⎛⎭⎫π2x +π2=1+sin π2x . ∴f (1)+f (2)+f (3)+f (4)=2+1+0+1=4.又∵y =f (x )的周期为4,2 008=4×502,∴f (1)+f (2)+…+f (2 008)=4×502=2 008.11.(16分)(2019·辽宁瓦房店月考)如图所示,某地一天从6时到14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b .(1)求这段时间的最大温差;(2)写出这段曲线的函数解析式.解 (1)由图知,这段时间的最大温差是30℃-10℃=20℃.(2)图中从6时到14时的图象是函数y =A sin(ωx +φ)+b 的半个周期的图象. ,614π221-=⋅∴ω解得,8π=ω 由图知,,20)1030(21,10)1030(21=+⨯==-⨯=b A 这时,20)8πsin(10++=ϕx y 将x =6,y =10代入上式,可取φ=.4π3综上,所求的解析式为12.(16分)(2019·吉林延吉模拟)如图,在一个奥运场馆建设现场,现准备把一个半径为 3 m 的球形工件吊起平放到6 m 高的平台上,工地上有一个吊臂长DF =12 m 的吊车,吊车底 座FG 高1.5 m .当物件与吊臂接触后,钢索CD 的长可通过顶点D 处的滑轮自动调节并保持物件始终与吊臂接触.求物件能被吊车吊起的最大高度,并判断能否将该球形工件吊到平台上?解 吊车能把球形工件吊上的高度y 取决于吊臂的张角θ,由图可知,y =AB +1.5=AD -OD -OB +1.5=DF sin θ.1.53cos 3sin 121053cos 3+--=+--θθθ 所以y ′=,cos sin 312cos 2θθθ⋅- 由y ′=0,得,cos sin 312cos 2θθθ=当0°<θ<60°时,y ′>0,y 单调递增,同理,当60°<θ<90°时,y ′<0,y 单调递减,所以θ=60°时,y 取最大值.所以吊车能把圆柱形工件吊起平放到6 m 高的桥墩上.§3.6解三角形一、填空题(本大题共9小题,每小题6分,共54分)1.(2019·江苏靖江调研)在△ABC 中,若(a +b +c )(b +c -a )=3bc ,则A =________. 解析 ∵(a +b +c )(b +c -a )=(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =π3. 答案 π32.(2019·宿迁模拟)在△ABC 中,已知a cos A =b cos B ,则△ABC 的形状为____________.解析 由已知a cos A =b cos B 得cos A cos B =b a, 又由正弦定理,得b a =sin B sin A ,所以cos A cos B =sin B sin A, 整理得sin A cos A =sin B cos B ,即sin 2A =sin 2B .因为A 、B 为三角形内角,所以2A =2B 或2A =π-2B ,所以A =B 或A +B =π2, 即△ABC 为等腰三角形或直角三角形.答案 等腰三角形或直角三角形3.(2019·江苏淮阴模拟)如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为_____________________________________________________.解析 设增加同样的长度为x ,原三边长为a 、b 、c ,且c 2=a 2+b 2,a +b >c .新的三角形的三边长为a +x 、b +x 、c +x ,知c +x 为最大边,其对应角最大.而(a +x )2+(b +x )2-(c +x )2=x 2+2(a +b -c )x >0,由余弦定理知新的三角形的最大角的余弦为正,则为锐角,那么它为锐角三角形.答案 锐角三角形4.(2019·浙江绍兴模拟)△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,如果a ,b ,c成等差数列,∠B =30°,△ABC 的面积为32,那么b =__________. 解析 ∵a ,b ,c 成等差数列,∴2b =a +c .平方得a 2+c 2=4b 2-2ac .又△ABC 的面积为32,且∠B =30°, 故由S △=12ac sin B =12ac ·sin 30°=14ac =32, 得ac =6,∴a 2+c 2=4b 2-12.由余弦定理cos B =a 2+c 2-b 22ac =4b 2-12-b 22×6=b 2-44=32. 解得b 2=4+2 3.又∵b 为边长,∴b =1+ 3.答案 1+ 35.(2019·四川,7)△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =52b ,A =2B , 则cos B =________.解析 由正弦定理得a b =sin A sin B, ∴a =52b 可化为sin A sin B =52. 又A =2B ,∴sin 2B sin B =52,∴cos B =54. 答案 546.(2019·南通模拟)一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏 东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.解析 如图,由已知AB =60 km∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得答案 237.(2009·福建泉州二模)如图所示,我炮兵阵地位于地面A 处,两观察所分别位于地面C 处和D 处,已知CD =6 000 m ,∠ACD =45°,∠ADC =75°,目标出现于地面B 处时测得∠BCD =30°,∠BDC =15°,则炮兵阵地到目标的距离是________________(结果保留根号).解析 ∵∠ACD =45°,∠ADC =75°,∴∠CAD =60°.在△ACD 中,由正弦定理可得AD sin 45°=CD sin 60°,∴AD =6 000×2232=2 000 6. 在△BCD 中,由正弦定理得BD sin 30°=CD sin 135°, ∴BD =12×6 00022=3 000 2 在Rt △ABD 中,由勾股定可得AB 2=BD 2+AD 2,∴|AB |=(3 0002)2+(2 0006)2=1 00042(m).答案 1 00042 m8.(2009·江西宜泰模拟)线段AB 外有一点C ,∠ABC =60°,AB =200 km ,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则运动开始____ h 后,两车的距离最小.解析 如图所示,设t h 后,汽车由A 行驶到D ,摩托车由B 行驶到E ,则AD =80t ,BE =50t .因为AB =200,所以BD =200-80t ,问题就是求DE 最小时t 的值.由余弦定理:DE 2=BD 2+BE 2-2BD ·BE cos 60°=(200-80t )2+2 500t 2-(200-80t )·50t=12 900t 2-42 000t +40 000.当4370t时,DE 最小. 答案 4370 9.(2009·广东改编)已知△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,若a =c =6+2,且∠A =75°,则b =________.解析 sin A =sin 75°=sin(30°+45°)=sin 30°cos 45°+sin 45°·cos 30°=2+64. 由a =c =6+2可知,∠C =75°,所以∠B =30°,sin B =12. 由正弦定理得b =a sin A ·sin B =2+62+64×12=2. 答案 2二、解答题(本大题共3小题,共46分)10.(14分)(2009·安徽)在△ABC 中,C -A =π2,sin B =13. (1)求sin A 的值;(2)设AC =6,求△ABC 的面积.解 (1)由C -A =π2和A +B +C =π, 得2A =π2-B,0<A <π4. 故cos 2A =sin B ,即1-2sin 2A =13,sin A =33. (2)由(1)得cos A =63. 又由正弦定理,得BC sin A =AC sin B ,BC =sin A sin B·AC =3 2. ∵C -A =π2,∴C =π2+A , sin C =sin ⎝⎛⎭⎫π2+A =cos A , ∴S △ABC =12AC ·BC ·sin C =12AC ·BC ·cos A =12×6×32×63=3 2. 11.(16分)(2009·山东泰安第二次月考)在海岸A 处,发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船,在A 处北偏西75°方向,距A 处2海里的C 处的缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B 处向北偏东30°的方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间. 解 如图所示,设缉私船追上走私船需t 小时,则有CD =,t 310,BD =10t.在△ABC 中,∵AB =3-1,AC =2,∠BAC =45°+75°=120°.根据余弦定理可求得BC =6.∠CBD =90°+30°=120°.在△BCD 中,根据正弦定理可得sin ∠BCD =,21310120sin 10sin BD =︒⋅=∠⋅tt CD CBD ∴∠BCD =30°,∠BDC =30°,∴BD =BC =6,则有10t =6,t =106=0.245(小时)=14.7(分钟). 所以缉私船沿北偏东60°方向,需14.7分钟才能追上走私船.12.(16分)(2019·淮安模拟)在2019年北京奥运会垒球比赛前,中国教练布置战术时,要求击球手与连接本垒游击手的直线成15°的方向把球击出.根据经验及测速仪的显示,通常情况下球速为游击手最大跑速的4倍.问按这样的布置,游击手能不能接着球? 解 如图,设游击手能接着球,接球点为B ,而游击手从点A 跑出,本垒为O 点.设从击出球到接着球的时间为t ,球速为v ,则∠AOB =15°,OB =vt ,AB ≤tv ·t. 在△AOB 中,由正弦定理,得,15sin sin ︒=∠AB OAB OB ,sin ∠OAB =,2642615sin -=-≥︒AB OB , 而348)26(2-=->8-4×1.74>1, 即sin ∠OAB >1,∴这样的∠OAB 不存在,因此游击手不能接着球.§3.7 三角函数的综合应用一、填空题(本大题共9小题,每小题6分,共54分)1.(2009·济宁期末)已知a =(cos 2α,sin α),b =(1,2sin α-1),α∈(π2,π),若a ·b =25,则 tan(α+π4)的值为________. 解析 a ·b =cos 2α+2sin 2α-sin α=1-2sin 2α+2sin 2α-sin α=1-sin α=25, ∴sin α=35,又α∈(π2,π), ∴cos α=-45,tan α=-34, ∴tan(α+π4)=tan α+11-tan α=-34+11-(-34)=17. 答案 172.(2019·江苏)若AB =2,AC =2BC ,则S △ABC 的最大值是________.解析 设BC =x ,则AC =2x ,根据面积公式得S △ABC =12AB ·BC sin B =12×2x 1-cos 2B , 根据余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-(2x )24x =4-x 24x,将其代入上式得 S △ABC =x 1-⎝ ⎛⎭⎪⎫4-x 24x 2= 128-(x 2-12)216, 由三角形三边关系有⎩⎪⎨⎪⎧2x +x >2,x +2>2x , 解得22-2<x <22+2,故当x =23时,即x 2-12=0时,S △ABC 取得最大值2 2.答案 2 23.(2009·肇庆期末)定义运算a *b =a 2-ab -b 2,则sinπ12*cos π12=________. 解析 sin π12*cos π12=sin 2π12-sin π12cos π12-cos 2π12=-(cos 2π12-sin 2π12)-12×2sin π12cos π12=-cos π6-12sin π6=-1+234. 答案 -1+2344.(2009·广州第二次联考)已知a ,b ,x ,y ∈R ,a 2+b 2=4,ax +by =6,则x 2+y 2的最小值 为________.解析 因为a 2+b 2=4,可设a =2sin α,b =2cos α,则x sin α+y cos α=3.故x 2+y 2sin(α+φ)=3(其中tan φ=y x ) 即x 2+y 2=3sin(α+φ), 故x 2+y 2的最小值为3.即x 2+y 2的最小值为9.答案 95.(2019·宿州模拟)若函数f (x )=sin(x +α)-2cos(x -α)是偶函数,则cos 2α=________. 解析 ∵f (x )=(cos α-2sin α)sin x +(sin α-2cos α)cos x 是偶函数,故cos α-2sin α=0,cos α=2sin α,∴cos 2α+sin 2α=5sin 2α=1,即sin 2α=15,cos 2α=1-2sin 2α=35. 答案 356.(2019·泰州调研)函数f (x )=(sin 2x +12 009sin 2x )·(cos 2x +12 009cos 2x)的最小值是________. 解析 f (x )=(2 009sin 4x +1)(2 009cos 4x +1)2 0092sin 2x cos 2x=2 0092sin 4x cos 4x +2 009(sin 4x +cos 4x )+12 0092sin 2x cos 2x=sin 2x cos 2x + 2 0102 0092sin 2x cos 2x -22 009≥22 009( 2 010-1). 答案 22 009( 2 010-1) 7.(2009·福建文)已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为________.解析 由题知,12×4×3×sin C =33, ∴sin C =32. 又∵0<C <π2,∴C =π3. 答案 60°8.(2019·苏南四市模拟)俗话说“一石激起千层浪”,小时候在水上打“水漂”的游戏一定不会忘记吧.现在一个圆形波浪实验水池的中心已有两个振动源,在t 秒内,它们引发的水面波动可分别由函数y 1=sin t 和y 2=sin(t +2π3)来描述,当这两个振动源同时开始工作时,要使原本平静的水面保持平静,则需再增加一个振动源(假设不计其他因素,则水面波动由几个函数的和表达),请你写出这个新增振动源的函数解析式______________.解析 因为y 1+y 2+y 3=sin t +sin(t +2π3)+y 3=0 即12sin t +32cos t +y 3=0, 所以y 3=sin(t +4π3)时符合题意. 本题也可为y 3=sin(t -2π3)(答案不惟一). 答案 y 3=sin(t +4π3) 9.(2019·南通模拟)2019年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的 弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于____________.解析 ∵大正方形面积为25,小正方形面积为1,∴大正方形边长为5,小正方形的边长为1.∴5cos θ-5sin θ=1,∴cos θ-sin θ=51. ∴1-sin 2θ=251,∴sin 2θ=2524. ∵θ是直角三角形中较小的锐角,∴0<θ<.2π20,4π<<θ ∴cos 2θ=.2572sin 12=-θ 答案 257 二、解答题(本大题共3小题,共46分)10.(14分)(2019·福建)已知向量m =(sin A ,cos A ),n =(3,-1),m·n =1,且A 为锐角.(1)求角A 的大小;(2)求函数f (x )=cos 2x +4cos A sin x (x ∈R )的值域.解 (1)由题意得m·n =3sin A -cos A =1,即2sin ⎝⎛⎭⎫A -π6=1, 所以sin ⎝⎛⎭⎫A -π6=12, 由A 为锐角得A -π6=π6,所以A =π3. (2)由(1)知cos A =12, 所以f (x )=cos 2x +2sin x =1-2sin 2x +2sin x=-2⎝⎛⎭⎫sin x -122+32. 因为x ∈R ,所以sin x ∈[-1,1],因此,当sin x =12时,f (x )有最大值32;当sin x =-1时,f (x )有最小值-3.所以所求函数f (x )的值域是⎣⎡⎦⎤-3,32. 11.(16分)(2019·苏、锡、常、镇四市调研)已知函数f (x )=3sin ωx ·cos ωx -cos 2ωx +32(ω∈R ,x ∈R )的最小正周期为π,且图象关于直线x =π6对称. (1)求f (x )的解析式;(2)若函数y =1-f (x )的图象与直线y =a 在[0,π2]上只有一个交点,求实数a 的取值范围. 解 (1)∵f (x )=3sin ωx ·cos ωx -cos 2ωx +32=32sin 2ωx -12(1+cos 2ωx )+32=sin(2ωx -π6)+1, ∵函数f (x )的最小正周期为π,∴2π|2ω|=π,即ω=±1, ∴f (x )=sin(±2x -π6)+1. ①当ω=1时,f (x )=sin(2x -π6)+1, ∴f (π6)=sin π6+1不是函数的最大值或最小值, ∴其图象不关于x =π6对称,舍去. ②当ω=-1时,f (x )=-sin(2x +π6)+1, ∴f (π6)=-sin π2+1=0是最小值, ∴其图象关于x =π6对称. 故f (x )的解析式为f (x )=1-sin(2x +π6). (2)∵y =1-f (x )=sin(2x +π6)在同一坐标系中作出 y =sin(2x +π6)和y =a 的图象: 由图可知,直线y =a 在a ∈)21,21[-或a =1时,两曲线只有一个交点, ∴a ∈)21,21[-或a =1. 12.(16分) (2009·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos(1)求△ABC 的面积;(2)若b +c =6,求a 的值.解 (1)因为cos A 2=255, 所以cos A =2cos 2A 2-1=35,sin A =45. 又由3=⋅AC AB 得bc cos A =3,所以bc =5,因此S △ABC =12bc sin A =2. (2)由(1)知,bc =5,又b +c =6, 所以b =5,c =1,或b =1,c =5.由余弦定理,得a 2=b 2+c 2-2bc cos A =20, 所以a =2 5.。
三角函数新题赏析
主讲教师:王春辉 北京数学特级教师
引入
从一道题谈起:数列的项由下列递归关系定义:,,其中.
试证明数列是单调的.
重难点突破
题一:设函数的中心是,则的最小值是 .
金题精讲
题一:在中,,,.
(Ⅰ)求的值;(Ⅱ)求的值.
题二:已知函数2()sin()cos()()2sin 632x
f x x x
g x ππ=-+-=,.
(I )若是第一象限角,且.求的值;
(II )求使成立的x 的取值集合.
题三:已知(cos ,sin )(cos ,sin )a b ααββ==,,.
(1)若,求证:;(2)设,若,求的值.
题四:设),0(),sin()(R x x f ∈>+=ϕωϕω,设(),若存在使恒成立,则的取值范围为 .
题五:求所有满足tan tan tan [tan ][tan ][tan ]A B C A B C ++≤++的非直角三角形.
(注:表示不超过的最大整数)
题六:是否存在,使得的某种排列为等差数列.
三角函数新题赏析引入
题一:证明略
重难点突破
题一:
金题精讲
题一:(Ⅰ);(Ⅱ)5
题二:(I);(II)
2
[2,2],
3
x k k k
π
ππ
∈+∈Z
题三:(1)证明略;(2)
题四:(2k+1)π, k∈N
题五:三个角的正切值分别是1,2,3。