小学六年级数学下册教案-教学设计-第7课时--自行车里的数学
- 格式:doc
- 大小:139.00 KB
- 文档页数:3
六年级数学下册教学设计《自行车里的数学》-人教版一. 教材分析《自行车里的数学》是人教版六年级数学下册的一章内容,主要让学生了解和掌握自行车相关的数学知识。
本章内容主要包括自行车的结构、尺寸、比例、速度等方面的数学知识。
通过学习本章内容,学生可以提高自己的观察能力、思考能力和解决问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于图形、比例、速度等概念有一定的了解。
但是,对于自行车相关的数学知识可能较为陌生。
因此,在教学过程中,需要引导学生观察自行车,发现其中的数学知识,并通过实际操作,让学生更好地理解和掌握自行车里的数学知识。
三. 教学目标1.让学生了解自行车的结构、尺寸、比例、速度等方面的数学知识。
2.培养学生观察、思考和解决问题的能力。
3.培养学生合作、交流和表达的能力。
四. 教学重难点1.自行车相关数学概念的理解和运用。
2.自行车的尺寸、比例、速度的计算方法。
五. 教学方法1.观察法:让学生观察自行车,发现其中的数学知识。
2.实践操作法:让学生亲自动手测量、计算自行车相关的数学知识。
3.讨论法:让学生分组讨论,共同解决问题。
4.讲解法:教师讲解自行车相关的数学知识。
六. 教学准备1.自行车模型或图片。
2.测量工具(尺子、卷尺等)。
3.计算器。
4.黑板、粉笔。
七. 教学过程1.导入(5分钟)利用自行车模型或图片,引导学生观察自行车,并提出问题:“自行车有哪些部分?它们之间有什么关系?”让学生思考自行车中的数学知识。
2.呈现(10分钟)讲解自行车相关的数学知识,包括自行车的结构、尺寸、比例、速度等。
并通过实例展示这些数学知识在自行车中的应用。
3.操练(15分钟)让学生分组,每组选择一辆自行车,利用测量工具测量自行车的尺寸,并计算自行车的比例和速度。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生汇报自己的测量和计算结果,其他组的学生对结果进行评价,提出改进意见。
教师总结学生的表现,强调自行车相关数学知识的重要性。
人教版六年级数学下《自行车里的数学》教案一、教学目标1.学生能够理解自行车中的数学原理,包括齿轮的齿数比与自行车行驶的距离之间的关系。
2.学生能够运用所学知识解决与自行车相关的实际问题。
3.培养学生的观察能力、分析能力和数学应用能力。
二、教学内容1.自行车的基本结构与工作原理。
2.前齿轮、后齿轮以及车轮的齿数比与自行车行驶距离的关系。
3.变速自行车的原理及其应用。
三、教学重点与难点•重点:自行车中的数学原理,包括齿轮的齿数比与行驶距离的关系。
•难点:如何将所学知识应用于实际问题中,解决与自行车相关的实际问题。
四、教具和多媒体资源•实物自行车:用于学生观察和测量。
•投影仪:展示相关的图片和视频。
•教学PPT:用于讲解和演示。
五、教学方法1.激活学生的前知:回顾齿轮的基本知识,为学习自行车中的数学原理做铺垫。
2.教学策略:讲解、示范、小组讨论、案例分析。
3.学生活动:测量自行车的各个部分,记录数据,并进行小组讨论和分析。
六、教学过程1.导入:通过展示实物自行车,引导学生观察自行车的结构和工作原理,激发学生的学习兴趣。
2.讲授新课:详细讲解自行车中的数学原理,包括齿轮的齿数比与行驶距离的关系。
通过案例分析,让学生了解变速自行车的原理和应用。
3.巩固练习:提供一些实际问题,让学生运用所学知识进行解答。
例如,计算不同齿轮组合下自行车的行驶距离等。
4.归纳小结:总结本节课的学习内容,强调自行车中的数学原理及其应用。
七、评价与反馈1.设计评价策略:通过课堂小测验、课后作业等方式评价学生的学习效果。
同时,鼓励学生提出自己的问题和困惑,进行有针对性的指导和帮助。
2.为学生提供反馈:根据学生的表现,给予及时的反馈和建议,帮助学生改进学习方法。
同时,可以鼓励学生提出自己的问题和困惑,进行有针对性的指导和帮助。
八、教学反思本节课通过讲解、示范、小组讨论和案例分析等多种教学方法,使学生较好地理解了自行车中的数学原理及其应用。
小学六年级数学下册教案自行车里的数学一、教学内容本节课选自小学六年级数学下册教材第七章《自行车里的数学》。
具体内容包括:自行车各个部位的名称,自行车与数学的关系,以及自行车中涉及到的计算问题。
二、教学目标1. 知识与技能:学生能够了解自行车的各个部位及其名称,理解自行车与数学的关系,掌握自行车中涉及到的计算方法。
2. 过程与方法:通过实践情景引入,培养学生观察、思考、解决问题的能力,提高学生的实际操作能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,增强学生爱护自行车的意识。
三、教学难点与重点教学难点:自行车与数学的结合,计算方法的掌握。
教学重点:自行车各个部位的名称,自行车中的数学问题。
四、教具与学具准备教具:自行车一辆,挂图,计算器。
学具:学生用书,练习本,铅笔。
五、教学过程1. 导入新课(1)展示一辆自行车,引导学生观察自行车的各个部位,并说出它们的名称。
(2)讨论:自行车与数学有什么关系?2. 探究新知(1)教师讲解自行车与数学的结合,引导学生理解自行车中的计算问题。
3. 例题讲解(1)计算自行车轮子的周长。
(2)计算自行车行驶一定距离所需的圈数。
4. 随堂练习(1)计算自行车行驶一定距离所需的时间。
(2)计算自行车行驶一定时间所走的距离。
六、板书设计1. 自行车的各个部位及名称。
2. 自行车与数学的关系。
3. 自行车中的计算问题及解决方法。
七、作业设计1. 作业题目:(1)计算自行车轮子的直径。
(2)计算自行车行驶10公里所需的圈数。
2. 答案:(1)轮子直径 = 周长× π(2)圈数 = 行驶距离÷ 轮子周长八、课后反思及拓展延伸1. 课后反思:本节课学生对自行车与数学的关系有了更深入的理解,但在计算过程中仍存在一些问题,需要在课后加强练习。
2. 拓展延伸:引导学生思考自行车在其他方面的应用,如速度、加速度等,激发学生的探究兴趣。
重点和难点解析:1. 教学难点与重点的明确;2. 教学过程中的实践情景引入和例题讲解;3. 作业设计中的题目和答案;4. 课后反思及拓展延伸。
六年级下册数学《自行车里数学》教案一、教学内容本节课选自六年级下册数学教材第七章《自行车里的数学》。
具体内容包括:自行车各个部位的名称,自行车行驶过程中涉及的数学原理,如齿轮、链条、轮径等之间的比例关系,以及自行车速度、时间、路程的计算。
二、教学目标1. 知识与技能:使学生掌握自行车各部位的名称及功能,理解自行车行驶过程中的数学原理,能够运用比例关系解决实际问题。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维和动手操作能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,增强学生将数学知识应用于生活的意识。
三、教学难点与重点重点:自行车行驶过程中的数学原理,如齿轮、链条、轮径等之间的比例关系。
难点:如何运用比例关系解决自行车速度、时间、路程的计算问题。
四、教具与学具准备1. 教具:自行车一辆,尺子,计算器。
2. 学具:每组一套齿轮、链条、轮径模型,计算器,纸张。
五、教学过程1. 实践情景引入(5分钟)利用自行车实物,引导学生观察自行车的各个部位,了解其名称和功能。
2. 例题讲解(15分钟)以自行车齿轮、链条、轮径之间的比例关系为例,讲解数学原理,并进行计算演示。
3. 随堂练习(10分钟)让学生分组操作齿轮、链条、轮径模型,计算不同比例下的速度、时间、路程。
4. 知识拓展(10分钟)介绍自行车行驶过程中涉及的力学原理,如摩擦力、空气阻力等。
六、板书设计1. 自行车各部位名称及功能2. 数学原理:齿轮、链条、轮径之间的比例关系3. 速度、时间、路程的计算公式七、作业设计1. 作业题目:假设自行车的齿轮直径为50cm,链条齿轮直径为10cm,后轮直径为70cm,求自行车的速度(假设链条不打滑)。
2. 答案:速度 = 齿轮直径 / 链条齿轮直径× 后轮直径 = 50 / 10 × 70 = 350cm/s八、课后反思及拓展延伸本节课通过实践情景引入,激发学生的兴趣,使学生更好地理解自行车行驶过程中的数学原理。
标题:《自行车里的数学》【教学目标】1. 让学生通过观察和动手操作,发现自行车中的数学问题,提高学生的观察能力和动手能力。
2. 使学生能够运用所学的数学知识解决自行车中的实际问题,提高学生运用数学知识解决实际问题的能力。
3. 培养学生对数学的兴趣,激发学生学习数学的积极性。
【教学内容】1. 自行车中的数学问题:齿轮的传动比、轮径与速度的关系、踏频与速度的关系等。
2. 数学知识的应用:比例、速度、比例尺等。
【教学过程】一、导入(5分钟)1. 教师带领学生观察自行车,引导学生发现自行车中的数学问题。
2. 学生分享自己发现的数学问题,教师进行点评和总结。
二、探究自行车中的数学问题(10分钟)1. 教师引导学生探究齿轮的传动比问题,让学生通过动手操作,发现齿轮的传动比与速度的关系。
2. 教师引导学生探究轮径与速度的关系,让学生通过观察和计算,发现轮径与速度的关系。
3. 教师引导学生探究踏频与速度的关系,让学生通过实际操作,发现踏频与速度的关系。
三、数学知识的应用(10分钟)1. 教师引导学生运用比例的知识,解决自行车中的实际问题。
2. 教师引导学生运用速度的知识,解决自行车中的实际问题。
3. 教师引导学生运用比例尺的知识,解决自行车中的实际问题。
四、总结与拓展(5分钟)1. 教师对本节课的内容进行总结,强调自行车中的数学问题与实际生活的紧密联系。
2. 教师布置课后作业,让学生运用所学的数学知识,解决自行车中的实际问题。
【教学评价】1. 观察学生在课堂上的参与程度,了解学生对自行车中的数学问题的兴趣。
2. 检查学生的课后作业,了解学生对自行车中的数学问题的掌握程度。
3. 通过学生的反馈,了解学生对本节课的教学效果的评价。
【教学反思】本节课通过观察和动手操作,让学生发现自行车中的数学问题,提高了学生的观察能力和动手能力。
通过解决自行车中的实际问题,让学生运用所学的数学知识,提高了学生运用数学知识解决实际问题的能力。
人教版数学六年级下册用自行车里的数学教案(优选3篇)〖人教版数学六年级下册用自行车里的数学教案第【1】篇〗教学设计教学目标知识与能力目标:建立解决“蹬一圈,自行车能走多少米”的数学模型,了解车轮周长和转动圈数之间存在的反比例关系,能解决简单的此类问题。
过程与方法目标:经历“提出问题―分析问题―建立数学模型―实际应用”的解决实际问题的过程,获得运用数学解决实际问题的思考方法。
情感态度与价值观目标:通过解决生活中常见的有关自行车的问题,了解数学与生活的广泛联系;初步感知变速自行车的变速原理,鼓励学生创新,同时培养学生正确合理的设计观念。
学情分析本节课需要学生掌握有关圆的知识、比、比例、正反比例的意义、排列组合等知识。
内容难度比较大,学生不易掌握,特别是在学习“前齿轮齿数×转动圈数=后齿轮齿数×转动圈数”时,学生要明白其中的道理比较困难。
由于是小学阶段学生首次完整的建立解决生活问题的数学模型,因此教学时要注意数学建模构建过程的完整性,合理运用课件解决学生思考的难点。
重点难点重点:自行车的速度与其内在结构的联系,建立解决“蹬一圈,自行车能走多少米”的数学模型。
难点:齿轮组对自行车前进的影响,数学模型的形成过程。
教学过程活动1【导入】教学过程一、揭示课题1.师:自行车是我们生活中常见的代步工具,咱们班同学有多少人会骑自行车啊?哪些同学有自己的自行车?那么它是怎么行进运动的?(展示自行车实物)请学生介绍自行车结构及自行车的行进原理:人给力脚踏板,脚踏板带动前齿轮转动,前齿轮通过链条传动给后齿轮,后齿轮转动带动后车轮转动,从而使自行车向前行进。
一生说,师演示,其余生看、听。
同桌互说。
全班齐说师相应课件演示。
2.师:自行车里有很多知识,这节课我们就一起来研究自行车里的数学问题。
(板书课题:自行车里的数学)二、研究普通自行车的速度与内在结构的关系1.师:打开书66-67页,快速浏览这两页内容,合书,你想研究什么问题?预设问题1:蹬一圈,自行车能走多远师:我也很想知道。
标题:六年级下数学教案-自行车里的数学-人教新课标一、教学目标1. 让学生了解自行车的基本结构,掌握自行车中涉及的数学知识。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生的团队协作精神和创新意识。
二、教学内容1. 自行车的结构及其涉及的数学知识。
2. 自行车速度、时间、路程的计算。
3. 自行车齿轮比例与速度的关系。
三、教学重点与难点1. 教学重点:自行车涉及的数学知识,自行车速度、时间、路程的计算。
2. 教学难点:自行车齿轮比例与速度的关系。
四、教学过程1. 导入:通过展示自行车的图片,引导学生关注自行车,提出问题:“自行车中蕴含着哪些数学知识呢?”2. 新课导入:讲解自行车的基本结构,引导学生发现自行车中的数学知识。
3. 自行车速度、时间、路程的计算:讲解自行车速度、时间、路程的计算方法,并通过实例进行演示。
4. 自行车齿轮比例与速度的关系:讲解齿轮比例与速度的关系,引导学生通过实际操作来验证这一关系。
5. 小组讨论:让学生分组讨论,总结自行车中涉及的数学知识,并分享自己的发现。
6. 课堂小结:对本节课的内容进行总结,强调自行车中的数学知识在实际生活中的应用。
五、课后作业1. 请学生列举生活中自行车涉及的数学知识。
2. 请学生计算自行车行驶一定路程所需的时间,并验证齿轮比例与速度的关系。
六、教学反思本节课通过讲解自行车中的数学知识,培养了学生运用数学知识解决实际问题的能力。
在教学过程中,要注意激发学生的学习兴趣,引导学生主动探索,培养学生的团队协作精神和创新意识。
同时,教师还需关注学生的学习反馈,及时调整教学策略,以提高教学效果。
总之,本节课以自行车为载体,让学生在实际操作中感受数学的魅力,培养学生的数学素养,为学生的终身发展奠定基础。
重点关注的细节是“自行车齿轮比例与速度的关系”。
自行车齿轮比例与速度的关系是自行车里数学的一个关键概念,涉及到齿轮的直径、齿数以及齿轮之间的搭配对自行车速度的影响。
六年级下册数学教案自行车里的数学人教版教案:自行车里的数学一、教学内容本节课的教学内容选自人教版六年级下册数学教材,主要涉及“比例”这一章节。
具体内容包括比例的定义、比例的性质、解比例方程等。
通过学习,使学生能够理解比例的概念,掌握比例的计算方法,并能应用于实际生活中。
二、教学目标1. 知识与技能:让学生掌握比例的基本概念和计算方法,能够解决实际生活中的比例问题。
2. 过程与方法:通过观察、分析、归纳等方法,培养学生解决数学问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。
三、教学难点与重点1. 教学难点:比例方程的解法及应用。
2. 教学重点:比例的基本性质和计算方法。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:教科书、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:以自行车的部件为例,如车轮直径与自行车周长的比例,引入比例的概念。
2. 知识点讲解:讲解比例的定义、比例的性质,以及解比例方程的方法。
3. 例题讲解:以实际问题为例,如自行车速度与时间的关系,引导学生运用比例知识解决问题。
4. 随堂练习:布置一些有关比例的计算题,让学生独立完成,巩固所学知识。
六、板书设计1. 比例的定义2. 比例的性质3. 解比例方程的方法七、作业设计1. 题目:小明骑自行车去学校,速度是每小时15公里,问小明骑车到学校需要多少时间?(答案:1小时)2. 题目:一本书的价格是80元,商店进行了打折活动,现在售价是64元,问打了几折?(答案:8折)八、课后反思及拓展延伸本节课通过自行车这一生活实例,使学生掌握了比例的基本概念和计算方法。
在教学过程中,学生积极参与,课堂气氛活跃。
但部分学生对于比例方程的解法仍存在困难,需要在课后加强练习和指导。
拓展延伸:引导学生思考,比例在生活中的其他应用场景,如购物、烹饪等,鼓励学生运用比例知识解决实际问题。
重点和难点解析:在上述教案中,有几个重要的细节需要重点关注。
小学六年级数学下册教案自行车里的数学一、教学内容本节课选自小学六年级数学下册教材第七章《圆的周长和面积》第三节,详细内容为自行车里的数学。
通过自行车的轮圈、轮胎等部分,引导学生探索圆的周长和面积的实际应用。
二、教学目标1. 理解并掌握圆的周长和面积的计算方法,能将其应用于解决实际问题。
2. 培养学生的观察能力、动手操作能力和合作交流能力。
3. 激发学生对数学学习的兴趣,提高学生运用数学知识解决生活问题的能力。
三、教学难点与重点教学难点:圆的周长和面积计算公式的灵活运用。
教学重点:自行车轮圈、轮胎等部分的数学原理及其在实际问题中的应用。
四、教具与学具准备教具:自行车轮圈、轮胎模型,直尺,圆规,计算器。
学具:学生分组准备直尺、圆规、计算器。
五、教学过程1. 实践情景引入(1)展示自行车轮圈、轮胎模型,引导学生观察并思考其中的数学问题。
(2)提出问题:如何计算自行车轮圈和轮胎的周长与面积?2. 例题讲解(1)讲解自行车轮圈的周长计算方法。
(2)讲解自行车轮胎的面积计算方法。
3. 随堂练习(1)请学生分组计算自行车轮圈和轮胎的周长与面积。
(2)教师巡回指导,解答学生疑问。
4. 合作交流学生分组讨论:在生活中还有哪些地方用到了圆的周长和面积的计算?六、板书设计1. 自行车里的数学2. 内容:(1)圆的周长计算公式:C = πd 或C = 2πr(2)圆的面积计算公式:S = πr²(3)自行车轮圈、轮胎的周长与面积计算实例七、作业设计1. 作业题目:(1)计算自行车轮圈周长,已知轮胎直径为0.6米。
(2)计算自行车轮胎面积,已知轮胎半径为0.3米。
2. 答案:(1)C = πd = 3.14 × 0.6 ≈ 1.884米(2)S = πr² = 3.14 × 0.3² ≈ 0.2826平方米八、课后反思及拓展延伸1. 反思:本节课通过自行车轮圈、轮胎等实例,引导学生掌握了圆的周长和面积的计算方法,提高了学生解决实际问题的能力。
标题:六年级下数学教案- 自行车里的数学人教版一、教学目标1. 知识与技能:通过观察和操作自行车,了解自行车中的数学知识,如圆的周长、齿轮的传动比等,并能够运用这些知识解决实际问题。
2. 过程与方法:培养学生观察、思考、分析问题的能力,提高学生运用数学知识解决实际问题的能力。
3. 情感、态度与价值观:激发学生对数学的兴趣,培养学生热爱生活、关注生活、善于发现生活中的数学问题的意识。
二、教学内容1. 自行车中的圆:车轮、齿轮、车把等部件都是圆形的,了解圆的周长、直径、半径等概念。
2. 自行车中的齿轮传动:了解齿轮的传动原理,计算齿轮的传动比。
3. 自行车中的速度与时间:通过计算自行车行驶的速度和时间,了解速度、时间、路程之间的关系。
三、教学过程1. 导入:通过提问的方式,引导学生关注自行车中的数学问题,激发学生的学习兴趣。
2. 探究自行车中的圆:让学生观察自行车的车轮、齿轮、车把等部件,引导学生发现这些部件都是圆形的。
然后,讲解圆的周长、直径、半径等概念,让学生计算车轮的周长。
3. 探究自行车中的齿轮传动:讲解齿轮的传动原理,让学生观察自行车的齿轮,并计算齿轮的传动比。
4. 探究自行车中的速度与时间:让学生观察自行车行驶的速度和时间,引导学生发现速度、时间、路程之间的关系。
然后,讲解速度、时间、路程的计算方法,让学生计算自行车行驶的速度和时间。
5. 总结:回顾本节课所学内容,让学生明白数学知识与生活息息相关,培养学生运用数学知识解决实际问题的能力。
四、课后作业1. 观察自行车,找出自行车中的数学问题,并尝试解决。
2. 计算自行车行驶的速度和时间,了解速度、时间、路程之间的关系。
3. 尝试设计一个自行车的齿轮传动系统,计算齿轮的传动比。
五、教学评价1. 学生对自行车中的数学知识的掌握程度。
2. 学生运用数学知识解决实际问题的能力。
3. 学生对数学的兴趣和热爱生活的态度。
本节课通过观察和操作自行车,让学生了解自行车中的数学知识,培养学生运用数学知识解决实际问题的能力。
第4单元比例
第7课时自行车里的数学
教学内容:
人教版课程标准实验教科书《小学数学》六年级下册P67
教学目标:
1、运用所学的圆、排列组合、比例等知识解决生活中常见的有关自行车里的数学问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度;了解数学数学与日常生活的联系。
2、经历“提出问题--分析问题--建立数学模型--求解--解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。
教学重点:
探究普通自行车的速度与其内在结构的关系
教学难点:
发现自行车前后齿轮旋转规律中的反比例关系
教学过程:
一、提出问题,引发探究
(一)谈话:同学们一定觉得很奇怪,今天怎么老师带着自行车来到了教室?因为我们一起要来研究“自行车里的数学问题”。
(板书课题:自行车里的数学) 问:回忆一下,你们已经知道哪些在自行车里藏着的数学知识? 学生自由交流,回顾自行车支架运用三角形的稳定性、车轮是圆形等数学知识。
引入:同学们知道的真多,其实自行车里还藏着很多有趣的数学问题呢,今天就让我们一起再次走近自行车,继续探寻其中的奥秘。
【设计意图:通过师生之间的谈话,自然地让学生回忆起在自行车结构中蕴含的数学知识,激发起学生进一步探究新问题的兴趣。
】
(二)创设情境:小明和妈妈在家门口的马路上举行自行车比赛,小明选择的是变速自行车,妈妈选择的是普通自行车,两辆自行车的车轮大小相同,并且他们约定每秒钟都蹬踏板一圈。
比赛时间如果为5分钟的话,你们想一想,谁能骑得远呢?追问:要解决这个问题,我们必须了解哪些信息?学生交流,教师引导小结:我们要知道自行车5分钟前进的路程必须先知道蹬踏板一圈时车子前进的路程。
(板书:脚蹬一圈前进路程)
【设计意图:将数学问题解决融入于一个情境之中,以问题情境为依托,让学生由浅入深地全程参与到问题讨论的过程,由大问题分解出小问题,在感
受数学知识应用价值的同时逐步建立起数学问题解决的模型。
】
二、分析问题,激发探究
(一)感知自行车的运动原理。
那自行车脚蹬一圈前进多少路程又会跟自行车的什么有关系呢?请大家一边观看自行车运动的录像,一边和你的同桌轻声说说自行车是怎样运动的。
学生交流:脚蹬踏板,踏板带动前齿轮,前齿轮通过链条带动后齿轮,后齿轮就带动轮子转动,自行车就前进了。
思考:同学们,脚蹬1圈咱们的前齿轮跟着转动,后齿轮转动的也是1圈吗?到底是几圈呢?(教师同步板书):脚蹬一圈车轮转动前齿轮转1圈后齿轮转多少圈?
(二)探究齿轮的旋转规律。
前齿轮齿数和后齿轮齿数操作实验:老师今天给同学们带来了微型的自行车齿轮模型,大家看,(出示齿轮学具)这个大的齿轮就相当于自行车的前齿轮,那这个小一点的齿轮就相当于自行车的后齿轮,用红色小棒代替脚踏板用力踏,前齿轮就带动后齿轮动起来了。
下面,我们同桌之间就带着问题,一边操作、一边观察、一边思考。
学生操作后交流反馈,预设的方法有:(1)直接观察。
在小齿轮上先插一根牙签作记号,然后数出大齿轮转了一圈时,小齿轮转了3圈。
(2)数齿轮的齿数。
先分别数大小齿轮的齿数,发现小齿轮一共有10个齿,而大齿轮一共有30个齿,因为大小齿轮转的路程是一样的,它们转的齿数和它的圈数是成反比例,所以大齿轮转1圈时,小齿轮就转了3圈。
(3)计算周长。
通过测量得出,大齿轮的半径是3厘米,小齿轮的半径是1厘米,大齿轮周长就是小齿轮周长的3倍,因为它们转过的路程是一样的,所以小齿轮转动的圈数就是大齿轮转动圈数的3倍。
(三)研究前后齿轮的关系通过测量、计算都发现了大齿轮转1圈时,小齿轮转3圈,这是为什么呢?仔细观察,两个齿轮的运动有什么关系?获得关系式:前齿轮的齿数×它的圈数=后齿轮的齿数×它的圈数
【设计意图:让学生从解决车轮的问题到转变齿轮的问题的转变,是学生思维上的一个转化,而解决齿轮中的问题则是本课的一个难点,让学生实际操作简易的自行车齿轮模型,把操作、探究和问题的解决有机地结合起来,让学生能更好的理解和发现齿轮的关系,同时学生多样化的探究方式和充分交流也促使他们真正地理解了这一重要的知识点。
】
三、解决问题,建立模型提问:
刚才我们共同发现了在自行车中前后齿轮运动的规律,得到了“前齿轮的齿数×它的圈数=后齿轮的齿数×它的圈数”这个重要的结论,现在你能根据这辆自行车中的信息解决刚才的问题吗?前齿轮齿数:33齿。
后齿轮齿数11齿。
脚蹬一圈自行车能行多远?发现:这些信息能求出前齿轮转一圈时,后齿轮转了几圈。
(板书:后齿轮转?圈=)要求自行车行驶的路程,还必须知道车轮的周长。
引导学
生进一步总结出: 脚蹬一圈前进路程=车轮周长×车轮转动圈数。
【设计意图:学生在经过提出问题、层层分解、逐步思考后,正确建立了各参数之间的数量关系,最终形成了解决问题的数学模型,充分感受了“提出问题-分析问题-建立数学模型”的建模过程。
】
四、解释应用,发展能力
(一)解决问题:现在老师提供给你妈妈和小明他们两辆自行车各自齿轮和周长的信息,你能来计算一下他们脚蹬一圈自行车能前进的路程吗?
问题:前齿轮转1圈,后齿轮转几圈?你们是怎么发现的?
结果:学生自行解决后,思考:观察你们的计算结果,你发现了什么?
刚才开始上课的时候,大家对小明和妈妈的比赛预测的结果是不一定,现在对于他们俩比赛的结果你有新的想法了吗?
(三)拓展认识。
选择“前齿轮42齿、后齿轮12齿”这种组合速度虽然最快,但骑起来却是最费力的,其他几种组合虽然速度没有它快,但骑起来的感觉却没有它来得费力。
(课件表格出示各种组合力度情况)想一想,在某种变化的路面上该怎样合理地使用变速自行车呢?
【评析:联系课始的问题,让学生运用模型去解释比赛的结果,通过这一组组计算结果的呈现,学生真切地感受到一旦掌握了模型,对问题的思考和解决就会更加准确、更加全面;同时,联系生活对变速自行车的特性进行了拓展介绍,使学生能客观地认识变速自行车在生活中的意义和使用情况,对数学的应用价值有了更深的体会。
】
五、总结延伸
获得发展今天我们一起研究了自行车,发现并解决了藏在自行车里的数学问题。
实际上自行车从诞生到现在,不断有科学家像你们今天这样去研究它、探索它,让我们来看看自行车的演变过程吧!欣赏自行车演变的图片。
并让学生畅想:如果你作为一个自行车设计师,你还想对自行车作出哪些改进呢?
【设计意图:通过一张张精彩图片的欣赏,学生感受到的不仅是自行车的演变过程,更是对科学创造美好生活的生动体验。
】。