2018届高考数学专题2.9中档大题规范练09数列概率立体几何选讲第02期理201805183101
- 格式:doc
- 大小:2.02 MB
- 文档页数:8
专题2.7 中档大题规范练07(数列概率立体几何选讲)与的关系求通项公式裂项相消法求前1.数列大题已知数列的前项和为,且,.(1)求数列的通项公式;(2)记,数列的前项和为,求.【答案】(1)(2)2.概率大题2018年元旦期间,某运动服装专卖店举办了一次有奖促销活动,消费每超过400元均可参加1次抽奖活动,抽奖方案有两种,顾客只能选择其中的一种.方案一:顾客转动十二等分且质地均匀的圆形转盘(如图),转盘停止转动时指针指向哪个扇形区域,则顾客可直接获得该区域对应面额(单位:元)的现金优惠,且允许顾客转动3次. 方案二:顾客转动十二等分且质地均匀的圆形转盘(如图〕,转盘停止转动时指针若指向阴影部分,则未中奖,若指向白色区域,则顾客可直接获得40元现金,且允许顾客转动3次.(1)若两位顾客均获得1次抽奖机会,且都选择抽奖方案一,试求这两位顾客均获得180元现金优惠的概率;(2)若某顾客恰好获得1次抽奖机会.①试分别计算他选择两种抽奖方案最终获得现金奖励的数学期望;②从概率的角度比较①中该顾客选择哪一种抽奖方案更合算?【答案】(1) (2) ①见解析②该顾客选择第一种抽奖方案更合算【解析】试题分析:(1)由图可知,每一次转盘指向60元对应区域的概率为,设“每位顾客获得180元现金奖励”为事件,则,结合乘法概率公式得到这两位顾客均获得180元现金优惠的概率;(2)①方案一:可能的取值为60,100,140,180,方案二:,故;②由①知,所以该顾客选择第一种抽奖方案更合算.(2)①若选择抽奖方案一,则每一次转盘指向60元对应区域的概率为,每一次转盘指向20元对应区域的概率为.设获得现金奖励金额为元,则可能的取值为60,100,140,180.则;;;.所以选择抽奖方案一,该顾客获得现金奖励金额的数学期望为(元).若选择抽奖方案二,设三次转动转盘的过程中,指针指向白色区域的次数为,最终获得现金奖励金额为元,则,故,所以选择抽奖方案二,该顾客获得现金奖励金额的数学期望为(元).②由①知,所以该顾客选择第一种抽奖方案更合算.3.立体几何如图,四棱柱的底面是正方形,为和的交点,若。
概率与统计热点一 常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3)=C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4) =C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i,这是本题求解的关键.(2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【对点训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14,P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827,∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118, ∴所求概率为P (B|A )=P (AB )P (A )=11813=16.热点二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5. (1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为E (X )=2×59+3×29+4×81+5×81=81. 【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2 .②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×2+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X 1的数学期望为E(X1)=20×16+60×3+100×6=60(元),X 1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X 2的数学期望为E(X2)=40×16+60×3+80×6=60(元),X 2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D 面试,求X的分布列和数学期望.解 (1)由频率分布直方图知: 第3组的人数为5×0.06×40=12. 第4组的人数为5×0.04×40=8. 第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人. ①设“甲或乙进入第二轮面试”为事件A ,则 P (A )=1-C 310C 312=511,所以甲或乙进入第二轮面试的概率为511. ②X 的所有可能取值为0,1,2,P (X =0)=C 24C 26=25,P (X =1)=C 12C 14C 26=815,P (X =2)=C 22C 26=115.所以X 的分布列为E (X )=0×25+1×815+2×115=15=3.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.解 (1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散. (2)记C A 1表示事件:“A 地区用户的满意度等级为满意或非常满意”;C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”, 则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2.P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48. 热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑ni =1x i =8010=8,y =1n ∑ni =1y i =2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元). 【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r 来确定,r 的绝对值越接近于1,表明两个变量的线性相关性越强,r 的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b ^,a ^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ). 解 (1)完成2×2列联表如下:11K 2=10060×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i(i =0,1,2,3).X 的分布列为均值E (X )=np =3×25=5,方差D (X )=np (1-p )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.。
2021年高考数学专题2.9中档大题规范练09数列概率立体几何选讲第02期理类型试题亮点解题方法/思想/素养数列大题等差数列的基本量运算错位相减求和不等式恒成立求参数范围乘公比错位相减求和的运算问题的恒成立问题,分离,求最值数列求最值的常用方法概率大题风险决策问题信息的分析能力立体几何面面垂直的性质定理斜棱柱建系的证明问题空间向量的运算问题利用空间向量求解二面角和线面角考察了空间直观想象了选讲1(极坐标参数方程)曲线的伸缩变换与圆有关的最值问题椭圆参数方程的应用数形结合思想解决与圆有关的最值问题椭圆参数方程与三角函数结合求最值选讲2(不等式)任意和存在的双变量的方程求参问题转化为函数值域的包含关系求参1.数列大题设数列满足,其中,且为常数.(1)若是等差数列,且公差,求的值;(2)若,且数列满足对任意的都成立.①求数列的前项之和;②若对任意的都成立,求的最小值.【答案】(1);(2)①,②.2.概率大题某公司要根据天气预报来决定五一假期期间5月1日、2日两天的宣传活动,宣传既可以在室内举行,也可以在广场举行.统计资料表明,在室内宣传,每天可产生经济效益8万元.在广场宣传,如果不遇到有雨天气,每天可产生经济效益20万元;如果遇到有雨天气,每天会带来经济损失10万元.若气象台预报5月1日、2日两天当地的降水概率均为.(1)求这两天中恰有1天下雨的概率;(2)若你是公司的决策者,你会选择哪种方式进行宣传(从“2天都在室内宣传”“2天都在广场宣传”这两种方案中选择)?请从数学期望及风险决策等方面说明理由.【答案】(1)0.48.(2)选择“2天都在室内宣传”.【解析】试题分析:(1)第(1)问,利用互斥事件的概率公式求这两天中恰有1天下雨的概率. (2)第(2)问,先求出两种情况下产生的经济效益的收益的均值,再根据均值确定方案.试题解析:(1)设事件为“这两天中恰有1天下雨”,则. 所以这两天中恰有1天下雨的概率为0.48.3.立体几何在如图所示的多面体中,平面平面,四边形为边长为2的菱形,为直角梯形,四边形为平行四边形,且,, .(1)若,分别为,的中点,求证:平面;(2)若,与平面所成角的正弦值为,求二面角的余弦值.【答案】(1)见解析(2)【解析】试题分析:(1)第(1)问,转化成证明平面 ,再转化成证明和.(2)第(2)问,先利用几何法找到与平面所成角,再根据与平面所成角的正弦值为求出再建立空间直角坐标系,求出二面角的余弦值.(2)设,由(1)得平面.由,,得, .过点作,与的延长线交于点,取的中点,连接,,如图所示,又,所以为等边三角形,所以,又平面平面,平面平面,平面,故平面.因为为平行四边形,所以,所以平面.又因为,所以平面.因为,所以平面平面.由(1),得平面,所以平面,所以.因为,所以平面,所以是与平面所成角.因为,,所以平面,平面,因为,所以平面平面.所以,,解得.4.选讲1(极坐标参数方程)在直角坐标系中,曲线:经过伸缩变换后得到曲线.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求出曲线、的参数方程;(Ⅱ)若、分别是曲线、上的动点,求的最大值.【答案】(1),(2)(Ⅱ)设,则到曲线的圆心的距离,∵,∴当时, .∴ .点睛:此题主要考查坐标的伸缩变换,曲线的参数方程与普通方程的互化,极坐标方程与普通方程的互化,以及参数方程在求最值中的应用等方面的知识与运算能力,属于中档题型,也是常考题.在参数方程求最值问题中,通动点的参数坐标,根据距离公式可得所求距离关于参数的解析式,结合三角函数的知识进行运算,从而问题可得解.5.选讲2(不等式)已知函数.(1)解不等式;(2)若对任意的,均存在,使得成立,求实数的取值范围.【答案】(Ⅰ) ;(Ⅱ) .。
2018年全国各地高考数学试题及解答分类汇编大全(13-立体几何-)2018 年全国各地高考数学试题及解答分类汇编大全(13立体几何 )一、选择题1.(2018北京文、理)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C . 3D .41.【答案】C【解析】由三视图可得四棱锥P ABCD -, 在四棱锥P ABCD -中,2PD =,2AD =, 2CD =,1AB =,由勾股定理可知,22PA =,22PC =,3PB =,5BC =,则在四棱锥中,直角三角形有, PAD △,PCD △,PAB △共三个,故选C .2.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( ) A .2 B .4 C .6 D .83.答案:C解答:该几何体的立体图形为四棱柱, (12)2262V +⨯=⨯=.3 (2018上海)《九章算术》中,称底侧视图俯视图正视图2211所以231θθθ≤≤.5.(2018全国新课标Ⅰ文)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217 B .25 C .3 D .25. 答案:B解答:三视图还原几何体为一圆柱,如图, 将侧面展开,最短路径为,M N 连线的距离, 所以224225MN =+=,所以选B.6.(2018全国新课标Ⅰ文)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B .62 C .82 D .836. 答案:C 解答:连接1AC 和1BC ,∵1AC 与平面11BB C C 所成角为30,∴130AC B ∠=,∴11tan 30,23ABBC BC ==,∴122CC =,∴222282V =⨯⨯=,∴选C.7.(2018全国新课标Ⅰ理)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .33 B .23 C .324 D .327. 答案:A解答:由于截面与每条棱所成的角都相等,所以平 面α中存在平面与平面11AB D 平行(如图),而在与 平面11AB D 平行的所有平面中,面积最大的为由各 棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积12233362S =⨯⨯⨯⨯=.8.(2018全国新课标Ⅰ文)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π8. 答案:B解答:截面面积为8,所以高22h =,底面半径2r =,所以表面积为2(2)2222212S πππ=⋅⋅+⋅⋅=.9.(2018全国新课标Ⅰ理)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .172B .52C .3D .29. 答案:B解答:三视图还原几何体为一圆柱,如图,将侧面展开, 最短路径为,M N 连线的距离, 所以224225MN =+=,所以选B.10.(2018全国新课标Ⅱ文)在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A .2B .3C .5D .710.【答案】C【解析】在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan BE a EAB AB ∠===.故选C .11.(2018全国新课标Ⅱ理)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为()A .15B .5C .5D .211.【答案】C【解析】以D 为坐标原点,DA ,DC ,1DD 为x ,y ,z 轴建立空间直角坐标系,则()0,0,0D ,()1,0,0A ,()11,1,3B ,()10,0,3D ,()11,0,3AD ∴=-,()11,1,3DB =,1111115cos<,>25AD DB AD DB AD DB ⋅===⨯,∴异面直线1AD 与1DB 所成角的余弦值为5,故选C .12.(2018全国新课标Ⅲ文、理)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )12.答案:A解答:根据题意,A 选项符号题意;13.(2018全国新课标Ⅲ文、理)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54313.答案:B解答:如图,ABC ∆为等边三角形,点O 为A ,B ,C ,D 外接球的球心,G 为ABC ∆的重心,由93ABCS ∆=,得6AB =,取BC 的中点H ,∴sin 6033AH AB =⋅︒=,∴2233AG AH ==,∴球心O 到面ABC 的距离为224(23)2d =-=,∴三棱锥D ABC -体积最大值193(24)1833D ABCV -=⨯⨯+=.二、填空1.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .1.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为()21421233⨯⨯⨯=.2.(2018天津文)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.2.【答案】13【解析】如图所示,连结11A C ,交11B D 于点O ,很明显11A C ⊥平面11BDD B ,则1A O 是四棱锥的高,且2211111211222A O A C ==+=,111212BDD B S BD DD =⨯四边形,结合四棱锥体积公式可得其体积为11212333V Sh ===.3. (2018天津理)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为 .3.【答案】112【解析】由题意可得,底面四边形EFGH 为边长为22的正方形, 其面积2212EFGHS ==⎝⎭,顶点M 到底面四边形EFGH 的距离为12d =, 由四棱锥的体积公式可得111132212M EFGHV-=⨯⨯=.4.(2018全国新课标Ⅱ文)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.4.【答案】8π【解析】如下图所示,30SAO ∠=︒,90ASB ∠=︒,又211822SABS SA SB SA =⋅==△, 解得4SA =,所以122SO SA ==,2223AO SA SO =-=,所以该圆锥的体积为2183V OA SO =⋅π⋅⋅=π.5.(2018全国新课标Ⅱ理)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________. 5.【答案】402π【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 15,因为SAB △的面积为515,设母线长为l ,所以21155152l⨯=,280l ∴=,因SA 与圆锥底面所成角为45︒,所以底面半径为2cos 4l π=,因此圆锥的侧面积为22402rl l π=π.三、解答题1.(2018北京文)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点. (1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .1.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)PA PD =,且E 为AD 的中点, PE AD ∴⊥,底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥. (2)底面ABCD 为矩形,AB AD ∴⊥, 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接FG ,GD .F ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =, 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =, ED FG∴∥,且ED FG =,∴四边形EFGD 为平行四边形, EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD , EF ∴∥平面PCD . 2. (2018北京理)如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC =5,AC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.2.【答案】(1)证明见解析(2)1B CDC --的余弦值为21-;(3)证明过程见解析. 【解析】(1)在三棱柱111ABC A B C -中,1CC ⊥平面ABC , ∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点, AC EF ∴⊥,AB BC =,AC BE ∴⊥, AC ∴⊥平面BEF .(2)由(1)知AC EF ⊥,AC BE ⊥,1EF CC ∥. 又1CC ⊥平面ABC ,EF ∴⊥平面ABC . BE ⊂平面ABC ,EF BE ∴⊥.如图建立空间直角坐称系E xyz -.由题意得()0,2,0B ,()1,0,0C -,()1,0,1D ,()0,0,2F ,()0,2,1G , ()=2,01CD ∴,,()=1,2,0CB ,设平面BCD 的法向量为(),a b c =,n , 0CD CB ⎧⋅=⎪∴⎨⋅=⎪⎩n n ,20 20a c ab +=⎧∴⎨+=⎩, 令2a =,则1b =-,4c =-,∴平面BCD 的法向量(),又平面1CDC 的法向量为()=0,2,0EB ,21cos =EB EB EB⋅∴<⋅>=-n n n .由图可得二面角1B CDC --为钝角,所以二面角1B CDC --的余弦值为21-.(3)平面BCD 的法向量为()2,1,4=--n ,()0,2,1G ,()0,0,2F , ()=02,1GF ∴-,,2GF ∴⋅=-n ,∴n 与GF 不垂直,GF ∴与平面BCD 不平行且不在平面BCD 内,GF ∴与平面BCD 相交.3.(2018上海)已知圆锥的顶点为P ,底面圆心为O ,半径为2(1)设圆锥的母线长为4,求圆锥的体积; (2)设PO =4,OA ,OB 是底面半径, 且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.4.(2018江苏)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.4.【答案】(1)见解析;(2)见解析. 【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C . (2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥. 又因为1A B BC B =,1A B ⊂平面1A BC ,BC ⊂平面1A BC , 所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .5.(2018江苏)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.5.【答案】(1)310;(2)5.【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11A C 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB ⊥,以{}1,,OB OC OO 为基底,建立空间直角坐标系O xyz -.因为12AB AA ==, 所以()01,0A -,,()3,0,0B ,()0,1,0C ,()10,1,2A -,()13,0,2B ,()10,1,2C .(1)因为P 为11A B 的中点,所以31,,222P ⎛⎫- ⎪ ⎪⎝⎭,从而31,,222BP ⎛⎫=-- ⎪ ⎪⎝⎭,()10,2,2AC =, 故11114310cos ,522BP AC BP AC BP AC ⋅-+<>===⨯⋅. 因此,异面直线BP 与1AC 所成角的余弦值为31020. (2)因为Q 为BC 的中点,所以31,,022Q ⎛⎫ ⎪⎪⎝⎭, 因此33,,02AQ ⎛⎫= ⎪ ⎪⎝⎭,()10,2,2AC =,()10,0,2CC =.设(),,x y z =n 为平面1AQC 的一个法向量,则100AQ AC ⎧=⋅=⎨⎪⋅⎪⎩n n 即33022220x y y z ⎧+=+=⎪⎨⎪⎩,不妨取()3,1,1=-n ,设直线1CC 与平面1AQC 所成角为θ,则1115sin cos ,52CC CC CC θ⋅=<>===⨯⋅n n n, 所以直线1CC 与平面1AQC 所成角的正弦值为55.6.(2018浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2. (Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.6.答案:(1)略;(2)3913 解答:(1)∵12AB B B ==,且1B B ⊥平面ABC ,∴1B B AB ⊥,∴122AB =.同理,222211(23)113AC AC C C =+=+=.过点1C 作1B B 的垂线段交1B B 于点G ,则12C G BC == 且11B G =,∴115B C =.在11AB C ∆中,2221111AB B C AC +=, ∴111AB B C ⊥,①过点1B 作1A A 的垂线段交1A A 于点H . 则12B H AB ==,12A H =,∴1122A B =. 在11A B A ∆中,2221111AA AB A B =+,∴111AB A B ⊥,②综合①②,∵11111A B B C B ⋂=,11A B ⊂平面111A B C ,11B C ⊂平面111A B C ,∴1AB ⊥平面111A B C . (2)过点B 作AB 的垂线段交AC 于点I ,以B 为原点,以AB 所在直线为x 轴,以BI 所在直线为y 轴,以1B B 所在直线为z 轴,建立空间直角坐标系B xyz -.则(0,0,0)B ,(2,0,0)A -,1(0,0,2)B ,1(1,3,1)C , 设平面1ABB 的一个法向量(,,)n a b c =, 则102020n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩,令1b =,则(0,1,0)n =, 又∵1(3,3,1)AC =,1339cos ,13113n AC <>==⨯.由图形可知,直线1AC 与平面1ABB 所成角为锐角, 设1AC 与平面1ABB 夹角为α.∴39sin 13α=.7.(2018天津文)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.7.【答案】(1)证明见解析;(2)1326;(3)34. 【解析】(1)由平面ABC ⊥平面ABD , 平面ABC 平面ABD AB =,AD AB ⊥, 可得AD ⊥平面ABC ,故AD BC ⊥. (2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN BC ∥.所以DMN ∠(或其补角)为异面直线BC 与MD 所成的角. 在Rt DAM △中,1AM =,故2213DM AD AM =+=. 因为AD ⊥平面ABC ,故AD AC ⊥.在Rt DAN △中,1AN =,故2213DN AD AN =+=.在等腰三角形DMN中,1MN=,可得1132cosMNDMNDM∠==.所以,异面直线BC与MD所成角的余弦值为13.(3)连接CM,因为ABC△为等边三角形,M为边AB的中点,故CM AB⊥,3CM=.又因为平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,CDM∠为直线CD与平面ABD所成的角.在Rt CAD△中,224CD AC AD=+=.在Rt CMD△中,3sinCMCDMCD∠==.所以,直线CD与平面ABD所成角的正弦值为3.8.(2018天津理)如图,AD BC∥且AD=2BC,AD CD⊥,EG AD∥且EG=AD,CD FG∥且CD=2FG,DG ABCD⊥平面,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:MN CDE∥平面;(II)求二面角E BC F--的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.8.【答案】(1)证明见解析;(210;(33.【解析】依题意,可以建立以D为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得()0,0,0D ,()2,0,0A ,()1,2,0B ,()0,2,0C ,()2,0,2E ,()0,1,2F ,()0,0,2G ,30,,12M ⎛⎫⎪⎝⎭,()1,0,2N . (1)依题意()0,2,0DC =,()2,0,2DE =.设()0,,x y z =n 为平面CDE 的法向量,则000DC DE ⎧⋅=⎪⎨⋅=⎪⎩n n 即20220y x z =+=⎧⎨⎩, 不妨令–1z =,可得()01,0,1=-n .又31,,12MN ⎛⎫=⎪⎝⎭-,可得00MN ⋅=n , 又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得()–1,0,0BC =,()1,2,2BE =-,()0,1,2CF =-.设(),,x y z =n 为平面BCE 的法向量,则0BC BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x x y z -=-+=⎧⎨⎩, 不妨令1z =,可得()0,1,1=n .设(),,x y z =m 为平面BCF 的法向量,则0BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即020x y z -=-+=⎧⎨⎩, 不妨令1z =,可得()0,2,1=m .因此有310cos ,⋅<>==m n m n m n ,于是10sin ,m n <>=. 所以,二面角––E BC F 10.(3)设线段DP 的长为[]()0,2h h ∈,则点P 的坐标为()0,0,h ,可得()1,2,BP h =--.易知,()0,2,0DC =为平面ADGE 的一个法向量,故2cos 5BP DC BP DC BP DCh ⋅<⋅>==+ 23sin 605h =︒=+,解得[]30,2h .所以线段DP 3.9.(2018全国新课标Ⅰ文)如图,在平行四边形ABCM中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.9. 答案:(1)见解析(2)1 解答:(1)证明:∵ABCM 为平行四边形且90ACM ∠=,∴AB AC ⊥,又∵AB DA ⊥,∴AB ⊥平面ACD ,∵AB ⊂平面ABC ,∴平面ABC ⊥平面ACD . (2)过点Q 作QH AC ⊥,交AC 于点H ,∵AB ⊥平面ACD ,∴AB CD ⊥,又∵CD AC ⊥,∴CD ⊥平面ABC ,∴13HQ AQ CD AD ==,∴1HQ =,∵32,32BC BC AM AD ====,∴22BP =,又∵ABC ∆为等腰直角三角形,∴12322322ABP S ∆=⋅⋅⋅=,∴1131133Q ABD ABD V S HQ -∆=⋅⋅=⨯⨯=.10.(2018全国新课标Ⅰ理)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.10.答案:(1)略;(2)34. 解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥, 又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF , BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD . (2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥, 设4AB =,则4EF =,2PF =,∴23PE =, 过P 作PH EF ⊥交EF 于H 点, 由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角,由PE PF EF PH ⋅=⋅,∴2323PH ⋅==,而4PD =,∴3sin PH PDH PD ∠==, ∴DP 与平面ABFD 所成角的正弦值3.11.(2018全国新课标Ⅱ文)P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.11.【答案】(1)见解析;(2)455.【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且23OP =.连结OB .因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==.由222OP OB PB +=知,OP OB ⊥.由OP OB ⊥,OP AC ⊥知PO ⊥平面ABC .(2)作CH OM ⊥,垂足为H .又由(1)可得OP CH ⊥,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知122OC AC ==,2423BC CM ==,45ACB ∠=︒. 所以25OM =sin 45C OC MC A M H CB O ⋅⋅∠==.所以点C 到平面POM 的45. 12.(2018全国新课标Ⅱ理)如图,在三棱锥P ABC -22AB BC ==4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.12.【答案】(1)见解析;(234. 【解析】(1)因为4AP CP AC ===,O 为AC 的中点, 所以OP AC ⊥,且23OP =连结OB .因为2AB BC AC ==,所以ABC △为等腰 直角三角形,且OB AC ⊥,122OB AC ==, 由222OPOB PB +=知PO OB ⊥, 由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .PA OCBM(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得()0,0,0O ,()2,0,0B ,()0,2,0A -,()0,2,0C ,()0,0,23P ,()0,2,23AP =,取平面PAC 的法向量()2,0,0OB =,设()(),2,002M a a a -<≤,则(),4,0AM a a =-,设平面PAM 的法向量为(),,x y z =n .由0AP ⋅=n ,0AM ⋅=n , 得()223040y z ax a y ⎧+=⎪⎨+-=⎪⎩,可取()()34,3,a a a =--n , ()()222234cos ,2343a OB a a a -∴<>=-++n ,由已知得3cos ,OB <>=n ,()22223432343a a a a -∴=-++,解得4a =-(舍去),43a =, 83434,,3⎛⎫∴=-- ⎪ ⎪⎝⎭n ,又()0,2,23PC =-,所以3cos ,PC <>=n .所以PC 与平面PAM 所成角的正弦值为3.13.(2018全国新课标Ⅲ文)如图,矩形所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.13.答案:见解答 解答:(1)∵正方形ABCD ⊥半圆面CMD ,∴AD⊥半圆面CMD,∴AD⊥平面MCD.∵CM在平面MCD内,∴AD CM⊥,又∵M是半圆弧CD上异于,C D的点,∴CM MD⊥.又∵AD DM D =,∴CM⊥平面ADM,∵CM在平面BCM内,∴平面BCM⊥平面ADM.(2)线段AM上存在点P且P为AM中点,证明如下:连接,BD AC交于点O,连接,,PD PB PO;在矩形ABCD中,O是AC中点,P是AM的中点;∴//OP MC,∵OP在平面PDB内,MC不在平面PDB内,∴//.MC平面PDB14.(2018全国新课标Ⅲ理)如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.14.答案:见解答解答:(1)∵正方形ABCD⊥半圆面CMD,∴AD⊥半圆面CMD,∴AD⊥平面MCD.∵CM在平面MCD内,∴AD CM⊥,又∵M是半圆弧CD上异于,C D的点,∴CM MD⊥.又∵AD DM D=,∴CM⊥平面ADM,∵CM 在平面BCM 内,∴平面BCM ⊥平面ADM .(2)如图建立坐标系: ∵ABCS ∆面积恒定, ∴MO CD ⊥,M ABCV -最大.(0,0,1)M ,(2,1,0)A -,(2,1,0)B ,(0,1,0)C ,(0,1,0)D -,设面MAB 的法向量为111(,,)m x y z =,设面MCD 的法向量为222(,,)n x y z =,(2,1,1)MA =--,(2,1,1)MB =-, (0,1,1)MC =-,(0,1,1)MD =--, 11111120(1,0,2)20x y z m x y z --=⎧⇒=⎨+-=⎩, 同理(1,0,0)n =,,∴5cos 5θ==,∴ 25sin θ=.。
立体几何热点一空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明∵OB=OC,又∵∠ABC=π4,∴∠OCB=π4,∴∠BOC=π2.∴CO⊥AB.又PO⊥平面ABC,OC⊂平面ABC,∴PO⊥OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D→=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E -A 1D B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在. 【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D 的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN=BC2-CN2=102-82=6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM∥CD且EM=CD,四边形CDEM为平行四边形,∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,∴DE∥平面BPC.(2)解由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H-xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ, 则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。
高考导航 1.立体几何是高考的重要内容,每年基本上都是一个解答题,一至两道选择题或填空题.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).热点一 空间点、线、面的位置关系及空间角的计算(规范解答)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】 (满分12分)(2017·郑州模拟)如图,在△ABC 中, ∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.满分解答 (1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2. ∴CO ⊥AB.2分 又PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB.4分 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.6分(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).8分 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3).10分 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211.12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,先证线面垂直,再证两面垂直.❷得关键分:解题过程不可忽视的关键点,有则给分,无则没分,如第(1)问中证线面垂直不可漏“CO ⊥平面PDB ”.❸得计算分:解题过程中计算准确是得满分的根本保证. 如第(2)问中求法向量n ,计算线面角正弦值sin θ.利用向量求空间角的步骤第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【训练1】 如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE .又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C . (2)解 因为四边形AA1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E -A 1D B 1的余弦值为 |n 1·n 2||n 1|·|n 2|=23×2=63.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在. 【例2】 (2016·北京卷)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO.因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.探究提高 (1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【训练2】 (2017·安徽江南名校联考)如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点. (1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN ⊥AB ,垂足为点N .∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB ∥CD ,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6, 在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为P A ,PB 的中点, ∴EM ∥AB 且EM =6,又DC ∥AB ,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM .∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC .(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以 D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0),设平面FPC 的法向量为n =(x ,y ,z ). 又PC →=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9). 则cos 〈n ,m 〉=n ·m|n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817.热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】 (2016·全国Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值. (1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz . 则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.探究提高 立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【训练3】 (2015·陕西卷)如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. (1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ, 则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.(建议用时:80分钟)1.(2017·青岛质检)在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD ,将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图. (1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.(1)证明 ∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)解 过点B 在平面BCD 内作BE ⊥BD ,如图. 由(1)知AB ⊥平面BCD , BE ⊂平面BCD ,BD ⊂平面BCD , ∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1), M ⎝ ⎛⎭⎪⎫0,12,12,则BC →=(1,1,0),BM →=⎝ ⎛⎭⎪⎫0,12,12,AD →=(0,1,-1). 设平面MBC 的法向量为n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量为n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ, 则 sin θ=| cos 〈n ,AD →〉|=|n ·AD →||n |·|AD →|=63,即直线AD 与平面MBC 所成角的正弦值为63.2.如图,三棱锥P -ABC 中,PC ⊥平面ABC ,PC =3,∠ACB=π2.D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2. (1)证明:DE ⊥平面PCD ; (2)求二面角A -PD -C 的余弦值.(1)证明 由PC ⊥平面ABC ,DE ⊂平面ABC ,故PC ⊥DE .由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE . 由PC ∩CD =C ,DE 垂直于平面PCD 内两条相交直线,故DE ⊥平面PCD . (2)解 由(1)知,△CDE 为等腰直角三角形,∠DCE =π4,如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1,又已知EB =1,故FB =2.由∠ACB =π2,得DF ∥AC ,∴DF AC =FB BC =23, 故AC =32DF =32.以C 为坐标原点,分别以CA →,CB →,CP →的方向为x 轴,y 轴,z轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED→=(1,-1,0),DP →=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0.设平面P AD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0, 故可取n 1=(2,1,1).由(1)可知DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED →,即n 2=(1,-1,0).从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36,故所求二面角A -PD -C 的余弦值为36.3.(2017·重庆模拟)如图,直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=4,BC =2 2.BD ⊥AC ,垂足为D ,E 为棱BB 1上一点,BD ∥平面AC 1E . (1)求线段B 1E 的长;(2)求二面角C 1-AC -E 的余弦值.解 (1)由AB =AC =4,知△ABC 为等腰三角形, 又BD ⊥AC ,BC =22, 故12·AC ·BD =12·BC ·AB 2-⎝ ⎛⎭⎪⎫12BC 2,解得BD =7.从而在Rt △CDB 中,CD =BC 2-BD 2=1,故AD =AC -CD =3.如图,过点D 作DF ∥CC 1,交AC 1于F ,连接EF .因为DF ∥CC 1,从而AD AC =DFCC 1=34,得DF =3.因为DF ∥CC 1,CC 1∥BB 1,故DF ∥BB 1,即DF ∥BE ,故DF 与BE 确定平面BDFE .又BD ∥平面AC 1E ,而平面BDFE ∩平面AC 1E =EF ,故BD ∥EF .故四边形BDFE 为平行四边形,从而DF =BE =3,所以B 1E =BB 1-BE =1.(2)如图,以D 为坐标原点,分别以DA→,DB →,DF →的方向为x轴、y 轴、z 轴的正方向建立空间直角坐标系,则D (0,0,0),C (-1,0,0),E (0,7,3),DC →=(-1,0,0),DE →=(0,7,3).设平面ACE 的一个法向量为n 1=(x ,y ,z ),由n 1·DC →=0,n 1·DE →=0,得⎩⎨⎧-x =0,7y +3z =0,故可取n 1=(0,3,-7).又平面ACC 1在xDz 面上,故可取n 2=(0,1,0)为平面ACC 1的一个法向量. 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=34.由图知二面角C 1-AC -E 为锐角,故二面角C 1-AC -E 的余弦值为34. 4.(2017·郑州模拟)等边三角形ABC 的边长为3,点D ,E 分别是边AB ,AC 上的点,且满足AD DB =CE EA =12,如图1.将△ADE 沿DE 折起到△A 1DE 的位置,使二面角A 1-DE -B 为直二面角,连接A 1B ,A 1C ,如图2.(1)求证:A 1D ⊥平面BCED ;(2)在线段BC 上是否存在点P ,使直线P A 1与平面A 1BD 所成的角为60°?若存在,求出PB 的长;若不存在,请说明理由.(1)证明 因为等边三角形ABC 的边长为3,且AD DB =CE EA =12,所以AD =1,AE =2.在△ADE 中,∠DAE =60°,由余弦定理得 DE =12+22-2×1×2×cos 60°= 3. 从而AD 2+DE 2=AE 2,所以AD ⊥DE . 折起后有A 1D ⊥DE ,因为二面角A 1-DE -B 是直二面角, 所以平面A 1DE ⊥平面BCED ,又平面A 1DE ∩平面BCED =DE ,A 1D ⊂平面A 1DE ,A 1D ⊥DE ,所以A 1D ⊥平面BCED .(2)解 存在.理由:由(1)的证明,可知ED ⊥DB ,A 1D ⊥平面BCED .以D 为坐标原点,分别以射线DB ,DE ,DA 1为x 轴,y 轴,z 轴的正半轴,建立如图所示的空间直角坐标系D -xyz . 设PB =2a (0≤2a ≤3),作PH ⊥BD 于点H , 连接A 1H ,A 1P ,则BH =a ,PH =3a ,DH =2-a .所以A 1(0,0,1),P (2-a ,3a ,0),E (0,3,0). 所以P A 1→=(a -2,-3a ,1). 因为ED ⊥平面A 1BD ,所以平面A 1BD 的一个法向量为DE→=(0,3,0). 要使直线P A 1与平面A 1BD 所成的角为60°, 则sin 60°=|P A 1→·DE →||P A 1→||DE →|=3a 4a 2-4a +5×3=32, 解得a =54.此时2a =52,满足0≤2a ≤3,符合题意.所以在线段BC 上存在点P ,使直线P A 1与平面A 1BD 所成的角为60°,此时PB =52.5.(2017·石家庄一模)在平面四边形ACBD (图①)中,△ABC 与△ABD 均为直角三角形且有公共斜边AB ,设AB =2,∠BAD =30°,∠BAC =45°,将△ABC 沿AB 折起,构成如图②所示的三棱锥C ′-ABD ,且使C ′D = 2.(1)求证:平面C ′AB ⊥平面DAB ; (2)求二面角A -C ′D -B 的余弦值.(1)证明 如图,取AB 的中点O .连接C ′O ,DO . 在Rt △AC ′B ,Rt △ADB 中, AB =2,则C ′O =DO =1,∵C ′D =2,∴C ′O 2+DO 2=C ′D 2, 即C ′O ⊥OD ,又C ′O ⊥AB ,AB ∩OD =O ,AB ,OD ⊂平面ABD , ∴C ′O ⊥平面ABD ,∵C ′O ⊂平面ABC ′,∴平面C ′AB ⊥平面DAB .(2)解 以O 为原点,AB ,OC ′所在的直线分别为y ,z 轴,建立如图所示的空间直角坐标系, 则A (0,-1,0),B (0,1,0), C ′(0,0,1),D ⎝ ⎛⎭⎪⎫32,12,0,∴AC ′→=(0,1,1),BC ′→= (0,-1,1),C ′D →=⎝ ⎛⎭⎪⎫32,12,-1. 设平面AC ′D 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥AC ′→,n 1⊥C ′D →,即⎩⎪⎨⎪⎧n 1·AC ′→=0,n 1·C ′D →=0,即⎩⎨⎧y 1+z 1=0,32x 1+12y 1-z 1=0,令z 1=1,则y 1=-1,x 1=3,∴n 1=(3,-1,1).设平面BC ′D 的一个法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2⊥BC ′→,n 2⊥C ′D →,即⎩⎪⎨⎪⎧n 2·BC ′→=0,n 2·C ′D →=0,即⎩⎨⎧-y 2+z 2=0,32x 2+12y 2-z 2=0,令z 2=1,则y 2=1,x 2=33, ∴n 2=⎝ ⎛⎭⎪⎫33,1,1,∴cos 〈n 1,n 2〉=3×33+(-1)×1+1×13+1+1×13+1+1=15×73=10535, ∴二面角A -C ′D -B 的余弦值为-10535.6.(2017·合肥模拟)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠BCD =120°,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,BF =1. (1)求证:AD ⊥平面BFED ;(2)点P 在线段EF 上运动,设平面P AB 与平面ADE 所成锐二面角为θ,试求θ的最小值.(1)证明 在梯形ABCD 中,∵AB ∥CD ,AD =DC =CB =1,∠BCD =120°, ∴AB =2,∴BD 2=AB 2+AD 2-2AB ·AD ·cos 60°=3. ∴AB 2=AD 2+BD 2,∴AD ⊥BD .∵平面BFED ⊥平面ABCD ,平面BFED ∩平面ABCD =BD ,DE ⊂平面BFED ,DE ⊥DB ,∴DE ⊥平面ABCD ,∴DE ⊥AD ,又DE ∩BD =D , ∴AD ⊥平面BFED .(2)解 由(1)可建立分别以直线DA ,DB ,DE 为x 轴,y 轴,z 轴的空间直角坐标系.如图所示.令EP =λ(0≤λ≤3), 则D (0,0,0),A (1,0,0),B (0,3,0),P (0,λ,1), ∴AB→=(-1,3,0),BP →=(0,λ-3,1). 设n 1=(x ,y ,z )为平面P AB 的一个法向量, 由⎩⎪⎨⎪⎧n 1·AB→=0,n 1·BP →=0,得⎩⎨⎧-x +3y =0,(λ-3)y +z =0,取y =1,得n 1=(3,1,3-λ),∵n 2=(0,1,0)是平面ADE 的一个法向量, ∴cos θ=|n 1·n 2||n 1||n 2|=13+1+(3-λ)2×1 =1(λ-3)2+4.∵0≤λ≤3,∴当λ=3时,cos θ有最大值12, ∴θ的最小值为π3.。
中档大题规范练7(数列+概率+立体几何+选讲) -2018版高考理科数学三轮冲刺解答题精品训练含解析1.数列大题在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,中线AD m =,满足2224a bc m +=.(Ⅰ)求BAC ∠;(Ⅱ)若2a =,求ABC ∆的周长的取值范围. 【答案】(1) 3BAC π∠=;(2) ABC ∆周长的取值范围是(]4,6.(Ⅱ)在ABC ∆中有正弦定理得sin sin sin3a b cB Cπ==,又2a =,所以sin 3b B =,2sin 333c C B π⎛⎫==- ⎪⎝⎭,故23b c B B π⎛⎫+=+- ⎪⎝⎭3sin 2B B ⎫=⎪⎪⎝⎭4sin 6B π⎛⎫=+ ⎪⎝⎭,因为203B π<<,故5666B πππ<+<,所以1sin 126B π⎛⎫<+≤ ⎪⎝⎭, (]2,4b c +∈, 故ABC ∆周长的取值范围是(]4,6. 2.概率大题某省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布()170.516N ,,现从该生某校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm 和187.5cm 之间,将测量结果按如下方式分成6组:第一组[157.6162.5,,第二组[)162.5167.5,,…,第六组[]182.5187.5,,下图是按照上述分组方法得到的频率分布直方图.(1)求该学校高三年级男生的平均身高;(2)求这50名男生中身高在177.5cm 以上(含177.5cm )的人数;(3)从这50名男生中身高在177.5cm 以上(含177.5cm )的人中任意抽取2人,该2中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的数学期望.(附:参考数据:若ξ服从正态分布()2N μσ,,则()0.682P μσξμσ-<≤+=, (22)0.9544P μσξμσ-<≤+=, (33)0.9974P μσξμσ-<≤+=.)【答案】(1)171.5cm(2)10人(3)1E ξ=试题解析:(1)由直方图可知该校高三年级男生平均身高为1600.11650.21700.31750.21800.11850.1171.5cm ⨯+⨯+⨯+⨯+⨯+⨯=(2)由频率分布直方图知,后两组频率为0.2,人数为0.25010⨯=,即这50名男生身高在177.5cm 以上(含177.5cm )的人数为10人(3)∵(170.534170.534)0.9974P ξ-⨯<≤+⨯= ∴()10.9974182.50.00132P ξ-≥==,而0.0013100000130⨯=, 所以全省前130名的身高在182.5cm 以上(含182.5cm ),这50人中182.5cm 以上(含182.5cm )的有5人.随机变量ξ可取0, 1, 2,于是()()2115552210101022550,1459459C C C p P C C ξξ=======, ()252101022459C P C ξ====∴2520121999E ξ=⨯+⨯+⨯=. 3.立体几何已知四棱锥P ABCD -,底面ABCD 为菱形, ,PD PB H =为PC 上的点,过AH 的平面分别交,PB PD 于点,M N ,且//BD 平面AMHN . (1)证明: MN PC ⊥;(2)当H 为PC 的中点,PA PC ==, PA 与平面ABCD 所成的角为60︒,求二面角P AM N --的余弦值.【答案】(1)见解析(2来计算二面角的余弦值.(2)由(1)知BD AC ⊥且PO BD ⊥,因为PA PC =,且O 为AC 的中点, 所以PO AC ⊥,所以PO ⊥平面ABCD ,所以PA 与平面ABCD 所成的角为PAO ∠,所以,所以1,2AO PA PO ==,因为PA =,所以BO =. 分别以OA , OB , OP为,,x y z 轴,建立如图所示空间直角坐标系,设2PA =,则()()()(10,0,0,1,0,0,,1,0,0,0,,,2O A B C D P H ⎛⎫⎛⎫⎛-- ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,所以(3,,,2DB AH AB AP ⎛⎫⎛⎛⎫==-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 记平面AMHN 的法向量为()1111,,n x y z =,则111110{302n DB y n AH x z ⋅==⋅=-= , 令10x =,则110,y z =(1n =,记平面PAB 的法向量为()2222,,n x y z =,则2222220{ 3n AB x y n AP x ⋅=-+=⋅=-=, 令21x =,则223y z ==,所以2n ⎛= ⎝⎭,记二面角P AM N --的大小为θ,则121212cos cos ,n n n n n n θ⋅===⋅. 所以二面角P AM N --4.选讲1(极坐标参数方程)在直角坐标系xOy 中,直线l 的方程是6y =,圆C 的参数方程是{ 1x cos y sin φφ==+(ϕ为参数),以原点O 为极点, x 轴的非负半轴为极轴建立极坐标系. (1)分别求直线l 与圆C 的极坐标方程; (2)射线OM : θα=(02πα<<)与圆C 的交点为O , P 两点,与直线l 交于点M ,射线ON :2πθα=+与圆C 交于O , Q 两点,与直线l 交于点N ,求OP OQ OMON⋅的最大值.【答案】(1) sin 6ρθ=, 2sin ρθ=;(2)136.(2)由题意可得:点P , M 的极坐标为: ()2sin ,αα,.∴2sin OP α=,|OM|=6sin a ,可得2sin 3OP a OM =. 同理可得: 2sin 23a OQ ON π⎛⎫+ ⎪⎝⎭==.∴.当时,取等号.∴OP OQ OMON⋅的最大值为 .5.选讲2(不等式)已知函数()211f x x x =-++. (1)求不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++. 【答案】(1) []1,1- (2)见解析。
专题2.9 中档大题规范练09(数列概率立体几何选讲)
的恒成立问题,分离,求最值
1.数列大题
设数列满足,其中,且为常数.
(1)若是等差数列,且公差,求的值;
(2)若,且数列满足对任意的都成立.
①求数列的前项之和;
②若对任意的都成立,求的最小值.
【答案】(1);(2)①,②.
2.概率大题
某公司要根据天气预报来决定五一假期期间5月1日、2日两天的宣传活动,宣传既可以在室内举行,也可以在广场举行.统计资料表明,在室内宣传,每天可产生经济效益8万元.在广场宣传,如果不遇到有雨天气,每天可产生经济效益20万元;如果遇到有雨天气,每天会带来经济损失10万元.若气象台预报5月1日、2日两天当地的降水概率均为.
(1)求这两天中恰有1天下雨的概率;
(2)若你是公司的决策者,你会选择哪种方式进行宣传(从“2天都在室内宣传”“2天都在广场宣传”这两种方案中选择)?请从数学期望及风险决策等方面说明理由.
【答案】(1)0.48.(2)选择“2天都在室内宣传”.
【解析】试题分析:(1)第(1)问,利用互斥事件的概率公式求这两天中恰有1天下雨的概率. (2)第(2)问,先求出两种情况下产生的经济效益的收益的均值,再根据均值确定方案. 试题解析:(1)设事件为“这两天中恰有1天下雨”,则. 所以这两天中恰有1天下雨的概率为0.48.
3.立体几何
在如图所示的多面体中,平面平面,四边形为边长为2的菱形,
为直角梯形,四边形为平行四边形,且,,.
(1)若,分别为,的中点,求证:平面;
(2)若,与平面所成角的正弦值为,求二面角
的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)第(1)问,转化成证明平面 ,再转化成证明
和.(2)第(2)问,先利用几何法找到与平面所成角,再根据与
平面所成角的正弦值为求出再建立空间直角坐标系,求出二面角
的余弦值.
(2)设,由(1)得平面.
由,,得,.
过点作,与的延长线交于点,取的中点,连接,,如图所示,
又,所以为等边三角形,所以,又平面平面
,平面平面,平面,故平面. 因为为平行四边形,所以,所以平面.
又因为,所以平面.
因为,所以平面平面.
由(1),得平面,所以平面,所以.
因为,所以平面,所以是与平面所成角.
因为,,所以平面,平面,因为
,所以平面平面.
所以,,解得.
4.选讲1(极坐标参数方程)
在直角坐标系中,曲线:经过伸缩变换后得到曲线.以坐标原点
(Ⅰ)求出曲线、的参数方程;
(Ⅱ)若、分别是曲线、上的动点,求的最大值.
【答案】(1),(2)
(Ⅱ)设,则到曲线的圆心的距离
,
∵,∴当时,.
∴.
点睛:此题主要考查坐标的伸缩变换,曲线的参数方程与普通方程的互化,极坐标方程与普通方程的互化,以及参数方程在求最值中的应用等方面的知识与运算能力,属于中档题型,也是常考题.在参数方程求最值问题中,通动点的参数坐标,根据距离公式可得所求距离关于参数的解析式,结合三角函数的知识进行运算,从而问题可得解.
5.选讲2(不等式)
已知函数.
(1)解不等式;
(2)若对任意的,均存在,使得成立,求实数的取值范围. 【答案】(Ⅰ) ;(Ⅱ) .。