2017--2018学年度(下)初中学业水平抽测试题七年级期末数学试题(最新一) - -
- 格式:doc
- 大小:238.81 KB
- 文档页数:9
陕西省西安市蓝田县2017-2018学年七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.窗花是我国传统民间艺术,下列窗花中,是轴对称图形的为()A.B.C.D.2.计算(﹣a3)4的结果为()A.a12B.﹣a12C.a7D.﹣a73.下列词语所描述的事件是必然事件的是()A.拔苗助长B.刻舟求剑C.守株待兔D.冬去春来4.已知一个三角形的两边长为5和10,则第三边的长可以为()A.5B.10C.15D.205.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是()A.B.C.D.6.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°,则∠B的度数为()A.30°B.50°C.90°D.100°7.如图,在△ABC和△DBE中,BC=BE,还需再添加两个条件才能使△ABC≌△DBE,则不能添加的一组条件是()A.AC=DE,∠C=∠E B.BD=AB,AC=DEC.AB=DB,∠A=∠D D.∠C=∠E,∠A=∠D8.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm9.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.掷一个质地均匀的正六面体骰子,向上的面点数是4D.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球10.如图,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠CBE+∠D=90°;④∠DEB=2∠ABC,其中结论正确的个数有()A.1个B.2个C.3个D.4个二、填空题(共4小题,每小题3分,满分12分)11.计算(﹣3)0+1=.12.若x+3y=﹣4,则()x•()y=.13.有一座锥形小山,如图,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A 和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,量出DE的长为50m,则锥形小山两端A、B的距离为m.14.如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC =°.三、解答题(共11小题,满分78分)15.(5分)计算:[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b.16.(5分)如图,已知△ABC,请用尺规求作BC的垂直平分线,交AB于点D,交BC于点E.(保留作图痕迹,不写作法)17.(5分)高空的气温与距地面的高度有关,某地地面气温为24℃,且已知距离地面高度每升高1km ,气温下降6℃.(1)写出该地空中气温T (℃)与距离地面高度h (km )之间的关系式;(2)求距地面3km 处的气温T .18.(5分)已知△ABC 中,∠ACB =90°,CD 为AB 边上的高,BE 平分∠ABC ,分别交CD 、AC 于点F 、E ,求证:∠CFE =∠CEF.19.(7分)盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀,重复进行这样的试验得到以下数据:摸棋的次数n 1002003005008001000摸到黑棋的次数m 245176b 201250摸到黑棋的频率(精确到0.001)0.240a0.2530.2480.2510.250(1)填空:a =,b =;(2)在图中,画出摸到黑棋的折线统计图;(3)随机摸一次,估计摸到黑棋的概率.(精确到0.01)20.(7分)如图,已知AF 分别与BD 、CE 交于点G 、H ,∠1与∠2互补,若∠A =∠F ,则∠C与∠D相等吗?为什么?21.(7分)A、B两地相距240km,甲骑摩托车由A地驶往B地,乙驾驶汽车由B地驶往A地,甲乙两人同时出发,乙达到A地停留1小时后,按原路原速返回B地,甲比乙晚1小时到达B地,甲、乙两人行驶过程中均匀速行驶,甲乙两人离各自出发点的路程y(km)与乙所用时间x(h)的关系如图,结合图象回答下列问题.(1)在上述变化过程中,自变量是,因变量是;(2)a的值为;(3)甲到达B地共需小时;甲骑摩托车的速度是km/h;(4)乙驾驶汽车的速度是多少km/h?22.(7分)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.(1)求证:OB=OC;(2)若∠ABC=55°,求∠BOC的度数.23.(8分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,这些球除颜色外其它都相同.(1)求从袋中摸出一个球是黄球的概率;(2)求从袋中摸出一个球不是红球的概率;(3)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率为,则取出了多少个黑球?24.(10分)如图,在图(1)中的正方形中剪去一个边长为2a+b的正方形,将剩余的部分按图(2)的方式拼成一个长方形(1)求剪去正方形的面积;(2)求拼成的长方形的长、宽以及它的面积.25.(12分)已知在△ABC中,∠BAC=90°,∠BAC和∠ABC的平分线交于点P (1)如图1,在BC上取一点D,使得DB=AB,连接PD,△ABP与△DBP全等吗?为什么?(2)在(1)的条件下,若DP=DC,则BC=AB+AP是否成立?请说明理由;(3)如图2,在AC上取一点E,使得AE=AB,连接PE、PC,若∠ABC=60°,求∠EPC的度数.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【解答】解:A、不是轴对称图形,故该选项错误;B、是轴对称图形,故该选项正确;C、不是轴对称图形,故该选项错误;D、不是轴对称图形,故该选项错误.故选:B.2.【解答】解:(﹣a3)4=a12.故选:A.3.【解答】解:A、拔苗助长是不可能事件,故A不符合题意;B、刻舟求剑是不可能事件,故B不符合题意;C、守株待兔是随机事件,故C不符合题意;D、冬去春来是必然事件,故D符合题意;故选:D.4.【解答】解:设第三边长为x,则由三角形三边关系定理得10﹣5<x<10+5,即5<x<15.因此,本题的第三边应满足5<x<15,把各项代入不等式符合的即为答案.只有10符合不等式.故选:B.5.【解答】解:根据题意,在实验中有3个阶段,①、铁块在液面以下,液面得高度不变;②、铁块的一部分露出液面,但未完全露出时,液面高度降低;③、铁块在液面以上,完全露出时,液面高度又维持不变;分析可得,B符合描述;故选:B.6.【解答】解:∵△ABC和△A′B′C′关于直线l对称,∠A=50°,∠C′=30°,∴△ABC≌△A′B′C′,∴∠C=∠C′=30°,∴∠B=180°﹣∠A﹣∠C=180°﹣50°﹣30°=100°.故选:D.7.【解答】解:A、已知BC=BE,再加上条件AC=DE,∠C=∠E可利用SAS证明△ABC≌△DBE,故此选项不合题意;B、已知BC=BE,再加上条件BD=AB,AC=DE可利用SSS证明△ABC≌△DBE,故此选项不合题意;C、已知BC=BE,再加上条件AB=DB,∠A=∠D不能证明△ABC≌△DBE,故此选项符合题意;D、已知BC=BE,再加上条件∠C=∠E,∠A=∠D可利用AAS证明△ABC≌△DBE,故此选项不合题意;故选:C.8.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.9.【解答】解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故A 选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:=;故B选项错误;C、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故C选项正确.D、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故D选项错误;故选:C.10.【解答】解:∵AF∥CD,∴∠ABC=∠ECB,∠EDB=∠DBF,∠DEB=∠EBA,∵CB平分∠ACD,BD平分∠EBF,∴∠ECB=∠BCA,∠EBD=∠DBF,∵BC⊥BD,∴∠EDB+∠ECB=90°,∠DBE+∠EBC=90°,∴∠EDB=∠DBE,∴∠ECB=∠EBC=∠ABC=∠BCA,∴①BC平分∠ABE,正确;∴∠EBC=∠BCA,∴②AC∥BE,正确;∴③∠CBE+∠D=90°,正确;∵∠DEB=∠EBA=2∠ABC,故④正确;故选:D.二、填空题(共4小题,每小题3分,满分12分)11.【解答】解:(﹣3)0+1=1+1=2.12.【解答】解:因为,故答案为:8113.【解答】解:在△ABC和△EDC中,∴△ABC≌△EDC(SAS),∴AB=DE=50.答:锥形小山两端A、B的距离为50m.故答案是:50.14.【解答】解:连接OA,∵∠BAC=82°,∴∠ABC+∠ACB=180°﹣82°=98°,∵AB、AC的垂直平分线交于点O,∴OB=OA,OC=OA,∴∠OAB=∠OBA,∠OAC=∠OCA,∴∠OBC+∠OCB=98°﹣(∠OBA+∠OCA)=16°,∴∠OBC=8°,故答案为:8.三、解答题(共11小题,满分78分)15.【解答】解:原式=[a2+4ab+4b2﹣(a2﹣4b2)]÷4b,=(a2+4ab+4b2﹣a2+4b2)÷4b,=(4ab+8b2)÷4b,=a+2b.16.【解答】解:如右图所示,DE即为所求.17.【解答】解:(1)∵离地面距离每升高1km,气温下降6℃,∴该地空中气温T(℃)与高度h(km)之间的函数表达式为:T=24﹣6h;(2)当h=3时,T=24﹣6×3=6(℃).即距地面3km处的气温T为6℃.18.【解答】证明:∵∠ACB=90°,∴∠1+∠3=90°,∵CD⊥AB,∴∠2+∠4=90°又∵BE平分∠ABC,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE=∠CEF.19.【解答】解:(1)a=51÷200=0.255、b=500×0.248=124,故答案为:0.255、124;(2)折线图如下:(3)由折线统计图知,随机摸一次,估计摸到黑棋的概率为0.25.20.【解答】解:∠C与∠D相等,证明:∵∠1与∠2互补,∠1=∠DGH,∴∠DGH+∠2=180°,∴BD∥CE;∴∠D=∠CEF.∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF,∴∠C=∠D.21.【解答】解:(1)自变量是乙所用的时间x(h),因变量是甲乙两人离各自出发点的路程y(km);故答案为:乙所用的时间x(h),甲乙两人离各自出发点的路程y(km);(2)因为甲比乙晚1小时到达B地,所用a=6﹣1=5;故答案为:5;(3)甲到达B地共需6小时,甲骑摩托车的速度是km/h;故答案为:6;40;(4)由题意可知,乙驾驶汽车行驶的时间为5﹣1=4(h),乙驾驶汽车的速度是:(km/h).22.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°,∴△BEC≌△CDB,∴∠DBC=∠ECB,BE=CD.在△BOE和△COD中,,∴△BOE≌△COD(AAS),∴OB=OC;(2)∵∠ABC=55°,AB=AC,∴∠A=180°﹣2×55°=70°,∵∠DOE+∠A=180°,∴∠BOC=∠DOE=180°﹣70°=110°.23.【解答】解:(1)因为共有5+13+22=40个小球,所以从袋中摸出一个球是黄球的概率为=;(2)从袋中摸出一个球不是红球的概率为=;(3)设取出了x个黑球,根据题意,得:=,解得:x=11,答:取出了11个黑球.24.【解答】解:(1)剪去正方形的面积=(2a+b)2=4a2+4ab+b2;(2)∵拼成的长方形的长为3a+2b+(2a+b)=5a+3b,宽为3a+2b﹣(2a+b)=a+b,∴面积=(5a+3b)(a+b)=5a2+8ab+3b2;答:拼成的长方形的面积为5a2+8ab+3b2.25.【解答】解:(1)△ABP与△DBP全等理由如下:因为BP是∠ABC的平分线,所以∠ABP=∠DBP.在△ABP和△DBP中,,∴△ABP≌△DBP(SAS);(2)成立.理由如下:由(1)知△ABP≌△DBP,∴AP=DP,AB=DB,∵DP=DC.∴AP=DC.∴BC=DB+DC=AB+AP;(3)因为P是∠BAC和∠ABC的平分线的交点,所以∠BAP=∠EAP,PC是∠ACB的平分线.因为∠ABC=60°,∠BAC=90°,所以∠ACB=90°﹣∠ABC=30°.所以∠ECP=∠PCB=15°.在△ABP和△AEP中,,∴△ABP≌△AEP(SAS),∴∠AEP=∠ABP=∠ABC=30°.∴∠AEP=∠ACB=30°.∴EP∥CB.∴∠EPC=∠PCB=15°.。
2017-2018学年陕西省七年级(下)期末数学试卷一、选择题1.如图所示的四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个2.下列计算正确的是()A.(﹣a3)2=﹣a6B.9a3÷3a3=3a3C.2a3+3a3=5a6D.2a3•3a2=6a53.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠2的大小是()A.35° B.45° C.55° D.65°4.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中10环B.任取一个有理数x,都有|x|≥0C.画一个三角形,使其三个内角的和为199°D.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为1 5.若整式x+3与x﹣a的乘积为x2+bx﹣6,则b的值是()A.1 B.﹣1 C.2 D.﹣26.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)7.为配合地铁五号线建设,市政部分现对雁翔路某段进行雨、污水管道改造施工,施工单位在工作了一段时间后,因天气原因被迫停工几天,随后施工单位加快了施工进度,按时完成了管道施工任务,下面能反映该工程尚未改造的管道长度y(米)与时间x(天)的关系的大致图象是()A.B.C.D.8.如图,在△ABC中,BD平分∠ABC,DE⊥AB交AB于点E,DF⊥BC交BC于点F,若AB=12cm,BC=18cm,S△ABC=90cm2,则DF长为()A.3cm B.6cm C.9cm D.12cm9.如图,在△ABC中,直线ED是线段BC的垂直平分线,直线ED分别交BC、AB于点D、点E,已知BD=4,△ABC的周长为20,则△AEC的周长为()A.24 B.20 C.16 D.1210.如图,G是△ABC的重心,直线L过A点与BC平行.若直线CG分别与AB,L交于D,E两点,直线BG与AC交于F点,则△AED的面积:四边形ADGF的面积=()A.1:2 B.2:1 C.2:3 D.3:2二、填空题11.用科学记数法表示:0.00000108= .12.一个不透明袋中放入7枚只有颜色不同的围棋棋子,其中4枚黑色,3枚白色,任意摸出一枚,摸到棋子是黑色的概率为.13.若3x=2,9y=6,则3x﹣2y= .14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:t 的值为 .15.已知,则代数式的值为 .16.如图,已知△ABC 中,AC=BC ,点D 、E 分别在边AB 、BC 上,把△BDE 沿直线DE 翻折,使点B 落在B'处,DB'、EB'分别交AC 于点F 、G ,若∠ADF=66°,则∠EGC 的度数为 .17.在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,AD 是∠BAC 的平分线,若P 、Q 分别是AD和AC上的动点,则PC+PQ 的最小值是 .三、解答题18.计算(1)﹣(3x+y )(x ﹣y )(2)(4a 3b ﹣6a 2b 2+12ab 3)÷2ab(3)[4365×(﹣0.25)366﹣2﹣3]×(3.14﹣π)0(4)20152﹣2016×2014.19.作图题(要求尺规作图,保留作图痕迹,不写作法)已知:线段a ,∠β.求作:△ABC ,使BC=a ,∠ABC=∠β,∠ACB=2∠β.20.如图,已知∠A=∠F ,∠C=∠D ,试说明BD ∥CE .解:∵∠A=∠F(已知)∴AC∥(内错角相等,两直线平行)∴∠C=∠CEF().∵∠C=∠D(已知),∴=∠CEF(等量代换)∴BD∥CE()21.为了提高身体素质,小明假期为自己制定了慢跑锻炼计划,某日小明从省体育场出发沿长安路慢跑,已知他离省体育场的距离s( km)与时间t(h)之间的关系如图所示,根据图象回答下列问题:(1)小明离开省体育场的最远距离是千米,他在120分钟内共跑了千米;(2)小明在这次慢跑过程中,停留所用的时间为分钟;(3)小明在这段时间内慢跑的最快速度是每小时千米.22.如图,△ABC是等边三角形,延长BA至点D,延长CB至点E,使得BE=AD,连结CD,AE.求证:AE=CD.23.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即:a2±2ab+b2=(a±b)2.根据阅读材料解决下面问题:(1)m2+4m+4=()2(2)无论n取何值,9n2﹣6n+1 0(填“<”,“>”,“≤”,“≥”或“=”)(3)已知m,n是△ABC的两条边,且满足10m2+4n2+4=12mn+4m,若该三角形的第三边k的长是奇数,求k的长.24.如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t >0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD= cm,CE= cm;(2)当t为多少时,△ABD的面积为12 cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.参考答案与试题解析一、选择题1.如图所示的四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:最:不是轴对称图形,不符合题意;美:是轴对称图形,符合题意;铁:不是轴对称图形,不符合题意;一:是轴对称图形,符合题意.故选:B.2.下列计算正确的是()A.(﹣a3)2=﹣a6B.9a3÷3a3=3a3C.2a3+3a3=5a6D.2a3•3a2=6a5【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的乘除法、合并同类项法则即可作出判断.【解答】解:(A)原式=a6,故A错误;(B)原式=3,故B错误(C)原式=5a3,故C错误故选(D)3.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠2的大小是()A.35° B.45° C.55° D.65°【考点】平行线的性质.【分析】先求出∠ACE的度数,根据平行线的性质得出∠2=∠ACE,即可得出答案.【解答】解:如图,∵∠ACB=90°,∠1=35°,∴∠ACE=90°﹣35°=55°,∵MN∥EF,∴∠2=∠ACE=55°,故选C.4.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中10环B.任取一个有理数x,都有|x|≥0C.画一个三角形,使其三个内角的和为199°D.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为1【考点】概率的意义.【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1;必然事件概率为1;不可能事件概率为0.【解答】解:A、是随机事件,概率大于0并且小于1;B、是必然事件,概率=1;C、是不可能事件,概率=0;D、是随机事件,概率大于0并且小于1;故选:C.5.若整式x+3与x﹣a的乘积为x2+bx﹣6,则b的值是()A.1 B.﹣1 C.2 D.﹣2【考点】多项式乘多项式.【分析】根据题意列出等式,利用多项式乘多项式法则变形即可确定出b的值.【解答】解:根据题意得:(x+3)(x﹣a)=x2+(3﹣a)x﹣3a=x2+bx﹣6,可得3﹣a=b,﹣3a=﹣6,解得:a=2,b=1.故选A.6.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)【考点】全等三角形的判定.【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:A.7.为配合地铁五号线建设,市政部分现对雁翔路某段进行雨、污水管道改造施工,施工单位在工作了一段时间后,因天气原因被迫停工几天,随后施工单位加快了施工进度,按时完成了管道施工任务,下面能反映该工程尚未改造的管道长度y(米)与时间x(天)的关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】分析施工过程的进度,由先慢、停工几天后快即可找出合适的函数图象,此题得解.【解答】解:∵开始几天施工速度较慢,中间停工几天,后面加快进度,∴函数的大致图象为D选项中图象.故选D.8.如图,在△ABC中,BD平分∠ABC,DE⊥AB交AB于点E,DF⊥BC交BC于点F,若AB=12cm,BC=18cm,S△ABC=90cm2,则DF长为()A.3cm B.6cm C.9cm D.12cm【考点】角平分线的性质.【分析】根据角平分线的性质得到DE=DF,然后根据三角形的面积列方程即可得到结论.【解答】解:∵BD是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,∴DE=DF,∵S△ABC=S△ABD+S△BDC=AB•DE+BC•DF=90cm2,∴DF=6cm,故选B.9.如图,在△ABC中,直线ED是线段BC的垂直平分线,直线ED分别交BC、AB于点D、点E,已知BD=4,△ABC的周长为20,则△AEC的周长为()A.24 B.20 C.16 D.12【考点】线段垂直平分线的性质.【分析】由BC的垂直平分线交AB于点E,可得BE=CE,又由△ABC的周长为10,BC=4,易求得△ACE的周长是△ABC的周长﹣BC,继而求得答案.【解答】解:∵BC的垂直平分线交AB于点E,∴BE=CE,∵△ABC的周长为20,BC=2BD=8,∴△ACE的周长是:AE+CE+AC=AE+BE+AC=AB+AC=AB+AC+BC﹣BC=20﹣8=12.故选D.10.如图,G是△ABC的重心,直线L过A点与BC平行.若直线CG分别与AB,L交于D,E两点,直线BG与AC交于F点,则△AED的面积:四边形ADGF的面积=()A.1:2 B.2:1 C.2:3 D.3:2【考点】三角形的重心.【分析】根据重心的概念得出D,F分别是三角形的中点.若设△ABC的面积是2,则△BCD的面积和△BCF的面积都是1.又因为BG:GF=CG:GD,可求得△CGF的面积.则四边形ADGF的面积也可求出.根据ASA可以证明△ADE≌△BDC,则△ADE的面积是1.则△AED的面积:四边形ADGF的面积可求.【解答】解:设三角形ABC的面积是2∴三角形BCD的面积和三角形BCF的面积都是1∵BG:GF=CG:GD=2∴三角形CGF的面积是∴四边形ADGF的面积是2﹣1﹣=∵△ADE≌△BDC(ASA)∴△ADE的面积是1∴△AED的面积:四边形ADGF的面积=1: =3:2.故选D.二、填空题11.用科学记数法表示:0.00000108= 1.08×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000108=1.08×10﹣6.故答案为:1.08×10﹣6.12.一个不透明袋中放入7枚只有颜色不同的围棋棋子,其中4枚黑色,3枚白色,任意摸出一枚,摸到棋子是黑色的概率为.【考点】概率公式.【分析】根据概率公式用黑色棋子的个数除以总棋子的个数即可.【解答】解:∵共有7枚棋子,其中4枚黑色,3枚白色,∴摸到棋子是黑色的概率为;故答案为:.13.若3x=2,9y=6,则3x﹣2y= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解:32y=(32)y=9y=6,3x﹣2y=3x÷32y=2÷6=,故答案为:.14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:t的值为136 .【考点】函数关系式.【分析】观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t 分钟,烤鸭的质量为x 千克,t与x 的一次函数关系式为:t=kx+b,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x=2.9千克代入即可求出烤制时间.【解答】解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,,解得,所以t=40x+20.当x=2.9千克时,t=40×2.9+20=136.故答案为:136.15.已知,则代数式的值为11 .【考点】完全平方公式.【分析】把两边平方,再根据完全平方公式展开,即可得问题答案.【解答】解:∵,∴(x﹣)2=9,∴x2﹣2+=9,∴x2+=11,故答案为:11.16.如图,已知△ABC中,AC=BC,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在B'处,DB'、EB'分别交AC于点F、G,若∠ADF=66°,则∠EGC的度数为66°.【考点】翻折变换(折叠问题);等腰三角形的性质.【分析】由翻折变换的性质和等腰三角形的性质得出∠B′=∠B=∠A,再由三角形内角和定理以及对顶角相等得出∠B′GF=∠ADF即可.【解答】解:由翻折变换的性质得:∠B′=∠B,∵AC=BC,∴∠A=∠B,∴∠A=∠B′,∵∠A+∠ADF+∠AFD=180°,∠B′+∠B′GF+∠B′FG=180°,∠AFD=∠B′FG,∴∠B′GF=∠ADF=66°,∴∠EGC=∠B′GF=66°.故答案为:66°.17.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,若P、Q分别是AD和AC 上的动点,则PC+PQ的最小值是 2.4 .【考点】轴对称﹣最短路线问题.【分析】如图作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC此时PC+PQ最短,利用面积法求出CQ′即可解决问题.【解答】解:如图,作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC此时PC+PQ最短.∵PQ⊥AC,PQ′⊥AB,AD平分∠CAB,∴PQ=PQ′,∴PQ+CP=PC+PQ′=CQ′∴此时PC+PQ最短(垂线段最短).在RT△ABC中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵•AC•BC=•AB•CQ′,∴CQ′===2.4.∴PC+PQ的最小值为2.4.故答案为2.4.三、解答题18.计算(1)﹣(3x+y)(x﹣y)(2)(4a3b﹣6a2b2+12ab3)÷2ab(3)[4365×(﹣0.25)366﹣2﹣3]×(3.14﹣π)0(4)20152﹣2016×2014.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用多项式乘以多项式法则计算即可得到结果;(2)原式利用多项式除以单项式法则计算即可得到结果;(3)原式利用积的乘方运算法则变形,再利用零指数幂、负整数指数幂法则计算即可得到结果;(4)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=﹣3x2+2xy+y2;(2)原式=2a2﹣3ab+6b2;(3)原式=[(﹣4×0.25)365×(﹣0.25)﹣]×1=;(4)原式=20152﹣×=20152﹣20152+1=1.19.作图题(要求尺规作图,保留作图痕迹,不写作法)已知:线段a,∠β.求作:△ABC,使BC=a,∠ABC=∠β,∠ACB=2∠β.【考点】作图—复杂作图.【分析】先作线段BC=a,再作∠MBC=α,∠ACB=2α,BM和NC相交于点A,则△ABC满足条件.【解答】解:如图,△ABC为所作.20.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知)∴AC∥DF (内错角相等,两直线平行)∴∠C=∠CEF(两直线平行,内错角相等).∵∠C=∠D(已知),∴∠D =∠CEF(等量代换)∴BD∥CE(同位角相等,两直线平行)【考点】平行线的判定与性质.【分析】根据平行线的判定得出AC∥DF,根据平行线的性质得出∠C=∠CEF,求出∠D=∠CEF,根据平行线的判定得出即可.【解答】解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行),故答案为:DF,两直线平行,内错角相等,∠D,同位角相等,两直线平行.21.为了提高身体素质,小明假期为自己制定了慢跑锻炼计划,某日小明从省体育场出发沿长安路慢跑,已知他离省体育场的距离s( km)与时间t(h)之间的关系如图所示,根据图象回答下列问题:(1)小明离开省体育场的最远距离是 4 千米,他在120分钟内共跑了8 千米;(2)小明在这次慢跑过程中,停留所用的时间为20 分钟;(3)小明在这段时间内慢跑的最快速度是每小时8 千米.【考点】一次函数的应用.【分析】(1)观察函数图象即可得出结论;(2)观察函数图象二者做差即可得出结论;(3)根据速度=路程÷时间,即可小明在这段时间内慢跑的最快速度,此题得解.【解答】解:(1)由图象知,小明离开省体育场的最远距离是4千米,他在120分钟内共跑了8千米;(2)小明在这次慢跑过程中,停留所用的时间为:60﹣40=20分钟;(3)小明在这段时间内慢跑的最快速度是4÷=8千米/小时.故答案为:4,8,20,8.22.如图,△ABC是等边三角形,延长BA至点D,延长CB至点E,使得BE=AD,连结CD,AE.求证:AE=CD.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】只要证明△ABE≌△ACD,即可推出AE=CD.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠CAB=∠ABC=60°,∴∠DAC=∠ABE=120°,在△ABE和△ACD中,,∴△ABE≌△ACD,∴AE=CD.23.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即:a2±2ab+b2=(a±b)2.根据阅读材料解决下面问题:(1)m2+4m+4=(m+2 )2(2)无论n取何值,9n2﹣6n+1 ≥0(填“<”,“>”,“≤”,“≥”或“=”)(3)已知m,n是△ABC的两条边,且满足10m2+4n2+4=12mn+4m,若该三角形的第三边k的长是奇数,求k的长.【考点】配方法的应用;完全平方式;三角形三边关系.【分析】(1)根据完全平方式得出结论;(2)9n2﹣6n+1=(3n﹣1)2≥0;(3)将已知等式配方后,利用非负性得结论:,求出m和n的值,再根据三角形的三边关系得出k的值.【解答】解:(1)原式=(m+2)2;故答案为:m+2;(2)9n2﹣6n+1=(3n﹣1)2≥0;∴无论n取何值,9n2﹣6n+1≥0,故答案为:≥;(3)10m2+4n2+4=12mn+4m,已知等式整理得:9m2﹣12mn+4n2+m2﹣4m+4=0,(3m﹣2n)2+(m﹣2)2=0,,∴,∵m,n是△ABC的两条边,∴3﹣2<k<3+2,1<k<5,∵第三边k的长是奇数,∴k=3.24.如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t >0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD= 3t cm,CE= t cm;(2)当t为多少时,△ABD的面积为12 cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.【考点】三角形综合题.【分析】(1)根据路程=速度×时间,即可得出结果;(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值即可;(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.【解答】解:(1)根据题意得:CD=3tcm,CE=tcm;故答案为:3t,t;(2)∵S△ABD=BD•AH=12,AH=4,∴AH×BD=24,∴BD=6.若D在B点右侧,则CD=BC﹣BD=2,t=;若D在B点左侧,则CD=BC+BD=14,t=;综上所述:当t为s或s时,△ABD的面积为12 cm2;(3)动点E从点C沿射线CM方向运动2秒或当动点E从点C沿射线CM的反向延长线方向运动4秒时,△ABD≌△ACE.理由如下:如图所示①当E在射线CM上时,D必在CB上,则需BD=CE.∵CE=t,BD=8﹣3t∴t=8﹣3t,∴t=2,∵在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.∵CE=t,BD=3t﹣8,∴t=3t﹣8,∴t=4,∵在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).2017年4月13日。
2017-2018学年陕西省西安市新城区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. B.C. D.2.西安市2017年生产总值(GDP)约为7700亿元人民币,用科学记数法表示7700亿为()A. B. C. D.3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A. B.C. D.4.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带去B. 带去C. 带去D. 带和去5.如图所示:AB∥CD,MN交CD于点E,交AB于F,BE⊥MN于点E,若∠DEM=55°,则∠ABE=()A.B.C.D.6.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A. B. C. D.7.如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是()A. B.C. D.8.下列图形中,不一定是轴对称图形的是()A. 等腰三角形B. 线段C. 钝角D. 直角三角形9.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. A、C两点之间B. E、G两点之间C. B、F两点之间D. G、H两点之间10.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A. B. C. D.二、填空题(本大题共4小题,共12.0分)11.“早上的太阳从东方升起”是______事件.(填“确定”或“不确定”)12.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为______.13.则∠BAC的度数=______.14.如图所示,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为______.三、计算题(本大题共1小题,共8.0分)15.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19升,求排水时y与x之间的关系式.如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.四、解答题(本大题共9小题,共70.0分)16.计算(1)-32+()-2+(π-2018)0(2)[(a-2b)2-b(a+4b)]÷(-3a)17.先化简再求值:(x+2y)(x-2y)-2y(x-2y),其中x=-1,y=.18.尺规作图,已知线段a、线段c和∠α,用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠α.(要求:作图时,保留作图痕迹,不写作法)19.如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.20.某种产品的商标如图所示,O是线段AC、BD的交点,并且AO=DO.请你在不作辅助线的情况下添加一个条件,证明△ABO和△DCO全等.添加条件______.证明:21.如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是______;(2)若∠BFE=65°,求∠EBF的度数.22.某校在汉字听写大赛活动中需要一名主持人小丽和小芳都想当主持人,小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?23.如图,E,F分别是等边△ABC边AB,AC上的点,且AE=CF,CE,BF交于点P.(1)证明:CE=BF;(2)求∠BPC的度数.24.如果一个三角形有两个角相等,那么这个三角形是等腰三角形,这个结论可以简称为“等角对等边”.(1)如图1,在△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F点,则图中共有______个等腰三角形;(2)如图2,若AB≠AC,在其他条件不变的情况下,边EF与BE、CF间的数量关系为______;(3)如图3,若在△ABC中,∠B的平分线BO与三角形外角平分线CO交于O点,过O点作OE∥BC交AB于E点,交AC于F点,则EF与BE、CF之间有怎样的数量关系?并说明理由.答案和解析1.【答案】C【解析】解:A、a2、a3不是同类项,不能合并,此选项错误;B、(a-2)2=a2-4a+4,此选项错误;C、2a2-3a2=-a2,此选项正确;D、(a+2)(a-2)=a2-4,此选项错误;故选:C.根据合并同类项法则、完全平方公式、平方差公式逐一计算即可判断.此题考查了整式的混合运算,熟练掌握合并同类项法则、完全平方公式、平方差公式是解本题的关键.2.【答案】B【解析】解:7700亿=7700 00000000=7.7×1011,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;B、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:A.根据平行线的判定分别进行分析可得答案.此题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.4.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.5.【答案】B【解析】解:如图,∵BE⊥MN,∴∠MEB=90°.∵∠DEM=55°,∴∠DEB=90°-55°=35°.∵AB∥CD,∴∠ABE=∠DEB=35°.故选:B.由平行线的性质和余角的定义解答.本题考查了平行线的性质和垂线,正确观察图形,熟练掌握平行线的性质和垂直的定义.6.【答案】C【解析】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证即可.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.7.【答案】A【解析】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,∴反映到图象上应选A.故选:A.先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.本题主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系,难度适中.8.【答案】D【解析】解:A、是轴对称图形,故选项错误;B、是轴对称图形,故选项错误;C、是轴对称图形,故选项错误;D、不一定是轴对称图形如不是等腰直角三角形,故选项正确.故选:D.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.【答案】B【解析】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.【答案】B【解析】解:所有的情况有:2,4,6;2,4,8;2,4,10;2,6,8;2,6,10;2,8,10;4,6,8;4,6,10;4,8,10;6,8,10,共10种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,则P=.故选:B.找出五条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.11.【答案】确定【解析】解:“早上的太阳从东方升起”是必然事件,属于确定事件,故答案为:确定.根据事件的可能性得到相应事件的类型即可.本题主要考查随机事件,用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.【答案】【解析】解:输出数据的规律为,当输入数据为8时,输出的数据为=.根据图表找出输出数字的规律,直接将输入数据代入即可求解.此题主要考查根据已有输入输出数据找出它们的规律,进而求解.13.【答案】110°【解析】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,则2(∠B+∠C)=140°,解得,∠B+∠C=70°,∴∠BAC=110°,故答案为:110°.根据线段的垂直平分线的性质得到DA=DB,EA=EC,根据等腰三角形的性质得到∠DAB=∠B,∠EAC=∠C,根据三角形内角和定理计算即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.【答案】70°【解析】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为:70°.此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.15.【答案】解:(1)依题意得洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升;(2)∵洗衣机的排水速度为每分钟19升,从第15分钟开始排水,排水量为40升,∴y=40-19(x-15)=-19x+325,∵排水时间为2分钟,∴y=-19×(15+2)+325=2升.∴排水结束时洗衣机中剩下的水量2升.【解析】(1)根据函数图象可以确定洗衣机的进水时间,清洗时洗衣机中的水量;(2)①由于洗衣机的排水速度为每分钟19升,并且从第15分钟开始排水,排水量为40升,由此即可确定排水时y与x之间的关系式;②根据①中的结论代入已知数值即可求解.此题主要考查了一次函数应用,解题的关键首先正确理解题意,然后利用数形结合的思想和待定系数法即可求解.16.【答案】解:(1)原式=-9+4+1=-4;(2)[(a-2b)2-b(a+4b)]÷(-3a)=[(a2-4ab+4b2)-ab-4b2]÷(-3a)=(a2-5ab)÷(-3a)=-a+b.【解析】(1)直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算,进而得出答案.此题主要考查了整式的混合运算以及实数运算,正确掌握相关运算法则是解题关键.17.【答案】解:(x+2y)(x-2y)-2y(x-2y)=x2-4y2-2xy+4y2=x2-2xy,当x=-1,y=时,原式=(-1)2-2×(-1)×=2.【解析】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.【答案】解:如图,作∠MAN=α,在射线BN上截取BC=a,在射线BM上截取BA=c,连接AC,△ABC即为所求.【解析】如图,作∠MAN=α,在射线BN上截取BC=a,在射线BM上截取BA=c,连接AC,△ABC即为所求.本题考查作图-复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.19.【答案】解:(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得:DA=DB,∴△ACD的周长=DA+DC+AC=DB+DC+AC=BC+AC=14cm;(2)设∠CAD=x,则∠BAD=2x,∵DA=DB,∴∠B=∠BAD=2x,在Rt△ABC中,∠B+∠BAC=90°,即:2x+2x+x=90°,x=18°,∠B=2x=36°.【解析】(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.20.【答案】BO=CO【解析】解:添加条件为BO=CO,证明:在△ABO和△DCO中,∵,∴△ABO≌△DCO.故答案为:BO=CO.由AO=DO,结合隐含的条件∠AOB=∠DOC,依据全等三角形的判定添加合适的条件即可得.本题主要考查全等三角形的判定,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题注意:不是所有的条件都可以当作全等的条件.21.【答案】BC'【解析】解:(1)矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上,∴DC的对应线段是BC',故答案为:BC';(2)由翻折的性质得:∠DEF=∠BEF,∵四边形ABCD为矩形,∴AD∥BC.∴∠DEF=∠BFE.∴∠BEF=∠BFE=65°.∴△BEF中,∠EBF=180°-2×65°=50°.(1)依据折叠的性质即可得到DC的对应线段;(2)由翻折的性质得∠DEF=∠BEF,由长方形纸片的上下两边平行,可得∠DEF=∠BFE,所以∠BEF=∠BFE,根据“三角形内角和定理”可知∠EBF的度数.本题主要考查的是翻折的性质、矩形的性质、等腰三角形的判定,解题时注意运用:两直线平行,内错角相等.22.【答案】解:不会同意.因为转盘中有两个3,一个2,这说明小丽去的可能性是=,而小丽去的可能性是,所以游戏不公平.【解析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中只要计算出指针指到2和指针指到3概率是否相等,求出概率比较,即可得出结论.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】证明:(1)∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°-60°=120°.即:∠BPC=120°【解析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.【答案】5 EF=BE+CF【解析】解:(1)如图1,图中共有5个等腰三角形,分别是△AEF、△OEB、△OFC、△OBC、△ABC;(1分)理由是:∵AB=AC,∴∠ACB=∠ABC,△ABC是等腰三角形;∵BO、CO分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=,∠OCB=∠ACO=∠ACB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠ABO=∠OBC=∠EOB=∠OCB=∠FOC=∠FCO,∴△EOB、△OBC、△FOC都是等腰三角形,∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∴∠AEF=∠AFE,∴△AEF是等腰三角形,故答案为:5;(2)如图2,EF=BE+FC.(2分)理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;(5分)∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF;(7分)故答案为:EF=BE+FC(3)如图3,EF=BE-CF,(8分)理由是:∵OE∥BC,BO平分∠ABC,∴∠EBO=∠EOB=∠OBC,∴EB=OE,(10分)同理得:OF=CF,∴EF=OE-OF=BE-CF.(11分)(1)根据等腰三角形的判定、平分线的性质及角平分线可得有5个等腰三角形;(2)由△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.(3)同理得△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,根据图3可得结论.此题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.运用等角对等边这一性质并进行线段的等量代换是正确解答本题的关键.。
2017-2018学年湖北省武汉市汉阳区七年级(下)期末数学试卷一、选择题(每题3分,共36分)1.(3分)实数9的算术平方根是()A.±3B.±C.3D.﹣32.(3分)下面的调查中,不适合抽样调查的是()A.中央电视台《中国诗词大会》的收视率B.调查一批食品的合格情况C.旅客上飞机前的安全检查D.调查某批次汽车的抗撞击能力3.(3分)如图,点E在BC延长线上,下列条件中,不能推断AB∥CD的是()A.∠4=∠3B.∠1=∠2C.∠B=∠5D.∠B+∠BCD=180°4.(3分)如图,根据某机器零件的设计图纸上信息,判断该零件长度(L)合格尺寸在数轴上表示正确的是()A.B.C.D.5.(3分)直角坐标系中点P(a+2,a﹣2)不可能所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)线段MN是由线段EF经过平移得到的,若点E(﹣1,3)的对应点M(2,5),则点F(﹣3,﹣2)的对应点N的坐标是()A.(﹣1,0)B.(﹣6,0)C.(0,﹣4)D.(0,0)7.(3分)下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b8.(3分)若实数m的平方根是3a﹣22和2a﹣3,则的值为()A.B.C.D.9.(3分)如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数()A.46°B.44°C.36°D.22°10.(3分)方程组中,若未知数x、y满足x+y>0,则m的取值范围是()A.m>﹣4B.m≥﹣4C.m<﹣4D.m≤﹣411.(3分)若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x<n ﹣m的解集是()A.x<﹣B.x>C.x>﹣D.x<12.(3分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形,其中标为①的两个长方形是一样的、标为②的两个正方形也是一样的,若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为()A.①②B.②③C.①③D.①②③二、填空题(每空3分,共18分)13.(3分)8的立方根是.14.(3分)已知是关于x,y的二元一次方程2x+ay=4的解,则a的值是.15.(3分)将某班全体同学按课外阅读的不同兴趣分成三组,情况如表格所示,则表中a 的值是.第一组第二组第三组频数1418a 所占百分比b c20% 16.(3分)从一口鱼塘里随机捞出10条鱼,在这些鱼身上做上记号,然后把鱼放回鱼池.过一段时间后,在同样的地方再捞出100条鱼,其中带有记号的鱼有2条,根据抽样调查的方法,估计整个鱼塘约有鱼条.17.(3分)若方程组的解为,则方程组的解是.18.(3分)对于任意实数m,n,定义一种运算m※n=mn﹣m﹣n+3,例如:3※5=3×5﹣3﹣5+3,请根据上述定义解决问题:若a<2※x<7,且关于x的解集中有两个整数解,则a的取值范围是.三、解答题(本大题共66分)19.(8分)解方程组(1)(2)20.(8分)解不等式(组),并在数轴上表示它的解集(1)3x﹣7>x+3(2)21.(8分)学校食堂提供A,B,C三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图.(1)一共抽查了人;(2)购买A套餐人数对应的扇形的圆心角的度数是;(3)如果A,B,C套餐售价分别为5元,12元,18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元.22.(8分)如图,CD⊥AB于D,EF⊥AB于F.(1)求证:EF∥CD;(2)若DE∥BC,EF平分∠AED,求证:CD平分∠ACB.23.(8分)在平面直角坐标系中,O为坐标原点,A(a,b),B(c,d)为平面坐标系中的两点,且+|b﹣d﹣4|=0,其中a,b,c,d为常数.(1)若A(﹣1,﹣2),求△AOB的面积;(2)如果点A在x轴上方平行于x轴且到x轴距离等于2的直线上运动,且△AOB面积等于11,直接写出a的值.24.(10分)经济学家用恩格尔系数来测量居民生活水平(其中恩格尔系数n=),一般说:恩格尔系数越小,生活水平越高,下表是反映居民家庭生活水平的恩格尔系数表.家庭类型贫困家庭温饱家庭小康家庭富裕家庭最富裕家庭恩格尔系数n0.60<n0.50≤n≤0.600.40≤n≤0.490.30≤n≤0.39n≤0.30(1)小明家每月的饮食开支和总支出分别为1350元和3000元,问他家达到什么生活水平?(2)小兵家生活水平还处于温饱家庭每月的家庭总支出1800元,若他家每月的饮食开支x元,求x满足的条件;(3)若小兵家恩格尔系数是0.55,随着他家的收入的增加,饮食开支也提高了20%,那么他家要达到小康水平,求他家的总支出增加的百分比满足的条件.25.(10分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.26.(6分)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“差异数”,将一个“差异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算F(243);(2)若一个“差异数”表示为,(其中1≤a≤9,1≤b≤9,1≤c≤9,且a,b,c均为正整数),则求证:F()=a+b+c;(3)若s,t都是“差异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,直接写出k的最大值.2017-2018学年湖北省武汉市汉阳区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)实数9的算术平方根是()A.±3B.±C.3D.﹣3【分析】依据算术平方根的定义求解即可.【解答】解:∵32=9,∴9的算术平方根是3.故选:C.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.(3分)下面的调查中,不适合抽样调查的是()A.中央电视台《中国诗词大会》的收视率B.调查一批食品的合格情况C.旅客上飞机前的安全检查D.调查某批次汽车的抗撞击能力【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、中央电视台《中国诗词大会》的收视率调查范围广适合抽样调查,故A 不符合题意;B、调查一批食品的合格情况只能适合抽样调查,故B不符合题意;C、旅客上飞机前的安全检查是事关重大的调查,适合普查,故C符合题意;D、调查某批次汽车的抗撞击能力调查具有破坏性适合抽样调查,故D不符合题意;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)如图,点E在BC延长线上,下列条件中,不能推断AB∥CD的是()A.∠4=∠3B.∠1=∠2C.∠B=∠5D.∠B+∠BCD=180°【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠3=∠4,∴AD∥BC,故本选项错误;B、∵∠1=∠2,∴AB∥CD,故本选项正确;C、∵∠B=∠5,∴AB∥CD,故本选项正确;D、∵∠B+∠BCD=180°,∴AB∥CD,故本选项正确.故选:A.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.4.(3分)如图,根据某机器零件的设计图纸上信息,判断该零件长度(L)合格尺寸在数轴上表示正确的是()A.B.C.D.【分析】根据10±0.1的意义分析得出答案.【解答】解:如图所示:该零件长度(L)合格尺寸为10﹣0.1到10+0.1之间,故在数轴上表示正确的是:.故选:C.【点评】此题主要考查了数轴,正确理解“±”的意义是解题关键.5.(3分)直角坐标系中点P(a+2,a﹣2)不可能所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】确定出点P的横坐标比纵坐标大,再根据各象限内点的坐标特征解答.【解答】解:∵(a+2)﹣(a﹣2)=a+2﹣a+2=4,∴点P的横坐标比纵坐标大,∵第二象限内点的横坐标是负数,纵坐标是正数,∴点P不可能在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.(3分)线段MN是由线段EF经过平移得到的,若点E(﹣1,3)的对应点M(2,5),则点F(﹣3,﹣2)的对应点N的坐标是()A.(﹣1,0)B.(﹣6,0)C.(0,﹣4)D.(0,0)【分析】各对应点之间的关系是横坐标加3,纵坐标加2,那么让点F的横坐标加3,纵坐标加2即为点N的坐标.【解答】解:线段MN是由线段EF经过平移得到的,点E(﹣1,3)的对应点M(2,5),故各对应点之间的关系是横坐标加3,纵坐标加2,∴点N的横坐标为:﹣3+3=0;点N的纵坐标为﹣2+2=0;即点N的坐标是(0,0).故选:D.【点评】本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移相同,解决本题的关键是找到各对应点之间的变化规律.7.(3分)下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b【分析】利用不等式的基本性质逐项分析得出答案即可.【解答】解:A、若a<b,则3a<3b,错误;B、若a>b,当c=0时,则ac2=bc2,错误;C、若﹣2a>﹣2b,则a<b,错误;D、若ac2<bc2,则a<b,正确;故选:D.【点评】主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.(3分)若实数m的平方根是3a﹣22和2a﹣3,则的值为()A.B.C.D.【分析】根据平方根的定义可知:3a﹣22和2a﹣3互为相反数,从而求出a与m的值.【解答】解:由平方根的性质可知:3a﹣22+2a﹣3=0,a=5,∴3a﹣22=﹣7∴m=(﹣7)2=49,∴=,故选:A.【点评】本题考查平方根的性质,解题的关键是正确理解平方根的性质,本题属于基础题型.9.(3分)如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数()A.46°B.44°C.36°D.22°【分析】由l1∥l2,可得:∠1=∠3=44°,由l3⊥l4,可得:∠2+∠3=90°,进而可得∠2的度数.【解答】解:如图,∵l1∥l2,∴∠1=∠3=44°,∵l3⊥l4,∴∠2+∠3=90°,∴∠2=90°﹣44°=46°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.10.(3分)方程组中,若未知数x、y满足x+y>0,则m的取值范围是()A.m>﹣4B.m≥﹣4C.m<﹣4D.m≤﹣4【分析】将方程组中两方程相加,便可得到关于x+y的方程,再根据x+y>0,即可求出m的取值范围.【解答】解:,①+②得,(x+2y)+(2x+y)=(1+m)+3,即3x+3y=4+m,可得x+y=,∵x+y>0,∴>0,解得m>﹣4.故选:A.【点评】此题考查的是二元一次方程组和不等式的性质,要注意x+y>0,则解出x,y关于m的式子,最终求出m的取值范围.11.(3分)若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x<n ﹣m的解集是()A.x<﹣B.x>C.x>﹣D.x<【分析】先解关于x的不等式mx﹣n>0,得出解集,再根据不等式的解集是x<,从而得出m与n的关系,选出答案即可.【解答】解:∵关于x的不等式mx﹣n>0的解集是x<,∴m<0,,解得m=5n,∴n<0,∴解关于x的不等式(m+n)x<n﹣m得,x,∴x,故选:C.【点评】本题考查了不等式的解集以及不等式的性质,要熟练掌握不等式的性质3.12.(3分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形,其中标为①的两个长方形是一样的、标为②的两个正方形也是一样的,若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为()A.①②B.②③C.①③D.①②③【分析】首先设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,原来大长方形的周长是l,判断出l=2(a+2b+c),a=b+d,b=c+d;然后分别判断出图形①、图形②的周长都等于原来大长方形的周长的,所以它们的周长不用测量就能知道,而图形③的周长不用测量无法知道,据此解答即可.【解答】解:如图1:设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,原来大长方形的周长是l,则l=2(a+2b+c),根据图示,可得,(1)﹣(2),可得:a﹣b=b﹣c,∴2b=a+c,∴1=2(a+2b+c)=2×2(a+c)=4(a+c),或l=2(a+2b+c)=2×4b=8b,∴2(a+c)=,4b=,∵图形①的周长是2(a+c),图形②的周长是4b=的值一定,∴图形①②的周长是定值,不用测量就能知道,图形③的周长不用测量无法知道.∴分割后不用测量就能知道周长的图形的标号为①②.故选:A.【点评】此题主要考查了整式的加减,中心对称的性质和应用,要熟练掌握,解答此题的关键是要明确中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.二、填空题(每空3分,共18分)13.(3分)8的立方根是2.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.14.(3分)已知是关于x,y的二元一次方程2x+ay=4的解,则a的值是1.【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:2+2a=4,解得:a=1,故答案为:1【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.(3分)将某班全体同学按课外阅读的不同兴趣分成三组,情况如表格所示,则表中a 的值是8.第一组第二组第三组频数1418a 所占百分比b c20%【分析】首先根据各小组的频率之和等于1得出第一组与第二组的频率和,然后求出数据总数,从而求出a的值.【解答】解:∵1﹣20%=80%,∴(14+18)÷80%=40,∴a=40×20%=8.故答案为:8.【点评】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频率之和等于1,频率=.16.(3分)从一口鱼塘里随机捞出10条鱼,在这些鱼身上做上记号,然后把鱼放回鱼池.过一段时间后,在同样的地方再捞出100条鱼,其中带有记号的鱼有2条,根据抽样调查的方法,估计整个鱼塘约有鱼500条.【分析】设鱼塘里约有鱼x条,由于从鱼塘里随机捞出10条鱼做上记号,然后放回鱼池里去,待带标记的鱼完全混合于鱼群后,再在同样的地方再捞出100条鱼,其中带有记号的鱼有2条,由此可以列出方程100:2=x:10,解此方程即可求解.【解答】解:设整个鱼塘约有鱼x条,由题意得:100:2=x:10,解得:x=500.答:整个鱼塘约有鱼500条.【点评】本题主要考查了利用样本估计总体的思想,首先设整个鱼塘约有鱼x条,然后利用样本估计总体的思想即可列出方程解决问题.17.(3分)若方程组的解为,则方程组的解是.【分析】在此题中,两个方程组除未知数不同外其余都相同,所以可用换元法进行解答.【解答】解:在方程组中,设x+2=a,y﹣1=b,则变形为方程组,∵方程组的解为,∴.故答案为:.【点评】考查了二元一次方程组的解,这类题目的解题关键是灵活运用二元一次方程组的解法,观察题目特点灵活解题.18.(3分)对于任意实数m,n,定义一种运算m※n=mn﹣m﹣n+3,例如:3※5=3×5﹣3﹣5+3,请根据上述定义解决问题:若a<2※x<7,且关于x的解集中有两个整数解,则a的取值范围是4≤a<5.【分析】利用题中的新定义化简所求不等式,求出a的范围即可.【解答】解:根据题意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有两个整数解,∴3≤a﹣1<4,∴4≤a<5,故答案为:4≤a<5.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.三、解答题(本大题共66分)19.(8分)解方程组(1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),①+②得:2x=6,解得:x=3,把x=3代入①得:y=﹣1,则方程组的解为;(2),①+②得:3x﹣y=3④,①+③得:4x=6,解得:x=1.5,把x=1.5代入④得:y=1.5,把x=1.5,y=1.5代入①得:z=3.5,则方程组的解为.【点评】此题考查了解二元一次方程组,以及解三元一次方程组,熟练掌握运算法则是解本题的关键.20.(8分)解不等式(组),并在数轴上表示它的解集(1)3x﹣7>x+3(2)【分析】(1)先解不等式,再把不等式的解集表示在数轴上即可.(2)解不等式组,再把不等式组的解集表示在表示在数轴上.【解答】解:(1)3x﹣7>x+3移项得:3x﹣x>3+7,合并同类项得:2x>10,把x的系数化为1得:x>5;把不等式的解集表示在数轴上:(2)解①得:x≥2,解②得:x>﹣1.3,不等式组的解集为:x≥2.把不等式组的解集表示在数轴上:【点评】本题考查了不等式和不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.(8分)学校食堂提供A,B,C三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图.(1)一共抽查了100人;(2)购买A套餐人数对应的扇形的圆心角的度数是108°;(3)如果A,B,C套餐售价分别为5元,12元,18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元.【分析】(1)根据C类别人数及其百分比计算可得;(2)用360°乘以A套餐人数所占比例即可得;(3)先求出A、B所对应的百分比,再列式1000×5×30%+1000×12×48%+1000×18×22%计算可得.【解答】解:(1)本次调查的总人数为22÷22%=100人,故答案为:100;(2)购买A套餐人数对应的扇形的圆心角的度数是360°×=108°,故答案为:108°;(3)A对应百分比为30÷100×100%=30%,B对应百分比为(100﹣30﹣22)÷100×100%=48%,则估计食堂当天中餐的总销售额大约是1000×5×30%+1000×12×48%+1000×18×22%=11220元.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)如图,CD⊥AB于D,EF⊥AB于F.(1)求证:EF∥CD;(2)若DE∥BC,EF平分∠AED,求证:CD平分∠ACB.【分析】(1)依据CD⊥AB于D,EF⊥AB于F,可得∠BDC=∠EFB=90°,进而得到EF∥CD;(2)依据EF平分∠AED,可得∠AEF=∠DEF,再根据平行线的性质,即可得到∠AEF =∠ACD,∠DEF=∠CDE=∠BCD,即可得出∠ACD=∠BCD,可得CD平分∠ACB.【解答】证明:(1)∵CD⊥AB于D,EF⊥AB于F.∴∠BDC=∠EFB=90°,∴EF∥CD;(2)∵EF平分∠AED,∴∠AEF=∠DEF,∵DE∥BC,EF∥CD,∴∠AEF=∠ACD,∠DEF=∠CDE=∠BCD,∴∠ACD=∠BCD,∴CD平分∠ACB.【点评】本题主要考查了平行线的性质以及角平分线的定义,解决问题的关键是运用等量代换进行推导.23.(8分)在平面直角坐标系中,O为坐标原点,A(a,b),B(c,d)为平面坐标系中的两点,且+|b﹣d﹣4|=0,其中a,b,c,d为常数.(1)若A(﹣1,﹣2),求△AOB的面积;(2)如果点A在x轴上方平行于x轴且到x轴距离等于2的直线上运动,且△AOB面积等于11,直接写出a的值.【分析】(1)根据点A的坐标可得a、b的值,根据绝对值和算术平方根的非负性列方程组可得c和d的值,利用面积差可得结论;(2)点A在x轴上方平行于x轴且到x轴距离等于2的直线上运动,可知:点A在第一象限或第二象限,且纵坐标为2,可得b=2,代入(1)中的方程组可得d的值;所以分两种情况:①当点A在第一象限时,②当点A在第二象限时,根据面积等于11,列式可得OM的长,从而根据图形得结论.【解答】解:(1)∵A(﹣1,﹣2),∴a=﹣1,b=﹣2,∵+|b﹣d﹣4|=0,∴,∴,∴B(2,﹣6),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴S△AOB=S梯形CADB﹣S△AOC﹣S△BOD=(2+6)×3﹣×1×2﹣×2×6=5;(2)由题意得:b=2,∵b﹣d﹣4=0,∴d=﹣2,分两种情况:①当点A在第一象限时,过A作AE⊥x轴于E,过B作BF⊥x轴于F,如图2,∴AE=BF=2,设AB交x轴于M,S△ABO=S△AOM+S△BOM,=,=OM(AE+BF)=11,∴OM=,∵AE=BF易得△AEM≌△BFM,∴EM=FM,∵a(a,2),B(c,﹣2),∴a+2EM=c,∵a﹣c+3=0,∴EM=,∴a=﹣=4;同理得:如图3,c+2EM=a,2EM=a﹣c=﹣3,不符合题意;②当点A在第二象限时,如图4,同理得:OM=,EM=,∴﹣a+2EM=﹣c或﹣c+2EM=﹣a,∴a=﹣﹣=﹣7,综上所述,a的值为4或﹣7.【点评】本题考查了坐标和图形的性质、绝对值和算术平方根的非负性、三角形的面积,综合性较强,解答本题要求我们熟悉各个知识点,能将所学的知识融会贯通,第2问注意数形结合的思想,容易漏解.24.(10分)经济学家用恩格尔系数来测量居民生活水平(其中恩格尔系数n=),一般说:恩格尔系数越小,生活水平越高,下表是反映居民家庭生活水平的恩格尔系数表.家庭类型贫困家庭温饱家庭小康家庭富裕家庭最富裕家庭恩格尔系数n0.60<n0.50≤n≤0.600.40≤n≤0.490.30≤n≤0.39n≤0.30(1)小明家每月的饮食开支和总支出分别为1350元和3000元,问他家达到什么生活水平?(2)小兵家生活水平还处于温饱家庭每月的家庭总支出1800元,若他家每月的饮食开支x元,求x满足的条件;(3)若小兵家恩格尔系数是0.55,随着他家的收入的增加,饮食开支也提高了20%,那么他家要达到小康水平,求他家的总支出增加的百分比满足的条件.【分析】(1)根据恩格尔系数的定义可求出小明家恩格尔系数的值,对照表格即可得出结论;(2)根据恩格尔系数的定义结合小兵家生活水平还处于温饱家庭,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围;(3)根据恩格尔系数的定义结合小兵家生活水平要达到小康水平,即可得出关于y的一元一次不等式组,解之即可得出y的取值范围.【解答】解:(1)1350÷3000=0.45,∵0.40<0.45<0.49,∴小明家达到小康家庭.(2)依题意,得:,解得:900≤x≤1080.答:x满足的条件为900≤x≤1080.(3)设他家的总支出增加的百分比为y,依题意,得:,解得:%≤y≤65%.答:他家的总支出增加的百分比不少于%且不多于65%.【点评】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.25.(10分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【分析】(1)设每本文学名著x元,动漫书y元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【解答】解:(1)设每本文学名著x元,动漫书y元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著a本,动漫书为(a+20)本,根据题意可得:,解得:,因为取整数,所以a取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【点评】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.26.(6分)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“差异数”,将一个“差异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算F(243);(2)若一个“差异数”表示为,(其中1≤a≤9,1≤b≤9,1≤c≤9,且a,b,c均为正整数),则求证:F()=a+b+c;(3)若s,t都是“差异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,直接写出k的最大值.【分析】(1)根据F(n)的计算公式代入就可得.(2)差异数abc表示为100a+10b+c,再代入计算公式就可得.(3)根据(2)的结论可求s=x+5,t=y+6,再代入F(s)+F(t)=18,可求x,y的值,最后代入可求K的值.【解答】解:(1)F(243)=(342+234+423)÷111=9(2)F()=(100a+10c+b+100c+10b+a+100b+10a+c)÷111=111(a+b+c)÷111=a+b+c(3)(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴,,,,,∵s,t是差异数,∴x≠3,x≠2,y≠1,y≠5,∴,,∴K==或1或∴K的最大值为【点评】本题考察学生的阅读理解能力,以及二元一次方程的运用.。
2017-2018学年四川省成都市成华区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图,∠1和∠2是一对()A. 对顶角B. 同位角C. 内错角D. 同旁内角2.计算a3•a2正确的是()A. aB. a5C. a6D. a93.下列各图中,∠1与∠2互为余角的是()A. B. C. D.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A. 7.6×10−9B. 7.6×10−8C. 7.6×109D. 7.6×1085.下列计算正确的是()A. 3a+4b=7abB. (ab3)3=ab6C. (a+2)2=a2+4D. x12÷x6=x66.下面各语句中,正确的是()A. 同角或等角的余角相等B. 过一点有且只有一条直线与已知直线平行C. 互补的两个角不可能相等D. 相等的角是对顶角7.在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下表关系:x(kg)01234…y(cm)1010.51111.512…下列说法不正确的是()A. y随x的增大而增大B. 所挂物体质量每增加1kg弹簧长度增加0.5cmC. 所挂物体为7kg时,弹簧长度为13.5cmD. 不挂重物时弹簧的长度为0cm8.如图,下列判断中错误的是()A. 由∠A+∠ADC=180∘得到AB//CDB. 由AB//CD得到∠ABC+∠C=180∘C. 由∠1=∠2得到AD//BCD. 由AD//BC得到∠3=∠49.如图,点E在线段BA的延长线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A. 50∘B. 40∘C. 30∘D. 20∘10. 星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min 后回家,图中的折线段OA -AB -BC 是她出发后所在位置离家的距离s (km )与行走时间t (min )之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A. B.C.D.二、填空题(本大题共9小题,共36.0分)11. 某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中______是自变量,______是因变量. 12. 如果一个角的补角是150°,那么这个角的余角的度数是______度. 13. 如果二次三项式x 2+mx +25是一个完全平方式,则m =______. 14. 园林队在某公司进行绿化,中间休息了一段时间,已知绿化面积S (平方米)与工作时间t (小时)的关系的图象如图所示,则休息后园林队每小时绿化面积为______平方米. 15. 计算:42016×(-0.25)2017=______.16. 如图,AB ∥EF ,CD ⊥EF 于点D ,若∠ABC =40°,则∠BCD的度数是______.17. 若3m =6,9n =2,则32m -4n +1=______.18. 已知(x -y )2=259,x +y =76,则xy 的值为______.19. 我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a +b )n (n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序);)2017展开式中含x2015项的系数是______.请依据上述规律,写出(x−2x三、计算题(本大题共3小题,共24.0分)20.计算下列各题)−2(1)32÷(-2)3+(2017-π)0+|-32+1|−(12(2)4xy2(2x-xy)÷(-2xy)2(3)(x-1)(x-1)(x2-1)21.计算下列各题:(1)20172-2018×2016(2)(3x-y+2)(3x+y-2)22.先画简,再求值:(x+y)2-(x+y)(x-y)+y(x-2y),其中x,y满足(x-1)2+|1-y|=0四、解答题(本大题共6小题,共60.0分)23.根据下面解答过程,完成下面填空:如图,已知AB∥CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.24.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.试说明:EC∥DF.25.小明在暑假社会实践活动中,以每千克1.2元的价格从批发市场购进若干千克西瓜市场上去销售,在销售了40千克之后,余下的打5折全部售完.销售金额y(元)售出西瓜的千克数x(千克)之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系;(2)小明这次社会实践活动赚了多少钱?(3)若要使这次活动赚44元钱,问余下的西瓜应打几折销售完?26.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:(a+b)2=a2+2ab+b2.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:______.方法2:______.(2)由(1)中两种不同的方法,你能得到怎样的等式?请说明这个等式成立;(3)已知(2m+n)2=13,(2m-n)2=5,请利用(2)中的等式,求mn的值.27.已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA 的平分线于点P,求∠BPC的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA 的平分线于点P,求∠BPC的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.28.阅读理解并完成下面问题:我们知道,任意一个正整数c都可以进行这样的因式分解:c=p×q(p,q是正整数),在c的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是c的最佳分解.并规定:F (c )=pq (其中p ≤q ).例如:12可以分解成1×12,2×6或3×4,因为|1-12|>|2-6|>|3-4|,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数,若m 是一个完全平方数,求F (m )的值;(2)如果一个两位正整数t ,交换其个位数字与十位数字得到的新两位数减去原数所得的差为18,那么我们称这个两位正整数t 为“吉祥数”,求符合条件的所有“吉祥数”;(3)在(2)中的所有“吉祥数”中,求F (t )的最小值.答案和解析1.【答案】C【解析】解:∠1与∠2是内错角,故选:C.∠1与∠2符合内错角定义.本题考查了内错角的判别,熟练掌握内错角的定义是关键.2.【答案】B【解析】解:a3•a2=a3+2=a5.故选:B.根据同底数幂相乘,底数不变,指数相加计算后直接选取答案.本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.【答案】B【解析】解:∵三角形的内角和为180°,∴选项B中,∠1+∠2=90°,即∠1与∠2互为余角,故选B.如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.本题考查了余角的定义,掌握定义并且准确识图是解题的关键.4.【答案】A【解析】解:0.0000000076用科学记数法表示为7.6×10-9.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【答案】D【解析】解:A、3a+4b,无法计算,故此选项错误;B、(ab3)3=a3b9,故此选项错误;C、(a+2)2=a2+4a+4,故此选项错误;D、x12÷x6=x6,故此选项正确.故选:D.直接利用同底数幂的乘除运算法则以及积的乘方运算法则、合并同类项法则分别计算得出答案.此题主要考查了同底数幂的乘除运算以及积的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.6.【答案】A【解析】解:A、同角或等角的余角相等,正确;B、过直线外一点有且只有一条直线与已知直线平行,错误;C、互补的两个角可能相等,错误;D、相等的角不一定是对顶角,错误;故选:A.A、根据余角的性质进行判断;B.根据平行公理进行判断;C.根据补角的定义进行判断;D.根据对顶角的定义进行判断.本题考查了对顶角的定义,平行公理,余角的性质,是基础知识,比较简单.7.【答案】D【解析】解:A、y随x的增大而增大,正确;B、所挂物体质量每增加1kg弹簧长度增加0.5cm,正确;C、所挂物体为7kg时,弹簧长度为13.5cm,正确;D、不挂重物时,弹簧的长度为10cm,错误;故选:D.由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度进行解答即可.本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.8.【答案】D【解析】解:A、由∠A+∠ADC=180°得到AB∥CD(同旁内角互补,两直线平行),正确;B、由AB∥CD得到∠ABC+∠C=180°(两直线平行,同旁内角互补),正确;C、由∠1=∠2得到AD∥BC(内错角相等,两直线平行),正确;D、由AD∥BC得到∠1=∠2(两直线平行,内错角相等),所以此选项错误.故选:D.根据平行线的性质与判定,逐一判定.此题考查了平行线的判定与性质.解题时注意内错角与同旁内角的确定,关键是找到哪两条直线被第三条直线所截构造的内错角与同旁内角.9.【答案】C【解析】解:∵AD∥BC,∴∠B=∠EAD=30°.∵AD平分∠EAC,∴∠DAC=∠EAD=30°.∵AD∥BC,∴∠C=∠DAC=30°.故选:C.首先根据平行线的性质可得∠EAD=∠B,∠DAC=∠C,再根据AD是∠EAC的平分线,可得∠EAD=∠CAD.利用等量代换可得∠B=∠C=30°.此题主要考查了平行线的性质,以及角平分线的性质,关键是掌握平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10.【答案】B【解析】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选:B.根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.本题考查了函数的图象,解题的关键是分析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,根据函数图象分析出大致的运动路径是关键.11.【答案】销售量;销售收入【解析】解:根据题意知,公司的销售收入随销售量的变化而变化,所以销售量是自变量,收入数为因变量.故答案为:销售量,销售收入.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量,会变动的数为自变量.本题考查的是对函数定义中自变量和因变量的判定和对定义的理解.12.【答案】60【解析】解:180°-150°=30°,90°-30°=60°.故答案为:60°.首先求得这个角的度数,然后再求这个角的余角.本题主要考查的是补角和余角的定义,掌握补角和余角的定义是解题的关键.13.【答案】±10【解析】解:∵x2+mx+25=x2+mx+52,∴mx=±2×5×x,解得m=±10.故答案为:±10.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.14.【答案】50【解析】解:休息后2小时内绿化面积为160-60=100平方米.∴休息后园林队每小时绿化面积为.故答案为:50根据休息后2小时的绿化面积100平方米,即可判断;本题考查函数的图象,解题的关键是读懂图象信息,属于中考常考题型.15.【答案】-0.25【解析】解:42016×(-0.25)2017=[4×(-0.25)]2016×(-0.25)=-0.25.故答案为:-0.25根据幂的乘方和积的乘方法则解答即可.此题考查幂的乘方和积的乘方,关键是根据法则计算.16.【答案】130°【解析】解:如图,过C作HK∥AB.∴∠BCK=∠ABC=40°.∵CD⊥EF,∴∠CDF=90°.∵HK∥AB∥EF.∴∠KCD=90°.∴∠BCD=∠BCK+∠KCD=130°.故选答案为:130°.过C作HK∥AB.利用平行线的性质得出∠B=∠BCK,∠KCD=90°,进而得出答案.此题主要考查了平行线的判定与性质,作出正确辅助线是解题关键.17.【答案】27【解析】解:原式=32m÷34n×3=3m×3m÷92n×3=6×6÷4×3=27故填27.根据题意进行同底数幂的运算,注意同底数幂相乘底数不变指数相加,根据此可得出答案.本题考查代数式的求值,关键在于掌握同底数幂相乘底数不变指数相加.18.【答案】-1748【解析】解:∵x+y=.∴(x+y)2=x2+y2+2xy=,(x-y)2==x2+y2-2xy.∴xy===-.故答案为:-.直接利用完全平方公式将原式变形进而得出答案.此题主要考查了完全平方公式,正确将原式变形是解题关键.19.【答案】-4034【解析】解:(x-)2017展开式中含x2015项的系数,由(x-)2017=x2017-2017•x2016•()+…可知,展开式中第二项为-2017•x2016•()=-4034x2015,∴(x-)2017展开式中含x2015项的系数是-4034,故答案为:-4034.首先确定x2015是展开式中第几项,根据杨辉三角即可解决问题.本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.20.【答案】解:(1)原式=32÷(-8)+1+9-1-4=-4+1+9-1+4=9;(2)原式=(8x2y2-4x2y2)÷4x2y2=2-y;(3)原式=(x2-2x+1)(x2-1)=x4-x2-2x3+2x+x2-1=x4-2x3+2x-1.【解析】(1)根据实数混合运算顺序和运算法则计算可得;(2)先计算乘法,再计算除法可得;(3)根据多项式乘多项式依次计算可得.本题主要考查实数与整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则.21.【答案】(1)解:原式=20172-(2017+1)(2017-1)=20172-(20172-1)=1;(2)解:原式=[3x-(y-2)][3x+(4-2)]=9x2-(y-2)2=9x2-y2+4y-4.【解析】(1)原式变形后,利用平方差公式计算即可求出值;(2)原式利用平方差公式,完全平方公式计算即可求出值.此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.22.【答案】解:原式=x2+2xy+y2-(x2-y2)+xy-2y2=x2+2xy+y2-x2+y2+xy-2y2=3xy.∵(x-1)2+|1-y|=0.∴x=1,y=1.把x=1,y=1代入原式=3×1×1=3.【解析】根据平方差公式和完全平方公式进行计算,再根据非负数性质得出x,y的值,代入计算即可.本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简与非负数性质是解此题的关键.23.【答案】解:∵AB∥CD(已知).∴∠A+∠ACD=180°(同旁内角已互补,两直线平行).∵∠A =105°.∴∠ACD =75°.∵∠DCE =∠ACD -∠ACE ,∠ACE =51°.∴∠DCE =24°.∵CD ∥EF (已知).∴∠E =∠DCE (两直线平行、内错角相等).∴∠E =24°.【解析】直接利用平行线的性质得出∠ACD=75°,进而得出∠DCE=24°,再得出∠E=∠DCE 即可得出答案.此题主要考查了平行线的性质,正确得出∠DCE 的度数是解题关键. 24.【答案】解:∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠DBF =12∠ABC ,∠ECB =12∠ACB ,∵∠ABC =∠ACB ,∴∠DBF =∠ECB ,∵∠DBF =∠F ,∴∠ECB =∠F ,∴EC ∥DF .【解析】 此题考查了平行线的判定,用到的知识点是同位角相等,两直线平行,关键是证出∠ECB=∠F .根据BD 平分∠ABC ,CE 平分∠ACB ,得出∠DBF=∠ABC ,∠ECB=∠ACB ,∠DBF=∠ECB ,再根据∠DBF=∠F ,得出∠ECB=∠F ,即可证出EC ∥DF .25.【答案】解:(1)设y =kx .∵y =kx 过点(40,80).∴y =2x .(2)由y =2x 可得,x ≤40时售价为2元.∵当x >40时,售价为2×0.5=1元. (110-80)÷1=30, ∴这批西瓜的总重量-30+40=70千克.,∴40×2+(70-40)×1-70×1.2=26元. (3)设余下的西瓜打a 折.40×2+30×2×a -70×1.2=44.80×60a -84=44. ∴a =0.8.∴当余下的西瓜打8折销售,这次活动可赚44元.【解析】(1)设y=kx.将(40,80)代入求解即可;(2)先求得降价后的单价,然后可求得降价后出售的重量,从可求得这批西瓜的总总量,然后可求得这次社会实践活动赚了多少钱;(3)设余下的西瓜打a折,根据这次活动赚44元钱列方程求解即可.本题主要考查的是一次函数的应用,求得这批西瓜的总重量是解题的关键.26.【答案】(1)4ab;(a+b)2-(a-b)2.(2)(a+b)2-(a-b)2=4ab,成立.证明:∵(a+b)2-(a-b)2=a2+2ab+b2-(a2-2ab+b2)=4ab.∴(a+b)2-(a-b)2=4ab.(3)由(2)得:(2m+n)2-(2m-n)2=8mn.∵(2m+n)2=13,(2m-n)2=5,∴8mn=13-5=8.∴mn=1.【解析】解:(1)阴影部分的面积为:4ab或(a+b)2-(a-b)2,故答案为:4ab;(a+b)2-(a-b)2.(2)见答案;(3)见答案.(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积-小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据(2)的结论代入即可解答.本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等,列等式是解题的关键.27.【答案】解:(1)如图1,过点P作PE∥MN.∵PB平分∠DBA.∠DBA=40°.∴∠BPE=12∴∠BPE=∠DBP=40°(两直线平行,内错角相等).∠DCA=25°.同理可证.∠CPE=∠PCA=12∴∠BPC=40°+25°=65°.(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°-80°=100°.∵BP平分∠DBA.∠DBA=50°.∴∠DBP=12∵MN∥PE,∴∠BPE=180°-∠DBP=130°(两直线平行,同旁内角互补).∵PC平分∠DCA.∠DCA=25°(两直线平行,内错角相等).∴∠PCA=∠CPE=12∴∠BPC=130°+25°=155°.(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=40°=∠BPE(两直线平行等,内错角相等).∴CP平分∠DCA.∠DCA=180°-∠DCG=130°.∠DCA=65°.∴∠PCA=12∴∠CPE=180°-∠PCA=150°(两直线平行,同旁内角互补).∴∠BPC=40°+115°=155°.【解析】(1)过点P作PE∥MN,根据平行线的性质和角平分线的性质得:.,相加可得结论;(2)如图2,过点P作PE∥MN,根据平角可得∠DBA=180°-80°=100°.由角平分线和平行线的性质得∠BPE=130°.,相加可得结论;(3)如图3,作平行线,同理可得结论.本题考查了角平分线和平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.28.【答案】解:(1)∵m 是完全平方数∴m =p ×q 且p =q ∴F (m )=p q =1;(2)设正整数为:10x +y ,则t ′=10y +x ,∵10y +x -(10x +y )=18,则9y -9x =18,故(y -x )=2.∴t 可取13,24,35,46,57,68,79;(3)由(2)得.∴F (13)=113,F (24)=46=23,F (35)=57,F (46)=223,F (57)=319,F (68)=417,F (79)=179. ∵57>23>417>319>223>113>179.∴F (t )的最小值为179.【解析】(1)直接利用完全平方数的概念分析得出答案;(2)利用一个两位正整数t ,交换其个位数字与十位数字得到的新两位数减去原数所得的差为18,得出等式求出答案;(3)利用(2)中所求,分别计算得出答案.此题主要考查了完全平方数,正确利用新定义得出符合条件的数字是解题关键.。
2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。
2、从80减少到50,减少了()%;从50增加到80,增加了()%。
3、某班有60人,缺席6人,出勤率是()%。
4、如果3a=5b(a、b≠0),那么a:b=()。
5、一个圆锥的体积12dm3 ,高3dm,底面积是()。
6、甲、乙两数的比是5:8,甲数是150,乙数是()。
7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。
照这样的折扣,原价800元的西装,现价()元。
9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。
10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。
桶重()千克,油重()千克。
11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。
12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。
如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。
13、找出规律,填一填。
3,11,20,30,(),53,()。
二、判断题:对的在括号打√,错的打×。
(每小题1分共5分)1、0是负数。
()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。
()3、时间一定,路程和速度成正比例。
()4、栽120棵树,都成活了,成活率是120%。
()5、圆柱的体积大于与它等底等高的圆锥的体积。
()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。
2017-2018学年七年级(下)期末数学试卷一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的( )2•已知:如图,直线a , b 被直线c 所截,且a // b ,若/仁70°则/2的度数 是()D.D. 调查一架隐形战机的各零部件的质量情况8. 甲、乙两班学生植树造林,已知甲班每天比乙班多植所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据题意列出方程是() A 孔叫 B _ 'C 詆 ⑴D 山:U I5 9.已知x - =2,则代数式5X 2+ - 3的值为( ) 宣 xA . 27 B. 7C. 17 D . 2 10 .用如图①中的长方形和正方形纸板作侧面和底面, 做成如图②的竖式和横式 的两种无盖纸盒.现在仓库里有 m 张正方形纸板和n 张长方形纸板,如果做两 种纸盒若干个,恰好使库存的纸板用完,则m+n 的值可能是()A . 2013B . 2014 C. 2015 D . 2016二、填空题(每小题3分,共30分)11 .用科学记数法表示:0.00000706=—.12 .当x=—时,分式的值为0 .13 .如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC 的条件:—(一个即可). 7. A . 一儿一[i=2 1次方程组:「的解是() 5棵树,甲班植80棵树B .C - •&314 .某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是16•若多项式x2- kx+9是一个完全平方式,则常数k的值是_ .r“3&+2b a17 •计算: _ _ - -r~二=_____ •a a -b18. 若多项式x2- mx+n (m、n是常数)分解因式后,有一个因式是x- 2,则2m - n的值为___ •19. 已知:如图放置的长方形ABCD和等腰直角三角形EFG中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点F、G、D、C 在同一直线上,点G 和点D重合,现将△ EFG沿射线FC向右平移,当点F和点D重合时停止移动,若△ EFG与长方形重叠部分的面积是4cm2,则△ EFG向右平移了②若a=3,则b+c=9;③若C M0,则(1 - a) (1 - b) = +—a④若c=5,则a2+b2=15.其中正确的是____ (把所有正确结论的序号都填上)___ cm.,c满足a+b=ab=c,有下列结论:a^3ab+b =①若、解答题(共50 分)21 •计算下列各题(1)(-3) 1 2+ ( n+ 了)—2(2)(2x- 1) 2-(x- 1) (4x+3)(1)22 •解方程(组)3x+y=-2(2) ^― - : =2.' 72x-l l-2x23. 分解因式(1)2X2- 8(2)3灼-6xy2+3y3.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.1 本次接收随机抽样调查的男生人数为人,扇形统计图中良好”所对应的圆心角的度数为____________ ;2 补全条形统计图中优秀”的空缺部分;25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图2两幅不完整的统计图,请根据图中信息回答下列问题:合格 20% 不合格优秀30%(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到良好的人数.26. 为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A, B, C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套) 乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1) 问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元?(2) 求a, b的值.四、附加题(每小题10分,共20分)27. 已知:直线a// b,点A, B分别是a, b上的点,APB是a, b之间的一条折备用图备用图(1) ______________________________ 若/ 仁33°, / APB=74,则/2= 度.(2)若/ Q的一边与PA平行,另一边与PB平行,请探究/ Q,Z 1, 2间满足的数量关系并说明理由.(3)若/ Q的一边与PA垂直,另一边与PB平行,请直接写出/ Q,Z 1 , 2之间满足的数量关系.28•教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= ___ .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.参考答案与试题解析一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的()【考点】利用平移设计图案.【分析】根据平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等可得答案.【解答】解:根据平移可得B是平移可得到图形中的图案,故选:B.2•已知:如图,直线a,b被直线c所截,且a// b,若/仁70°则/2的度数是()A. 130°B. 110°C. 80°D. 70°【考点】平行线的性质.【分析】由a/b,根据两直线平行,同位角相等,即可求得/ 3的度数,又由邻补角的定义即可求得/ 2的度数.【解答】解:I a/ b,.•./ 3=Z 仁70°,vZ 2+Z 3=180°,•••/ 2=110°.3•分式打一有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 1【考点】分式有意义的条件.【分析】分母不为零,分式有意义,依此求解.【解答】解:由题意得X-1M0,解得X M 1.故选A.4. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a【考点】同底数幕的除法;同底数幕的乘法;幕的乘方与积的乘方.【分析】根据同底数幕的乘法、除法,积的乘方,幕的乘方,即可解答.【解答】解:A、a3x a4=a7,故本选项错误;B、a5* a=a\故本选项错误;C (ab2)3=a3b6,故本选项错误;D、正确;故选:D.5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y) =ax+ayB. x - 4x+4= (x- 2)C. 2a- 4b+2=2 (a-2b)D. x2- 16+3x= (x-4) (x+4) +3x【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据定义即可判断.【解答】解:A、结果不是整式的乘积的形式,不是因式分解,选项错误;B、是因式分解,选项正确;C 2a-4b+2=2 (a-2b+1),选项错误;D、结果不是整式的乘积的形式,不是因式分解,选项错误.故选B.6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查D. 调查一架隐形战机的各零部件的质量情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的杀伤半径,适合抽查,选项错误;B、了解全国中学生的身高情况,适合抽查,选项错误;C、对市场上某种饮料质量情况的调查,适合抽查,选项错误;D、调查一架隐形战机的各零部件的质量情况,适合全面调查,选项正确. 故选D.【考点】解二元一次方程组.【分析】方程组利用代入消元法求出解即可.7.A .fx+2y=10,尸2葢的解是(D. *y=2['、尸2\ 7=4 C.把②代入①得:x+4x=10,即x=2, 把x=2代入②得:y=4, 则方程组的解为: 故选A .8.甲、乙两班学生植树造林,已知甲班每天比乙班多植 5棵树,甲班植80棵树 所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据 题意列出方程是( )A 80B 80 _ 70C 80 JOD 80^ 70.乂:.二 二 1 .工 ” £ 工.工 乙 1【考点】由实际问题抽象出分式方程.【分析】设甲班每天植树x 棵,则乙班每天植树(x -5)棵,根据甲班植80棵 树所用的天数与乙班植70棵树所用的天数相等,列方程即可.【解答】解:设甲班每天植树x 棵,则乙班每天植树(x - 5)棵, +日石亠何 80 70由题意得, = .x 故选D .1 o 59.已知x - =2,则代数式5x 2+ - 3的值为( )A . 27 B. 7C. 17 D . 2【考点】完全平方公式.【分析】原式前两项提取5,利用完全平方公式变形,将已知等式代入计算即可 求出值.【解答】解:I x-—=2,•••原式=5 (只+丁)- 3=5[ (x - ) 2+2] - 3=30-3=27,故选A【解答】解:{囂笄10 .用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒•现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是()A. 2013B. 2014C. 2015D. 2016【考点】二元一次方程组的应用.【分析】设做竖式和横式的两种无盖纸盒分别为x个、y个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x、y的系数表示出m+n并判断m+n为5的倍数,然后选择答案即可.【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得丄+〉:一I x+2y=in,两式相加得,m+n=5 (x+y),••• x、y都是正整数,••• m+n是5的倍数,••• 2013、2014、2015、2016四个数中只有2015是5的倍数,• m+n的值可能是2015.故选C.、填空题(每小题3分,共30 分)11.用科学记数法表示:0.00000706= 7.06X 10「6【考点】科学记数法一表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a x 10「n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000706=7.06X 10「6,故答案为:7.06X 10「6.12•当x=】时,分式1的值为0.—3—x+2【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零进行判断.【解答】解:•••分式」一的值为0,x+z••• 3x-仁0,且x+2工0,解得 , X M- 2,即x=.故答案为:—13. 如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC的【考点】平行线的判定.【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【解答】解:T AD和BC被BE所截,•当/ EADN B 时,AD / BC.故答案为:/ EADN B.14. 某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是0.4 .【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率二频数宁数据总和计算出成绩在90.5〜95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20) =50人,其中在90.5〜95.5这一分数段有20人,则成绩在90.5〜95.5这一分数段的频率是.=0.4.50故本题答案为:0.4.15. 计算:(6a2- 10ab+4a)*( 2a) = 3a-5b+2 .【考点】整式的除法.【分析】根据多项式除以单项式的运算方法求解即可.【解答】解:(6a2- 10ab+4a)-( 2a)=(6a2)*( 2a)-( 10ab)*( 2a) + (4a)*( 2a)=3a- 5b+2故答案为:3a- 5b+2.16. 若多项式x2- kx+9是一个完全平方式,则常数k的值是土6 .【考点】完全平方式.【分析】先根据两平方项项确定出这两个数是x和3,再根据完全平方公式求解即可. 【解答】解:••• x2- kx+9=W- kx+32,解得k=± 6. 故答案为:土 6.17.计算:3a+2b a 2【考点】分式的加减法.【分析】根据同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,求解即可.2(a+b) (a+b) (a-b) =2 a-b .故答案为:18. 若多项式x 2- mx+n (m 、n 是常数)分解因式后,有一个因式是 x - 2,则 2m - n 的值为 4.【考点】因式分解的意义.【分析】设另一个因式为x -a ,因为整式乘法是因式分解的逆运算,所以将两 个因式相乘后结果得x 2- mx+ n ,根据各项系数相等列式,计算可得 2m - n=4 .【解答】解:设另一个因式为x -a ,由①得:a=m - 2③,把③代入②得:n=2 ( m - 2), 2m - n=4, 故答案为:4 .19.已知:如图放置的长方形 A BCD 和等腰直角三角形EFG 中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点 F 、G 、D 、C 在同一直线上,点 G 和点 D【解答】 解:贝卩 x 2- mx+n= (x - 2) (x - a )=« - ax - 2x+2a=x^ -(a+2) x+2a , 了且+21>-且重合,现将△ EFG 沿射线FC 向右平移,当点F 和点D 重合时停止移动,若△ EFG 与长方形重叠部分的面积是4cm 2,则厶EFG 向右平移了 3 cm .【分析】首先判断出平移厶EFG 经过长方形ABCD 对角线的交点时,重叠面积是 长方形的面积的一半即面积为 4cm 2,然后求出平移的距离. 【解答】解:•••长方形AB=2cm, AD=4cm, •••长方形的面积为8cm 2,•••△ EFG 与长方形重叠部分的面积是 4cm 2,• △ EFG 边DE 经过长方形ABCD 对角线的交点, ••• FG=4 CD=2 •;( FG+CD ) =3,• △ EFG 向右平移了 3cm , 故答案为3.20. 已知实数a ,b ,c 满足a+b=ab=c,有下列结论:② 若 a=3,则 b+c=9;③ 若 C M 0,贝U( 1-a ) (1 - b ) = + ; ④ 若 c=5,则 a 2+b 2=15. 其中正确的是 ①③④(把所有正确结论的序号都填上).【考点】分式的混合运算;实数的运算.【分析】①由题意可知:a+b=ab=cM 0,将原式变形后将a+b 整体代入即可求出 答案.②由题意可知:a+b=ab=3,联立方程后,可得出一个一元二次方程,由于△< 0,所以a 、b 无解,①若0,2a+7 ab+2b 2; ■; 等腰直角三角形.③分别计算(1 - a)(1 - b)和一+a E>④由于a+b=ab=5,联立方程可知△> 0,所以由完全平方公式即可求出a2+b2的值.【解答】解:①T甘0,--ab M 0•'a+b_3比 _此£ 乩__2rb 2a+b=ab,•原式=—円性—= 士?5!= 三巳匕=—上朋2(a+b)+7ab 2ab+7ab 9ab 9 故①正确;②••• c=3,二ab=3,••• a+b=3,化简可得:b2- 3b+3=0,•/△< 0,•该方程无解,c=3时,a、b无解,故②错误;③••• C M 0,--ab M 0,a+b=ab•( 1 - a) (1 - b) =1 - b- a+ab=1,一==1二卜吕. ,•( 1 - a) (1 - b) = +| ,故③正确;④••• c=5,• a+b=ab=5,化简可得:b2- 5b+5=0,a2+b2= (a+b) 2- 2ab=15,故④正确故答案为:①③④三、解答题(共50分)21 •计算下列各题(1)(—3) 2+ ( n+ 匚)°—(—=) 2(2)(2x—1) 2—(X—1) (4x+3)【考点】多项式乘多项式;实数的运算;完全平方公式;零指数幕;负整数指数幕. 【分析】(1)原式利用乘方的意义,零指数幕、负整数指数幕法则计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=9+1 —4=6;(2)原式=4x2—4x+1 —4x2—3x+4x+3= —3x+4.22 •解方程(组)f2x+7y=5(1)I -(2)" —「严・【考点】解分式方程;解二兀一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1) ②X 7 —①得:19x=— 19, 即卩x=- 1,把x=—1代入①得:y=1,则方程组的解为;y=l(2)去分母得:x+2=4x—2,解得:x=.,经检验X=f是分式方程的解.23•分解因式(1)2X2- 8(2)3灼-6xy2+3y3.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式2,进而利用平方差公式分解因式得出答案;(2)首先提取公因式3y,进而利用完全平方公式分解因式得出答案.【解答】解:(1) 2x2- 8=2 (x2- 4)=2 (x+2) (x- 2);(2) 3灼-6xy2+3y3=3y (x2- 2xy+y2)=3y (x-y) 2.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.【考点】平行线的判定与性质;垂线.【分析】(1)先根据AD丄BE, BC丄BE得出AD// BC,故可得出/ ADE=Z C,再由/ A=Z C得出/ADE=Z A,故可得出结论;(2)由AB//CD得出/C的度数,再由直角三角形的性质可得出结论.【解答】解:(1) AB// CD.理由:••• AD丄BE, BC丄BE,••• AD// BC,•••/ ADEN C.vZ A=Z C,•••/ ADE=Z A ,••• AB// CD;(2)v AB// CD,Z ABC=120,•••Z C=180 - 120°60°,•••Z BEC=90- 60°=30o .25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图 2两幅不完整的统计图,请根据图中信息回答下列问题: (1) 本次接收随机抽样调查的男生人数为 40人,扇形统计图中 良好”所对 应的圆心角的度数为 162° ;(2) 补全条形统计图中 优秀”的空缺部分;(3) 若该校七年级共有男生480人,请估计全年级男生体质健康状况达到 良好” 的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)合格人数除以所占的百分比即可得出所调查的男生总人数, 用良好 的人数除以总人数再乘以360°即可得出 良好”所对应的圆心角的度数;合格 20% 不吕格优秀 30%(2)用40 - 2 -8 - 18 即可;(3)用480乘以良好所占的百分比即可.【解答】解:(1)8- 20%=40(人),18-40X 360°=162°(2)优秀”的人数=40- 2-8 - 18=12, 如图,(3)良好”的男生人数:話X480=216 (人),答:全年级男生体质健康状况达到良好”的人数为216人.26.为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A,B,C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套)乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1)问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元? (2)求a,b的值.【考点】二元一次方程组的应用.【分析】(1 )设甲型垃圾桶的单价是x元/套,乙型垃圾桶的单价是y元/套.根据图表中的甲型、乙型垃圾桶的数量和它们的总价列出方程组并解答.(2)根据图表中的数据列出关于 a b 的二元一次方程,结合 a b 的取值范围 来求它们的值即可.【解答】解:(1 )设甲型垃圾桶的单价是x 元/套,乙型垃圾桶的单价是y 元/套. |y=240 答:甲型垃圾桶的单价是140元/套,乙型垃圾桶的单价是240元/套. (2)由题意得:140a+240b=2580, 整理,得 7a+12b=129, 因为a 、b 都是正整数, 所以或(a=15 . b=9 b~2 四、附加题(每小题10分,共20分) 27.已知:直线a // b ,点A ,B 分别是a ,b 上的点,APB 是a ,b 之间的一条折 弦,且/ APN<90° Q 是a ,b 之间且在折线APB 左侧的一点,如图.(1) 若/ 仁33°, / APB=74,则/2= 41 度.(2) 若/ Q 的一边与PA 平行,另一边与PB 平行,请探究/ Q ,Z 1, 2间满足 的数量关系并说明理由.(3) 若/ Q 的一边与PA 垂直,另一边与PB 平行,请直接写出/ Q ,Z 1 , 2之 间满足的数量关系.【考点】平行线的性质.【分析】(1)图1,过P 作PC//直线a ,根据平行线的性质得到/ 仁/APC, / 2=Z BPC 于是得到结论;依题意得:10x+8y=33205x+9y=2860 x=140 解得* 备用图 葺■甲图(2)如图2,由已知条件得到四边形MQNP是平行四边形,根据平行四边形的性质得到/ MQN=Z P=Z 1 + Z2,根据平角的定义即可得到结论;(3)由垂直的定义得到/ QEP=90,由平行线的性质得到/ QFE=/ P,根据平角的定义得到结论.【解答】解:(1)图1,过P作PC//直线a,••• PC// b,•••/ 1=/ APC / 2=/BPC•••/ 2=/ APB- / 1=41°故答案为:41;(2)如图2,v QM // PB, QN// PA•••四边形MQNP是平行四边形,•••/ MQN=/ P=/ 1 + /2,•••/ EQN=180-/ MQM=180 -/ 1 -/ 2;即/ Q=/ 1 + / 2=180°-/ 1 -/ 2;(3):QE丄AP,•••/ QEP=90,••• QF// PB,•••/ QFE=/ P,•••/ EQF=90-/ QFE=90-/ 1 -/ 2,•••/ EQG=18°—/ EQF=90+/ 1+/2 .A7 a28 .教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= (m+1) (m - 5) .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.【考点】因式分解的应用;非负数的性质:偶次方.【分析】(1)根据阅读材料,先将m2- 4m-5变形为m2- 4m+4- 9,再根据完全平方公式写成(m- 2) 2-9,然后利用平方差公式分解即可;(2)利用配方法将多项式a2+b2- 4a+6b+18转化为(a- 2) 2+ (b+3) 2+5,然后利用非负数的性质进行解答;(3)利用配方法将多项式a2- 2ab+2b2- 2a-4b+27转化为(a- b- 1) 2+(b-3)2+17,然后利用非负数的性质进行解答.【解答】解:(1)m2- 4m - 52=m - 4m+4- 9=(m- 2)2- 9=(m- 2+3)(m- 2- 3)=(m+1)(m- 5).故答案为(m+1)(m- 5);(2)v a F+b2- 4a+6b+18= (a-2) 2+ (b+3) 2+5,•••当a=2, b=- 3 时,多项式a2+b2- 4a+6b+18 有最小值5;(3)v a2- 2ab+2b2-2a- 4b+27=a2- 2a(b+1) +(b+1) 2+(b- 3) 2+17=( a- b- 1 ) 2+( b- 3) 2+17,•••当a=4, b=3 时,多项式a2- 2ab+2b2- 2a- 4b+27 有最小值17.2017年4月18日A. 130°B. 110°C. 80°D. 70°33. 分式——有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 14. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y)=ax+ayB. X - 4X+4=(x- 2)C. 2a- 4b+2=2 (a- 2b)D. X*2-16+3X=(X- 4)(X+4)+3X6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查。
湖南省长沙市开福区青竹湖湘一外国语学校2017-2018学年七年级(下)期末数学试卷一、选择题(共12小题,满分36分)1.(3分)舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A.4.995×1011B.49.95×1010C.0.4995×1011D.4.995×10102.(3分)若m﹣x=2,n+y=3,则(m+n)﹣(x﹣y)=()A.﹣1B.1C.5D.﹣53.(3分)一个三角形三个内角的度数之比为1:4:5,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形4.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.115.(3分)下列选项中,不是依据三角形全等知识解决问题的是()A.同一时刻,同一地点两栋等高建筑物影子一样长B.工人师傅用角尺平分任意角C.利用尺规作图,作一个角等于已知角D.用放大镜观察蚂蚁的触角6.(3分)方程组的解适合方程x+y=2,则k值为()A.2B.﹣2C.1D.﹣7.(3分)如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α﹣5的值是()A.35°B.40°C.50°D.不存在8.(3分)如图,在△ABC和△DEC中,AB=DE.若添加条件后使得△ABC≌△DEC,则在下列条件中,不能添加的是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.∠B=∠E,∠A=∠D D.BC=EC,∠A=∠D9.(3分)在班级体锻课上,有三名同学站在△ABC的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个凳子,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点10.(3分)已知等腰三角形的两边a,b的长是方程组的解,则这个三角形的周长是()A.6B.8C.10D.8或1011.(3分)下列说法中错误的是()A.三角形的中线、角平分线、高都是线段B.任意三角形的内角和都是180°C.多边形的外角和等于360°D.三角形的一个外角大于任何一个内角12.(3分)如果关于x的不等式2≤3x+b<8的整数解之和为7,那么b的取值范围是()A.﹣7≤b≤﹣4B.﹣7<b<﹣4C.﹣7<b≤﹣4D.﹣7≤b<﹣4二、填空题(共6小题,满分18分)13.(3分)若x>y,则﹣x﹣2﹣y﹣2(填“<”、“>”或“=”)14.(3分)规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.15.(3分)若和都是关于x、y的方程y=kx+b的解,则k+b的值是.16.(3分)如图,△ABC中,DE垂直平分AC,与AC交于E,与BC交于D,∠C=15°,∠BAD =60°.若CD=10,则AB的长度为.17.(3分)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2=°.18.(3分)如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足为E.若线段AE=2,则四边形ABCD的面积是.三、解答题(共8小题,满分66分)19.(6分)计算:﹣12+(﹣2)3×﹣×(﹣)20.(6分)解不等式组:,并把它的解集在数轴(如图)上表示出来.21.(8分)如图,已知AD、AE分别是Rt△ABC的高和中线,AB=9cm,AC=12cm,BC=15cm,试求:(1)AD的长度;(2)△ACE和△ABE的周长的差.22.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?23.(9分)如图(1)四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)求证:CA平分∠BCD;(3)如图(2),设AF是△ABC的BC边上的高,求证:EC=2AF.24.(9分)为了加强对校内外安全监控,创建平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.(1)求a、b的值;(2)若购买该批设备的资金不超过11000元,且要求监控半径覆盖范围不低于1600米,两种型号的设备均要至少买一台,请你为学校设计购买方案,并计算最低购买费用.25.(10分)在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.(1)如图1,若AE、CD为△ABC的角平分线:①求∠AFD的度数;②若AD=3,CE=2,求AC的长;(2)如图2,若∠EAC=∠DCA=30°,求证:AD=CE.26.(10分)如图1,在平面直角坐标系中,A(a,0),B(0,2)(1)点(k+1,2k﹣5)关于x轴的对称点在第一象限,a为实数k的范围内的最大整数,求A点的坐标及△AOB的面积;(2)在(1)的条件下如图1,点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,请直接写出P点坐标;(3)在(1)的条件下,如图2,以AB、OB的作等边△ABC和等边△OBD,连接AD、OC交于E点,连接BE.①求证:EB平分∠CED;②M点是y轴上一动点,求AM+CM的最小值.湖南省长沙市开福区青竹湖湘一外国语学校2017-2018学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,满分36分)1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将499.5亿用科学记数法表示为:4.995×1010.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【分析】直接利用整式的加减运算法则化简得出答案.【解答】解:∵m﹣x=2,n+y=3,∴m﹣x+n+y=5,∴(m+n)﹣(x﹣y)=5.故选:C.【点评】此题主要考查了整式的加减运算,正确掌握运算法则是解题关键.3.【分析】设这个三角形三个内角的度数分别为x、4x、5x,根据三角形内角和定理列出方程,解方程即可.【解答】解:设这个三角形三个内角的度数分别为x、4x、5x,由三角形内角和定理得,x+4x+5x=180°,解得,x=18°,则4x=72°,5x=90°,这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.4.【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.5.【分析】分别利用作一个角等于已知角以及工人师傅用角尺平分任意角和同一时刻,同一地点两栋等高建筑物影子一样长都是利用全等三角形的知识解决问题,进而分析得出答案.【解答】解:A、利同一时刻,同一地点两栋等高建筑物影子一样长,是利用SAS得出,依据三角形全等知识解决问题,故此选项不合题意;B、工人师傅用角尺平分任意角,是利用SSS得出,依据三角形全等知识解决问题,故此选项不合题意;C、利用尺规作图,作一个角等于已知角,是利用SSS得出,依据三角形全等知识解决问题,故此选项不合题意;D、用放大镜观察蚂蚁的触角,是利用相似,不是依据三角形全等知识解决问题,故此选项正确.故选:D.【点评】此题主要考查了相似图形,正确掌握全等三角形的判定方法是解题关键.6.【分析】根据方程组的特点,①+②得到x+y=k+1,组成一元一次方程求解即可.【解答】解:,①+②得,x+y=k+1,由题意得,k+1=2,解答,k=1,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.7.【分析】根据题意可知,小林走的是正多边形,先求出边数,然后再利用外角和等于360°,除以边数即可求出α的值.【解答】解:设边数为n,根据题意,n=108÷12=9,∴α=360°÷9=40°.所以α﹣5=35°,【点评】本题主要考查了多边形的外角和等于360°,根据题意判断出所走路线是正多边形是解题的关键.8.【分析】直接利用三角形全等的判定条件进行判定,即可求得答案;注意而SSA是不能判定三角形全等的.【解答】解:A、添加BC=EC,∠B=∠E可用SAS判定两个三角形全等,故A选项正确;B、添加BC=EC,AC=DC可用SSS判定两个三角形全等,故B选项正确;C、添加∠B=∠E,∠A=∠D可用ASA判定两个三角形全等,故C选项正确;D、添加BC=EC,∠A=∠D后是SSA,无法证明三角形全等,故D选项错误.故选:D.【点评】此题考查了全等三角形的判定.注意普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.9.【分析】要使游戏公平,凳子到△ABC的三个顶点的距离相等,然后根据三角形外心的性质进行判断.【解答】解:为使游戏公平,凳子到△ABC的三个顶点的距离相等,所以凳子应放在△ABC三边垂直平分线的交点.故选:D.【点评】本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.也考查了三角形外心、内心和重心的性质.10.【分析】求出方程组的解得到x与y的值,确定出等腰三角形三边,求出周长即可.【解答】解:方程组,得,若4为腰,三边长为4,4,2,周长为4+4+2=10;若2为腰,三边长为2,2,4,不能构成三角形.故选:C.【点评】此题考查了等腰三角形的性质,三角形的三边关系,解二元一次方程组,熟练掌握运算法则是解本题的关键.11.【分析】根据三角形的角平分线、中线和高的定义可对A进行判断;根据三角形内角和定理可对B进行判断;根据三角形外角的性质可对C、D进行判断.【解答】解:A、三角形的中线、角平分线、高线都是线段,所以A选项的说法正确;B、三角形的内角和为180°,所以B选项的说法正确;C、多边形的外角和等于360°,所以D选项的说法正确;D、三角形的一个外角大于任何一个不相邻的内角,所以C选项的说法错误.故选:D.【点评】本题考查了三角形内角和定理:三角形的内角和为180°.也考查了三角形的角平分线、中线和高以及三角形外角的性质.12.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出不等式组,再求解即可.【解答】解:2≤3x+b<8,即∵解不等式①得:x≥,解不等式②得:x<,∴不等式组的解集为≤x<,∵关于x的不等式2≤3x+b<8的整数解之和为7,∴4<≤5且2<≤3,解得:﹣4>b≥﹣7,故选:D.【点评】本题考查了一元一次不等式组,一元一次不等式的整数解的应用,关键是能根据题意得出关于b的不等式组.二、填空题(共6小题,满分18分)13.【分析】直接利用不等式的性质分析得出答案.【解答】解:∵x>y,∴﹣x<﹣y,∴﹣x﹣2<﹣y﹣2.故答案为:<.【点评】此题主要考查了不等式的性质,正确把握不等式的性质是解题关键.14.【分析】估算出+的取值范围可以得到答案.【解答】解:∵3<+<4,∴[+]的值为3.故答案为:3.【点评】此题考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.15.【分析】首先根据和都是关于x、y的方程y=kx+b的解,可得;然后根据二元一次方程组的求解方法,求出k、b的值各是多少即可.【解答】解:∵据和都是关于x、y的方程y=kx+b的解,∴;解得.∴k的值是﹣5,b的值是7.所以k+b=﹣5+7=2.故答案为:2【点评】此题主要考查了二元一次方程的求解问题,要熟练掌握,解答此题的关键是要明确二元一次方程的求解方法.16.【分析】根据线段垂直平分线的性质得到DA=DC=1,根据三角形的外角的性质得到∠ADB=30°,根据含30°角的直角三角形的性质得到答案.【解答】解:∵DE垂直平分AC,∴DA=DC=10,∴∠DAC=∠C=15°,∴∠ADB=30°,又∠BAD=60°,∴∠B=90°,又∠ADB=30°,∴AB=AD=×10=5.故答案为:5.【点评】本题考查的是线段垂直平分线的性质和含30°角的直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.【分析】过B点作BF∥l1,根据正五边形的性质可得∠ABC的度数,再根据平行线的性质以及等量关系可得∠1﹣∠2的度数.【解答】解:过B点作BF∥l1,∵五边形ABCDE是正五边形,∴∠ABC=108°,∵BF∥l1,l1∥l2,∴BF∥l2,∴∠3=180°﹣∠1,∠4=∠2,∴180°﹣∠1+∠2=∠ABC=108°,∴∠1﹣∠2=72°.故答案为:72.【点评】考查了多边形内角与外角,平行线的性质,关键是熟练掌握正五边形的性质,以及添加辅助线.18.【分析】过点A作AF⊥AE,交CD的延长线于点F,由题意可证△ABE≌△ADF,可得AE=AF,则可证四边形AECF是正方形,四边形ABCD的面积=正方形AECF的面积=4.【解答】解:过点A作AF⊥AE,交CD的延长线于点F∵∠BAD=∠C=90°,AE⊥BC,AE⊥AF∴四边形AECF是矩形∴∠F=90°∵AE⊥AF,BA⊥AD∴∠BAE+∠DAE=90°,∠DAF+∠DAE=90°∴∠BAE=∠DAE又∵AB=AD,∠F=∠AEB=90°∴△ADF ≌△ABE∴AF =AE ,S △ADF =S △ABE .∴四边形AECF 是正方形.∴S 正方形AECF =AE 2=4∵S 四边形ABCD =S △ABE +S 四边形AECD =S △ADF +S 四边形AECD .∴S 四边形ABCD =S 正方形AECF =4故答案为4【点评】本题考查了全等三角形的判定和性质,正方形的性质,熟练运用全等三角形的判定和性质是本题的关键.三、解答题(共8小题,满分66分)19.【分析】直接利用立方根的性质以及算术平方根的性质分别化简各数进而得出答案.【解答】解:原式=﹣1﹣8×+3×(﹣)=﹣1﹣1﹣1=﹣3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】先分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得:x >﹣3;由②得:x ≤2;∴原不等式组的解集为﹣3<x ≤2,.【点评】本题考查的是解一元一此不等式组及在数轴上表示一元一次不等式组的解集,在解答此类题目时要注意实心圆点与空心圆点的区别,这是此题的易错点.21.【分析】(1)利用直角三角形的面积法来求线段AD 的长度;(2)由于AE 是中线,那么BE =CE ,再表示△ACE 的周长和△ABE 的周长,化简可得△ACE 的周长﹣△ABE 的周长=AC ﹣AB ,易求其值.【解答】解:(1)∵∠BAC =90°,AD 是边BC 上的高,AB•AC=BC•AD,∴S△ACB∵AB=9cm,AC=12cm,BC=15cm,∴AD===(cm),即AD的长度为cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=12﹣9=3(cm),即△ACE和△ABE的周长的差是3cm.【点评】此题主要考查了三角形的面积,关键是掌握直角三角形的面积求法.22.【分析】(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.【解答】解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).【点评】本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.23.【分析】(1)根据三角形的判定定理ASA即可证得.(2)通过三角形全等求得AC=AE,∠BCA=∠E,进而根据等边对等角求得∠ACD=∠E,从而求得∠BCA=∠E=∠ACD即可证得.(3)过点A作AM⊥CE,垂足为M,根据角的平分线的性质求得AF=AM,然后证得△CAE和△ACM是等腰直角三角形,进而证得EC=2AF.【解答】(1)证明:如图①,∵∠ABC+∠ADC=180°,∠ADE+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(ASA).(2)证明:如图①,∵△ABC≌△ADE,∴AC=AE,∠BCA=∠E,∴∠ACD=∠E,∴∠BCA=∠E=∠ACD,即CA平分∠BCD;(3)证明:如图②,过点A作AM⊥CE,垂足为M,∵AM⊥CD,AF⊥CF,∠BCA=∠ACD,∴AF=AM,又∵∠BAC=∠DAE,∴∠CAE=∠CAD+∠DAE=∠CAD+∠BAC=∠BAD=90°,∵AC=AE,∠CAE=90°,∴∠ACE=∠AEC=45°,∵AM⊥CE,∴∠ACE=∠CAM=∠MAE=∠E=45°,∴CM=AM=ME,又∵AF=AM,∴EC=2AF.【点评】此题考查了全等三角形的判定与性质,角的平分线的判定和性质以及等腰三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.【分析】(1)根据购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元,可列出方程组,解之即可得到a、b的值;(2)可设购买甲型设备x台,则购买乙型设备(15﹣x)台,根据购买该批设备的资金不超过11000元、监控半径覆盖范围不低于1600米,列出不等式组,根据x的值确定方案,然后对所需资金进行比较,并作出选择.【解答】解:(1)由题意得:,解得;(2)设购买甲型设备x台,则购买乙型设备(15﹣x)台,依题意得,解不等式①,得:x≤3,解不等式②,得:x≥2,则2≤x≤3,∴x取值为2或3.当x=2时,购买所需资金为:850×2+700×13=10800(元),当x=3时,购买所需资金为:850×3+700×12=10950(元),∴最省钱的购买方案为:购甲型设备2台,乙型设备13台.【点评】本题考查了一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.要会用分类的思想来解决讨论方案的问题.25.【分析】(1)①根据角平分线的定义、三角形内角和定理计算;②在AC上截取AG=AD=3,连接FG,证明△ADF≌△AGF、△CGF≌△CEF,根据全等三角形的性质解答;(2)在AE上截取FH=FD,连接CH,证明△ADF≌△CHF,根据全等三角形的性质、三角形的外角的性质解答.【解答】解:(1)①∵AE、CD分别为△ABC的角平分线,∴∠FAC=∠BAC,∠FCA=∠BCA,∵∠B=60°∴∠BAC+∠BCA=120°,∴∠AFC=180﹣∠FAC﹣∠FCA=180﹣(∠BAC+∠BCA)=120°;②在AC上截取AG=AD=3,连接FG,∵AE、CD分别为△ABC的角平分线,∴∠FAC=∠FAD,∠FCA=∠FCE,∵∠AFC=120°,∴∠AFD=∠CFE=60°,在△ADF和△AGF中,∵,∴△ADF≌△AGF(SAS),∴∠AFD=∠AFG=60°,∴∠GFC=∠CFE=60°,在△CGF和△CEF中,∵,∴△CGF≌△CEF(ASA),∴CG=CE=2,∴AC =5;(2)在AE 上截取FH =FD ,连接CH ,∵∠FAC =∠FCA =30°,∴FA =FC ,在△ADF 和△CHF 中,∵,∴△ADF ≌△CHF (SAS ),∴AD =CH ,∠DAF =∠HCF ,∵∠CEH =∠B +∠DAF =60°+∠DAF ,∠CHE =∠HAC +∠HCA =60°+∠HCF ,∴∠CEH =∠CHE ,∴CH =CE ,∴AD =CE .【点评】本题考查的是角平分线的定义、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、正确作出辅助性是解题的关键.26.【分析】(1)根据点在第四象限内,得出不等式,进而求出k 的范围,进而求出点A 坐标,最后用三角形面积公式即可得出结论;(2)分两种情况:构造全等三角形求出PF 和AF ,即可求出点P 坐标;(3)①先判断出△ABD ≌△CBO (SAS ),进而得出S △ABD =S △CBO ,AD =OC ,即可得出BM =BM ,最后用角平分线的判定定理即可得出结论;②根据含30度角的直角三角形的性质求出线段的长,进而求出点C坐标,求出直线A'C的解析式,即可得出结论.【解答】解:(1)∵点(k+1,2k﹣5)关于x轴的对称点在第一象限,∴点(k+1,2k﹣5)在第四象限,∴k+1>0,2k﹣5<0,∴﹣1<k<2.5,∵a为实数k的范围内的最大整数,∴a=2,∵A(a,0),∴A(2,0),∴OA=2,∵B(0,2),∴OB=2,=OA•OB=×=2;∴S△AOB(2)如图1,∵点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,∴①当∠BAP=90°时,AB=AP,过点P作PF⊥OA于F,∴∠PAF+∠APF=90°,∵∠BAP=90°,∴∠PAF+∠BAO=90°,∴∠APF=∠BAO,∵AB=AP,∴△OAB≌△FPA(AAS),∴PF=OA=2,AF=OB=2,∴OF=OA+AF=2+2,∴P(2+2,2),②当∠ABP =90°时,同①的方法得,P '(2,2+2),即:P 点坐标为(2+2,2)或(2,2+2);(3)①如图2,∵△OBD 和△ABC 都是等边三角形, ∴BD =OB ,AB =BC ,∠OBD =∠ABC =60°, ∴∠ABD =∠CBO ,在△ABD 和△CBO 中,,∴△ABD ≌△CBO (SAS ),∴S △ABD =S △CBO ,AD =OC ,过点B 作BM ⊥AD 于M ,BN ⊥OC 于N , ∴BM =BN ,∵BM ⊥AD ,BN ⊥OC ,∴BE 是∠CED 的角平分线;②如图3,作点A 关于y 轴的对称点A ',∵A (2,0),∴A '(﹣2,0),连接A 'C 交y 轴于M ,过点C 作CH ⊥OA 于H ,在Rt △AOB 中,OA =2,OB =2,∴AB =4,tan ∠OAB ===, ∴∠OAB =60°,∵△ABC 是等边三角形,∴AC =AB =4,∠BAC =60°,∴∠CAH =60°,在Rt △ACH 中,∠ACH =90°﹣∠CAH =30°,∴AH=2,CH=2,∴OH=OA+AH=4,∴点C(4,2),∵A'(﹣2,0),∴直线A'C的解析式为y=x+,∴M(0,).【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,角平分线的判定定理,等腰直角三角形的性质,待定系数法,等边三角形的性质,正确作出辅助线是解本题的关键.。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
最新2017-2018年七年级数学下期末联考试题有完整答案和解释题号一二三四总分得分一、选择题(本大题共8小题)下列计算中,正确的是( )A. x^3⋅x^3=x^6B. x^3+x^3=x^6C. 〖(x^3)〗^3=x^6D. x^3÷x^3=x下列图形中,由MN//PQ,能得到∠1=∠2的是( ) A. B.C. D.不等式组{■(&x+1>0,@&x<1)┤的解集在数轴上表示正确的是( )A.B.C.D.下列各组线段能组成一个三角形的是A. 4cm,6cm,11cmB. 3cm,4cm,5cmC. 4cm,5cm,1cmD. 2cm,3cm,6cm若方程组{■(&x+2y=1,@&2x+y=a)┤的解满足x+y=3,则a的值是( )A. 6B. 7C. 8D. 9下列命题是真命题的是( )A. 同旁内角相等,两直线平行B. 若|a|=|b|,则a=bC. 如果a>b,那么a^2>b^2D. 平行于同一直线的两直线平行《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,多少人分多少银?(注:这里的斤是指市斤,1市斤=10两)设共有x人,y两银子,下列方程组中正确的是( )A. {■(&6x+6=y@&5x-5=y)┤B. {■(&6x+6=y@&5x+5=y)┤C. {■(&6x-6=y@&5x-5=y)┤D.{■(&6x-6=y@&5x+5=y)┤若关于x的不等式组{■(&x-m<0,@&3-2x≤1)┤所有整数解的和是10,则m的取值范围是( )A. 4<m≤5B. 4<m<5C. 4≤m<5D. 4≤m≤5二、填空题(本大题共8小题)计算:(2x-3)(x+1)=________.分解因式:x^2 y-xy^2=________.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm,这个直径用科学记数法可表示为________cm.写出命题“互为倒数的两个数乘积为1”的逆命题:_______________________________________.若a+b=6,ab=7,则a^2+b^2=________.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火材棒,图案②需15根火柴棒,……,按此规律,图案ⓝ需________________根火材棒.已知3^n×27=3^8,则n的值是________________.如图,已知AB//DE,∠BAC=m^∘,∠CDE=n^∘,则∠ACD=________________ ^∘.三、计算题(本大题共4小题)计算:(1)(-1/2)^0+|3-π|+(1/3)^(-2);(2)〖(a+3)〗^2-(a+1)(a-1).分解因式:(1)5mx^2-20my^2;(2)12a^2 b+12ab^2+3b^3.解方程组和不等式组:(1){■(&2x-y=3,@&4x-3y=1;)┤(2){■(&3(x-1)<5x+1,@&(2x+1)/3>2x-5.)┤求代数式x(y-z)-y(z-x)+z(x-y)的值,其中x=1/4,y=1/2,z=-3/4.四、解答题(本大题共5小题)如图,已知点E在AB上,CE平分∠ACD,∠ACE=∠AEC.求证:AB//CD.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗.已知2棵A种树苗和3棵B 种树苗共需270元,3棵A种树苗和6棵B种树苗共需480元.(1)A、B两种树苗的单价分别是多少元⊕(2)该小区计划购进两种树苗共28棵,总费用不超过1550元,问最多可以购进A种树苗多少棵⊕如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形⊕请画出示意图,并在图形下方写上剩余部分多边形的内角和.已知关于x、y的方程组{■(&2x+y=k-5,@&x-y=2k-1.)┤(1)求代数式2^2x⋅4^y的值;(2)若x<5,y≤-2,求k的取值范围;(3)若x^y=1,请直接写出两组x,y的值.如图①,直线l⊥MN,垂足为O,直线PQ经过点O,且∠PON=〖30〗^∘.点B在直线l上,位于点O下方,OB=1.点C在直线PQ上运动.连接BC过点C作AC⊥BC,交直线MN于点A,连接AB(点A、C与点O都不重合).(1)小明经过画图、度量发现:在△ABC中,始终有一个角与∠PON相等,这个角是________________;(2)当BC//MN时,在图②中画出示意图并证明AC//OB;(3)探索∠OCB和∠OAB之间的数量关系,并说明理由.常州市教育学会学业水平监测2018.6七年级数学试题答案和解析【答案】1. A2. C3. B4. B5. C6. D7. D8. A9. 2x^2-x-310. xy(x-y)11. 2×〖10〗^(-7)12. 如果两个数的乘积为1,那么这两个数互为倒数13. 2214. (7n+1)15. 516. (m+n-180)17. 解:(1)原式=1+π-3+9=7+π;(2)原式=a^2+6a+9-a^2+1=6a+10.18. 解:(1)原式=5m(x^2-4y^2)=5m(x+2y)(x-2y);(2)原式=3b(4a^2+4ab+b^2)=3b(2a+b)^2.19. 解:(1){■(2x-y=3①@4x-3y=1②)┤,①×2-②,得:y=5,将y=5代入①,得:2x-5=3,解得:x=4,∴方程组的解为{■(x=4@y=5)┤;(2){■(3(x-1)<5x+1①@(2x+1)/3>2x-5②)┤,解不等式①,得:x>-2;解不等式②,得:x<4,∴不等式组的解集为-2<x<4.20. 解:原式=xy-xz-yz+xy+xz-yz=2xy-2yz=2y(x-z),当x=1/4,y=1/2,z=-3/4时,原式=2×1/2×(1/4+3/4)=1.21. 证明:∵CE平分∠ACD,∴∠ACE=∠DCE,又∵∠ACE=∠AEC,∴∠DCE=∠AEC,∴AE//CD.22. 解:(1)设A种树苗单价为x元,B种树苗单价为y 元,根据题意,得{■(2x+3y=270@3x+6y=480)┤,解方程组,得{■(x=60@y=50)┤,答:A种树苗单价为60元,B中树苗单为50元.(2)设购进A种树苗m棵,则购进B种树苗(28-m)棵,根据题意,得60m+50(28-m)≤1550,解不等式,得m≤15,因为m为整数,所以m的最大值是15,答:最多可以购进A种树苗15棵.23. 解:如图①,剩余的部分是三角形,其内角和为〖180〗^∘,如图②,剩余的部分是四边形,其内角和为〖360〗^∘,如图③,剩余的部分是五边形,其内角和为〖540〗^∘.24. 解:{■(2x+y=k-5①@x-y=2k-1②)┤,①+②,得3x=3k-6,∴x=k-2,把x=k-2代入①,得2k-4+y=k-5,∴y=-k-1,∴{■(x=k-2@y=-k-1)┤,(1)∵{■(x=k-2@y=-k-1)┤,∴2x+2y=-6,∴2^2x⋅4^y=2^(2x+2y)=2^(-6)=1/64;(2)∵x<5,y≤-2,∴{■(k-2<5@-k-1≤-2)┤,解得1≤k<7;(3){■(x=-3@y=0)┤,{■(x=1@y=-4)┤.25. 解:(1)∠ABC(2)如图所示:∵BC//MN,∴∠AOB+∠OBC=〖180〗^∘,∵∠AOB=〖90〗^∘,∴∠OBC=〖90〗^∘,∵∠ACB=〖90〗^∘,∴∠OBC+∠ACB=〖90〗^∘+〖90〗^∘=〖180〗^∘,∴AC//OB.(3)如图①,设BC与OA相交于点E,在△OCE和△BAE中,∵∠OCB=〖180〗^∘-∠OEC-∠COE,∠OAB=〖180〗^∘-∠BEA-∠ABE,又∠COE=∠ABE=〖30〗^∘,∠OEC=∠BEA,∴∠OCB=∠OAB;如图②∠AOC=∠AOB+∠BOC=〖90〗^∘+〖60〗^∘=〖150〗^∘,∵∠ABC=〖30〗^∘,∴∠AOC+∠ABC=〖150〗^∘+〖30〗^∘=〖180〗^∘,在四边形ABCO中,∠OCB+∠OAB=〖360〗^∘-(∠AOC+∠ABC)=〖360〗^∘-〖180〗^∘=〖180〗^∘,即∠OCB和∠OAB互补,∴∠OCB和∠OAB的数量关系是相等或互补.【解析】1. 【分析】本题主要考查同底数幂的乘法,合并同类项,幂的乘方,同底数数幂的除法.掌握法则是解题的关键.根据同底数幂的乘法:底数不变,指数相加;合并同类项:把同类项的系数相加,字母和字母的指数不变;幂的乘方:底数不变,指数相乘;同底数幂的除法:底数不变,指数相减是解题的关键.【解答】解:A.x^3⋅x^3=x^6,故A正确;B.x^3+x^3=2x^3,故B错误;C.(x^3 )^3=x^9,故C错误;D.x^3÷x^3=1,故D错误.故选A.2. 【分析】此题考查的是平行线的性质,根据两直线平行,同位角相等结合对顶角相等易得答案.【解答】解:A.由MN//PQ,能得到∠1+∠2=〖180〗^∘,故不合题意;B.由MP//NQ,根据两直线平行,内错角相等能得到∠1=∠2,故不合题意;C.如图:∵MN//PQ,∴∠1=∠3,又∵∠2=∠3,∴∠1=∠2.故C合题意;D.观察图形∠1与∠2为同旁内角,由MN//PQ,不能得到∠1=∠2,故不合题意.故选C.3. 【分析】本题主要考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再表示在数轴上即可判断.【解答】解:{■(x+1>0①@x<1②)┤,解不等式①,得x>-1,解不等式②,刘x<1,所以不等式组的解集为-1<x<1,不等式组的解集在数轴上表示如下:.故选B.4. 【分析】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,逐一进行分析即可.【解答】解:A.∵4+6<11,∴不能组成三角形,故不合题意;B.∵3+4>5,∴能组成三角形,故合题意;C.∵4+1=5,∴不能组成三角形,故不合题意;D.∵2+3<6,∴不能组成三角形,故不合题意;故选B.5. 【分析】此题考查的是二元一次方程组的解法以及二元一次方程组的解和一元一次方程的解法,利用加减消元法解方程组,将x,y的值用含a的代数式表示,将其代入x+y=3,转化为关于a的一元一次方程求解即可.【解答】解:{■(x+2y=1①@2x+y=a②)┤,①×2-②,得:3y=2-a,解得:y=(2-a)/3,②×2-①,得:3x=2a-1,解得:x=(2a-1)/3,∵x+y=3,∴(2a-1)/3+(2-a)/3=3,解得:a=8.故选C.6. 【分析】本题主要考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.利用平行线的判定定理,绝对值的性质,有理数的乘方进行判断即可.【解答】解:A.同旁内角互补,两直线平行,故A错误;B.若|a|=|b|,则a=±b,则B错误;C.如果a=1,b=-2,则a^2<b^2,故C错误;D.平行于同一直线的两直线平行,故D正确.故选D.7. 【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.根据题意“每人6两少6两,每人半斤多半斤”可以列出相应的方程组,从而得出答案.【解答】解:根据题意得:{■(6x-6=y@5x+5=y)┤.故选D.8. 【分析】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍.首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:{■(x-m<0①@3-2x≤1②)┤,由①得x<m;由②得x≥1;故原不等式组的解集为1≤x<m.又因为不等式组的所有整数解的和是10=1+2+3+4,由此可以得到4<m≤5.故选A.9. 【分析】此题考查的是多项式乘多项式.用其中一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加即可.【解答】解:(2x-3)(x+1)=2x^2+2x-3x-3=2x^2-x-3.故答案为2x^2-x-3.10. 【分析】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.直接提取公因式xy进而分解因式得出即可.【解答】解:x^2 y-xy^2=xy(x-y).故答案为xy(x-y).11. 【分析】本题考查用科学记数法表示较小的数,一般形式为a ×〖10〗^n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×〖10〗^(-n).与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000002cm= 2×〖10〗^(-7) cm.故答案为2×〖10〗^(-7).12. 【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【解答】解:命题“互为倒数的两个数乘积为1”的逆命题为如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.13. 【分析】此题考查的是完全平方公式的灵活应用以及代数式的求值.将已知条件中的a+b=6两边平方,利用完全平方公式变形后整体代入即可求出a^2+b^2的值.【解答】解:∵a+b=6,∴(a+b)^2=36,∴a^2+2ab+b^2=36,∵ab=7,∴a^2+b^2=36-14=22.故答案为22.14. 【分析】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n-1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=8+7×2=22根;…∴图案n需火柴棒:8+7(n-1)=(7n+1)根.故答案为(7n+1).15. 【分析】此题考查的是幂的乘方法则的逆用以及同底数幂的乘法法则.将已知条件逆用幂的乘法法则变形后根据等式性质即可求解.【解答】解:∵3^n×27=3^8,∴3^n×3^3=3^8,3^(n+3)=3^8,∴n+3=8,解得:n=5.故答案为5.16. 【分析】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.延长ED交BC于F,根据平行线的性质求出∠AFE=∠BAC=m^∘,求出∠DFC=〖180〗^∘-m^∘,根据三角形外角性质得出∠C=∠CDE-∠DFC,代入求出即可.【解答】解:延长ED交AC于F,如图所示:∵AB//DE,∠BAC=m^∘,∴∠AFE=∠BAC=m^∘,∴∠DFC=〖180〗^∘-m^∘,∵∠CDE=n^∘,∴∠ACD=∠CDE-∠CFD=n^∘-(〖180〗^∘-m^∘)=(m+n-180)^∘.故答案为(m+n-180).17. 此题考查的是实数的运算以及整式的混合运算.熟练掌握相关的运算性质和运算法则是关键.(1)根据零指数幂的性质、实数绝对值的性质以及负整数指数幂的性质化简即可;(2)先根据完全平方公式和平方差公式进行去括号运算,再合并同类项即可.18. 此题主要考查了提公因式法与公式法的综合运用,关键是掌握分解因式的步骤,先提公因式,后用公式法.(1)首先提公因式5m,再利用平方差进行分解即可;(2)首先提公因式3b,再利用完全平方公式进行分解即可.19. 此题考查的是二元一次方程组的解法以及一元一次不等式组的解法.熟练掌握解答步骤是关键.(1)利用加减消元法即可求解;(2)先分别求出每个不等式的解集,再找出它们解集的公共部分即可.20. 本题主要考查整式的化简求值.掌握法则是解题的关键.先根据单项式乘多项式的法则计算,再合并同类项,然后提公因式2y,最后把x、y、z的值代入化简后的代数式计算即可.21. 此题考查的是角平分线的定义以及平行线的判定方法.根据角平分线定义可得∠ACE=∠DCE,结合已知条件利用等量代换得到∠DCE=∠AEC,利用内错角相等,两直线平行可得答案.22. 本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据总费用不超过1550元,列出关于m的一元一次不等式.(1)设购进A种树苗每棵需要x元,B种树苗每棵需要y元,根据“购进2棵A种树苗与3棵B种树苗共需270元;购进3棵A种树苗与6棵B种树苗共需480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种树苗m棵,则购进B种树苗(28-m)棵,根据总费用不超过1550元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,即可得最多可以购进A种树苗的棵数.23. 此题考查的是图形的裁剪与多边形的内角和定理.注意分情况讨论.①过四边形的两个顶点剪一刀,剩余图形为三角形;②故其中一个顶点和一条边剪一刀,剩余图形为四边形;③过四边形的两边剪一刀,剩余图形为五边形,利用多边形内角和定理分别求其内角和即可.24. 此题考查了解二元一次方程组,一元一次不等式组的解法,同底数幂的乘法.解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)先解方程组求出x、y的值,然后根据同底数幂的乘法计算,最后代入计算即可;(2)根据x<5,y≤-2,列出不等式组,解不等式组求出k的取值范围即可;(3)由x^y=1,即可得x、y的值.25. 【分析】此题考查的是平行线的判定和性质以及三角形内角和定理的应用.通过观察图形结合已知条件联想相关的几何定理找出各角间的关系是关键.(1)通过观察和动手操作易得答案;(2)根据平行线的性质可得∠AOB+∠OBC=〖180〗^∘,结合已知条件易得∠OBC+∠ACB=〖180〗^∘,根据同旁内角互补,两直线平行可得答案;(3)分情况讨论根据三角形内角和结合角的和差关系可得答案.【解答】解:(1)经过画图、度量发现:在△ABC中,始终有一个角与∠PON相等,这个角是∠ABC.故答案为∠ABC;(2)见答案;(3)见答案.。
2017〜2018学年度(下)期末中小学学习质量评价七年级数学试卷(一)一、选择题:1.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .2.如果a b <,下列各式中正确的是( ) A .22ac bc < B .11a b > C .33a b ->- D .44a b > 3.如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是( ) A .10 B .11 C .16 D .26 4.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A 地到B 地架设电线,总是尽可能沿着线段AB 架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线. (4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有( ) A .(1)(2) B .(1)(3) C .(2)(4) D .(3)(4)5.有一根40cm 的金属棒,欲将其截成x 根7cm 的小段和y 根9cm 的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为 ( )A .31==y x ,B .14==y x ,C .2,3==y xD .32==y x ,6.如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A .105°B .110°C .115°D .120°7.若关于x 的不等式组0321x m x -<⎧⎨-≤⎩的所有整数解的和是10,则m 的取值范围是( )A .45m <<B .45m <≤C .45m ≤<D .45m ≤≤8.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF 的位置,下面正确的平移步骤是( )A .先把△ABC 向左平移5个单位,再向下平移2个单位B .先把△ABC 向右平移5个单位,再向下平移2个单位 C .先把△ABC 向左平移5个单位,再向上平移2个单位D .先把△ABC 向右平移5个单位,再向上平移2个单位9.如图,已知太阳光线AC 和DE 是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断△ABC ≌△DFE 的依据是( )A .SASB .AASC .HLD .ASA10.如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点A ,点C 分别在直线a ,b 上,且a ∥b .若∠1=60°,则∠2的度数为 ( ) A .105°B .75°C .135°D .155°二、填空题:11.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.2.5微米等于0.0000025米,把0.000 002 5用科学记数法表示为 . 12. 若4,9nnx y ==,则()nxy = . 13.已知是方程2x ﹣ay=3的一个解,则a 的值是 .ABCab2114.如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用 根火柴棒,搭n 条“小鱼”所需火柴棒的根数为 (填写化简后的结果).15.已知关于x 的不等式组12634x x a -<⎧⎨+≤⎩只有两个整数解,则a 的取值范围 .16.如图a 是长方形纸带,∠DEF=24°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是 .17.若二元一次方程组⎩⎨⎧=++=+m y x m y x 232的解x ,y 的值恰好是一个等腰三角形两边的长, 且这个等腰三角形的周长为7,则m 的值为____________.18.如图,四边形ABCD 中,∠A=100°,∠C=70°,点M 、N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN .若MF ∥AD ,FN ∥DC ,则∠B 的度数为 .19.以下四个命题:①一个多边形的内角和为900°,从这个多边形同一个顶点可画的对角线有4条; ②三角形的三条高所在的直线的交点可能在三角形的内部或外部; ③多边形的所有内角中最多有3个锐角;④△ABC 中,若∠A=2∠B=3∠C ,则△ABC 为直角三角形. 其中真命题的是 .(填序号)20.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则x 2+y 2=三、解答题: 21.计算:(1)(﹣)﹣1+(﹣2)3×(π﹣2)0. (2)(2a 2)2﹣a 7÷(﹣a )3.22. 分解因式:(1)x 4﹣2x 2y 2+y 4. (2) a a a +-23223. 先化简,再求值: 22(3)(2)(2)2x x x x +++--,其中1x =-.24. 如图在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上. (1)△ABC 的面积为______;(2)将△ABC 经过平移后得到△A′B′C′,图中标出了点B 的对应点B′,补全△A′B′C′; (3)若连接AA′,BB′,则这两条线段之间的关系是______; (4)在图中画出△ABC 的高CD .25.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.26. 9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从无锡出发,1日到4日在北京旅游,8月5日上午返回无锡.无锡与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票524元,身高1.1~1.5米的儿童享受半价票;飞机 (普通舱) 全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:算,不参观景点,但产生住宿、伙食、市内交通三项费用.(1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x,y的值;(2)若去时坐火车,回来坐飞机,且飞机成人票打五五折,其他开支不变,他们准备了14000元,是否够用? 如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?27.在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点P在线段AB上运动,且n=90°时①若PD∥BC,PE∥AC,则m= ;②若m=50°,求x+y的值.(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.答案:1.D2.C3.C4.B5.C6.C7.B8.A9.B 10.A 11. 2.5×10﹣612. 36 13. 1/2 14. 62 6n+215. 74≤<a 16. 108° 17. 2 18. 95° 19. ①②③ 20. 36 21. -11 5a 422. (x ﹣y )2(x+y )2. 2)1(-a a23. -1 24. (1)S △ABC =104521=⨯⨯;(2)如图所示:.(3)平行且相等; (4)如图所示:.25. (1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一) (2)y=2x (1≤x ≤4,x 为自然数) 26. ⎩⎨⎧==54500y x 标准间房价每日每间不能超过450元.27. 90°∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.。