2011年 天津市高考数学试卷(理科)
- 格式:doc
- 大小:89.50 KB
- 文档页数:4
数学教研组:阿布都西库尔.吐逊9.1.2不等式的性质(第1课时)说课稿1、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:2、重点,难点以及确定依据:重点:理解不等式的三个性质。
通过探究规律,交流讨论突出重点。
难点:对不等式的性质3的认识。
通过探索、交流、总结,练习突破难点关键:经历探究不等式性质的过程,用类比的方法使学生体会不等式与等式的异同,掌握不等式的性质。
一、教法分析(说教法)1、教学手段及方法:本课采用多媒体辅助教学。
如何突出重点,突破难点,从而实现教学目标。
在教学过程中拟计划进行如下操作:基于本节课的特点应着重采用类比-实验-交流的教学方法。
2、教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用教类比-实验-交流的教学方法。
在学生探究,讨论的基础上,在老师启发引导下,激发学生学习热情。
有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。
在教学中积极培养学生学习兴趣和动机,明确的学习目的,激发来自学生主体的最有力的动力。
二、说教学过程(一)、回顾交流,指导观察教师提问:同学们还记得等式的性质吗?学生举手回答,交流联想。
投影显示:等式的性质设计意图:通过回顾等式的性质,类比等式的性质,为探索不等式的性质做好铺垫,并且从学生已有的数学经验出发,建立新旧知识之间的联系,培养学生梳理知识体系的习惯。
交流在探索不等式性质的过程中的心得和体会,不断积累数学活动经验。
通过课后作业,教师及时了解学生对本节知识的掌握情况,对教学进度和方法进行适当调整。
三、说教学后记:本节课主要采用了类比-实验-交流的教学方法,采用多媒体教学手段,学生参与课堂的积极性很高,课堂气氛非常活跃,大多数学生掌握了不等式的三条基本性质并能简单运用。
但这节课,在探索新知上花的时间较多,以至于学生的练习时间太短了,以后我在安排教学内容时应注意教学时间的把握,充分利用好课堂时间。
2011年高考理科数学试题及答案(天津卷)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分.参考公式:如果事件A ,B 互斥,那么 如果事件A ,B 相互独立,那么()()()P A B P A P B =+U ()()().P AB P A P B =棱柱的体积公式.V Sh = 圆锥的体积公式1.3V Sh =其中S 表示棱柱的底面面积 其中S 表示圆锥的底面面积h 表示棱柱的高 h 表示圆锥的高一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.i 是虚数单位,复数131ii --=A .2i +B .2i -C .12i -+D .12i --2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件3.阅读右边的程序框图,运行相应的程序,则输出i 的值为A .3B .4C .5D .64.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为 {}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .1105.在6x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,2x 的系数为 A .154- B .154 C .38- D .386.如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===,则sin C 的值为A .33B .36C .6D .67.已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则A .a b c >>B .b a c >>C .a c b >>D .c a b >>8.对实数a 和b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .111,,44⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭。
2011 年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共 8 小题,每小题 5 分,满分 40 分) 1.( 5 分)( 2011?天津) i 是虚数单位,复数 =( )A . 2+iB . 2﹣ iC .﹣ 1+2iD .﹣ 1﹣ 2i【考点】 复数代数形式的乘除运算.【专题】 数系的扩充和复数.【分析】 要求两个复数的除法运算, 分子和分母同乘以分母的共轭复数, 分子和分母上进行复数的乘法运算,最后结果要化简成最简形式.【解答】 解:复数 = ==2 ﹣ i故选 B .【点评】 本题考查复数的代数形式的乘除运算,是一个基础题,这种题目运算量不大, 解题应用的原理也比较简单,是一个送分题目.2 2)2.( 5 分)( 2011?天津)设 x , y ∈R ,则 “x ≥2 且 y ≥2”是 “x +y ≥4”的( A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【考点】 必要条件、充分条件与充要条件的判断.【专题】 简易逻辑.2222【分析】 由“x ≥2 且 y ≥2”推出 “x +y ≥4”可证明充分性;由满足 “x +y ≥4”可举出反例推翻 “x ≥2且 y ≥2”,则证明不必要性,综合可得答案.2 2【解答】 解:若 x ≥2 且 y ≥2,则 x ≥4, y ≥4,所以若 x 2 +y 2≥4,则如(﹣ 2,﹣ 2)满足条件,但不满足所以 “x ≥2 且 y ≥2”是 “x 22+y ≥4”的充分而不必要条件. 故选 A .【点评】 本题主要考查充分条件与必要条件的含义.2 2 2 2≥4;x +y ≥8,即 x +yx ≥2 且 y ≥2.3.( 5 分)( 2011?天津)阅读程序框图,运行相应的程序,则输出 i 的值为( )A .3B .4C .5D .6【考点】 程序框图.【专题】 算法和程序框图.【分析】 通过程序框图的要求,写出前四次循环的结果得到输出的值. 【解答】 解:该程序框图是循环结构 经第一次循环得到 i=1 , a=2; 经第二次循环得到 i=2 , a=5; 经第三次循环得到 i=3 , a=16;经第四次循环得到 i=4 , a=65 满足判断框的条件,执行是,输出4故选 B【点评】 本题考查解决程序框图中的循环结构时,常采用写出前几次循环结果,找规律.4.( 5 分)( 2011?天津)已知 n7 是 a 3 与 a 9 的等比中项,S n 为 {a n } 的前 n 项和, n ∈N *,则 S 10 的值为()A .﹣ 110B .﹣ 90C .90D .110【考点】 等差数列的前 n 项和;等比数列的性质.【专题】 等差数列与等比数列.【分析】 通过 a 7 是 a 3 与 a 9 的等比中项,公差为﹣ 2,求出【解答】 解: a 7 是 a 3 与 a 9 的等比中项,公差为﹣ 2,所以 a 72=a 3?a 9, ∵{a n } 公差为﹣ 2,∴a 3=a 7﹣ 4d=a 7+8, a 9=a 7+2d=a 7﹣4,2所以 a 7 =( a 7+8)( a 7﹣ 4),所以 a 7=8,所以 a 1=20,所以 S 10= =110故选 D【点评】 本题是基础题,考查等差数列的前n 项和,等比数列的应用,考查计算能力,常考题型.5.( 5 分)( 2011?天津)在的二项展开式中, x2的系数为()A .B .C .D .【考点】 二项式定理.【专题】 二项式定理.【分析】 利用二项展开式的通项公式求出展开式的通项,令 x 的指数为 2,求出展开式中,x 2的系数,即得答案.r 2r ﹣6 r 3﹣ r【解答】 解:展开式的通项为T r+1=(﹣ 1) 2 C 6 x令 3﹣ r=2 得 r=1所以项展开式中, x 2的系数为﹣故选 C【点评】 本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.6.(5 分)( 2011?天津)如图,在△ABC 中, D 是边 AC 上的点,且AB=AD ,2AB=BD ,BC=2BD ,则 sinC 的值为()A.B.C.D.【考点】三角形中的几何计算.【专题】解三角形.【分析】根据题中条件,在△ABD 中先由余弦定理求出 cosA ,利用同角关系可求 sinA ,利用正弦定理可求 sin∠ BDC ,然后在△ BDC 中利用正弦定理求解 sinC 即可【解答】解:设 AB=x ,由题意可得AD=x , BD=△ABD 中,由余弦定理可得∴s inA=△ABD 中,由正弦定理可得? sin∠ ADB=∴△BDC 中,由正弦定理可得故选: D.【点评】本题主要考查了在三角形中,综合运用正弦定理、余弦定理、同角基本关系式等知识解三角形的问题,反复运用正弦定理、余弦定理,要求考生熟练掌握基本知识,并能灵活选择基本工具解决问题.7.( 5 分)( 2011?天津)已知,则()A . a> b> cB .b> a> c C. a> c>b D .c> a> b【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】 比较大小的方法:找 1 或者 0 做中介判断大小, log 43.6< 1,log 23.4> 1,利用分数指数幂的运算法则和对数的运算法则对 c 进行化简,得到 > 1>b ,再借助于中间值 log 2 进行比较大小,从而得到结果. ,【解答】 解:∵ log 23.4>1, log 43.6< 1,又 y=5 x是增函数,∴a > b ,>= =b而 log 23.4> log 2 > log 3 ,∴a > c故 a > c > b . 故选 C .【点评】 此题是个中档题.本题考查对数函数单调性、指数函数的单调性及比较大小, 以及中介值法,考查学生灵活应用知识分析解决问题的能力.8.( 5 分)( 2011?天津)对实数 a 与 b ,定义新运算“? ”: .设函数 f(x )=(x 2﹣ 2)? ( x ﹣ x 2),x ∈R .若函数 y=f (x )﹣ c 的图象与 x 轴恰有两个公共点,则实数 c 的取值范围是( )A .B .C .D .【考点】 函数与方程的综合运用.【专题】 函数的性质及应用.f ( x ) =( x 2﹣2) ? (x ﹣ x 2)的解析式,并求出 f【分析】 根据定义的运算法则化简函数(x )的取值范围,函数 y=f ( x )﹣ c 的图象与 x 轴恰有两个公共点转化为 y=f ( x ),y=c 图象的交点问题,结合图象求得实数 c 的取值范围.【解答】 解:∵,∴函数 f ( x )=( x 2﹣ 2)? ( x ﹣ x 2) =,由图可知,当 c ∈∴c 的取值范围是,故选 B .【点评】 本题考查二次函数的图象特征、 函数与方程的综合运用,及数形结合的思想. 属于基础题.二、填空题(共 6 小题,每小题 5 分,满分 30 分)9.( 5 分)(2011?天津)一支田径队有男运动员 48 人,女运动员 36 人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为 21 的样本,则抽取男运动员的人数为12 .【考点】 分层抽样方法. 【专题】 概率与统计.【分析】 根据田径队的男女运动员数目和用分层抽样要抽取的数目, 得到每个个体被抽到的概率,利用每个个体被抽到的概率乘以男运动员的数目,得到结果. 【解答】 解:∵田径队有男运动员 48 人,女运动员36 人,∴这支田径队共有48+36=84 人,用分层抽样的方法从该队的全体运动员中抽取一个容量为 21 的样本,∴每个个体被抽到的概率是 ,∵田径队有男运动员 48 人,∴男运动员要抽取48× =12 人,故答案为: 12.【点评】 本题考查分层抽样, 在抽样过程中每个个体被抽到的概率相等, 这是解决这种问题的依据,本题是一个基础题.10.( 5 分)( 2011?天津)一个几何体的三视图如图所示(单位:m ),则这个几何体的体积为 6+π m 3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由已知中的三视图,我们易判断已知中几何体的形状,然后根据已知的三视图分析出几何体的相关几何量,代入体积公式,即可求出该几何体的体积.【解答】解:由已知可得已知的几何体是一个圆锥和长方体的组合体其中上部的圆锥的底面直径为2,高为 3,下部的长方体长、宽高分别为:2,3,1则 V 圆锥 =?π?3= πV 长方体 =1 ×2×3=6则 V=6+ π故答案为: 6+π【点评】本题考查的知识是由三视图求体积,其中根据已知中的三视图分析几何体的形状是解答本题的关键.11.(5 分)( 2011?天津)已知抛物线C 的参数方程为( t 为参数),若斜率为 1 的直线经过抛物线 C 的焦点,且与圆(222( r> 0)相切,则 r=.x﹣ 4)+y =r【考点】直线与圆的位置关系;抛物线的简单性质;直线的参数方程.【专题】圆锥曲线的定义、性质与方程;坐标系和参数方程.【分析】由抛物线 C 的参数方程为我们易求出抛物线的标准方程,进而根据斜率222为 1 的直线经过抛物线 C 的焦点,且与圆( x﹣ 4)+y =r ( r>0)相切,我们根据直线与圆相切,则圆心到直线的距离等于半径,求出直线方程后,代入点到直线距离公式,构造关于 r 的方程,解方程即可得到答案.【解答】解:∵抛物线 C 的参数方程为2则抛物线的标准方程为:y =8x则抛物线 C 的焦点的坐标为(2, 0)又∵斜率为 1 的直线经过抛物线 C 的焦点则直线的方程为y=x﹣ 2,即经 x﹣ y﹣2=02 2 2由直线与圆( x﹣ 4) +y =r ,则r==故答案为:【点评】本题考查的知识点是直线与的圆位置关系,抛物线的简单性质及抛物线的参数方程,其中根据直线与圆相切,则圆心到直线的距离等于半径,求出直线方程后,代入点到直线距离公式,构造关于 r 的方程,是解答本题的关键.12.( 5 分)( 2011?天津)如图,已知圆中两条弦AB 与 CD 相交于点F,E 是 AB 延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE 的长为.【考点】圆的切线方程.【专题】直线与圆.【分析】设出 AF=4k , BF=2k , BE=k ,由 DF ?FC=AF ?BF 求出 k 的值,利用切割定理求出CE.【解答】解:设 AF=4k ,BF=2k , BE=k ,由 DF?FC=AF ?BF,得 2=8k 2,即 k=,∴AF=2 , BF=1 , BE= , AE=,2= ,由切割定理得 CE =BE ?EA=∴CE=.【点评】本题是基础题,考查直线与圆的位置关系,考查计算能力,基本知识掌握的情况,常考题型.13.( 5 分)( 2011?天津)已知集合A={x ∈R||x+3|+|x ﹣ 4|≤9} ,B=,则集合 A ∩B= {x| ﹣ 2≤x≤5}.【考点】交集及其运算.【专题】集合.【分析】求出集合 A ,求出集合B,然后利用集合的运算法则求出 A ∩B .【解答】解:集合 A={x ∈R||x+3|+|x ﹣4|≤9} ,所以 A={x| ﹣4≤x≤5} ;集合,,当且仅当t=时取等号,所以B={x|x ≥﹣ 2} ,所以 A ∩B={x| ﹣ 4≤x≤5} ∩{x|x ≥﹣ 2}={x| ﹣ 2≤x≤5} ,故答案为: {x| ﹣ 2≤x≤5} .【点评】本题是基础题,考查集合的基本运算,注意求出绝对值不等式的解集,基本不等式求出函数的值域,是本题解题是关键,考查计算能力.14.( 5 分)( 2011?天津)已知直角梯形ABCD 中, AD ∥ BC,∠ ADC=90 °,AD=2 ,BC=1 ,P 是腰 DC 上的动点,则的最小值为5.【考点】向量的模.【专题】平面向量及应用.【分析】根据题意,利用解析法求解,以直线DA,DC分别为x,y轴建立平面直角坐标系,则 A ( 2,0),B( 1,a),C( 0, a), D(0, 0),设 P( 0, b)( 0≤b≤a),求出,根据向量模的计算公式,即可求得,利用完全平方式非负,即可求得其最小值.【解答】解:如图,以直线DA , DC 分别为 x, y 轴建立平面直角坐标系,则A ( 2, 0), B( 1,a), C( 0, a), D( 0,0)设 P( 0, b)( 0≤b≤a)则=(2,﹣ b),=( 1, a﹣ b),∴=( 5,3a﹣ 4b)∴=≥5.故答案为5.【点评】此题是个基础题.考查向量在几何中的应用,以及向量模的求法,同时考查学生灵活应用知识分析解决问题的能力.三、解答题(共 6 小题,满分80 分)15.( 13 分)( 2011?天津)已知函数f( x) =tan( 2x+),(1)求 f( x)的定义域与最小正周期;(2)设α∈( 0,),若f()=2cos2α,求α的大小.【考点】正切函数的周期性;同角三角函数基本关系的运用;二倍角的余弦;正切函数的定义域.【专题】解三角形.【分析】(Ⅰ)利用正切函数的定义域求出函数的定义域,利用周期公式求出最小正周期;(Ⅱ)通过,化简表达式,结合α∈(0,),求出α的大小.【解答】解:(Ⅰ)由 2x+≠+k π, k∈Z.所以 x≠,k∈Z.所以f(x)的定义域为: f (x)的最小正周期为:.(Ⅱ)由得 tan()=2cos2α,整理得因为α∈( 0,),所以sinα+cosα≠0 因此( cosα﹣ sinα)2 =即 sin2α= 因为α∈( 0,),所以α=【点评】本题考查两角和的正弦函数、余弦函数、正切函数公式,同角三角函数的基本关系式,二倍角公式等基本知识,考查基本运算能力.16.( 13 分)( 2011?天津)学校游园活动有这样一个游戏项目:甲箱子里装有 3 个白球、 2个黑球,乙箱子里装有 1 个白球、 2 个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出 2 个球,若摸出的白球不少于 2 个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在 1 次游戏中,(i )摸出 3个白球的概率;(ii)获奖的概率;(Ⅱ)求在 2 次游戏中获奖次数 X 的分布列及数学期望 E( X ).【考点】离散型随机变量的期望与方差;互斥事件与对立事件;古典概型及其概率计算公式;离散型随机变量及其分布列.【专题】概率与统计.【分析】( I )( i )甲箱子里装有 3 个白球、 2 个黑球,乙箱子里装有 1 个白球、 2 个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出22 2 个球,事件数是 C5 C3,摸出 3 个白球事件数为211( ii )获奖包含摸出 2 个白球和摸出 3 个C3 C2 C2;由古典概型公式,代入数据得到结果,白球,且它们互斥,根据(i)求出摸出 2 个白球的概率,再相加即可求得结果,注意运算要正确,因为第二问要用本问的结果.(II)连在 2次游戏中获奖次数 X 的取值是0、 1、 2,根据上面的结果,代入公式得到结果,写出分布列,求出数学期望.【解答】解:(Ⅰ)( i)设“在一次游戏中摸出i 个白球”为事件 A i( i= , 0,1, 2, 3),则P(A 3)=,(ii )设“在一次游戏中获奖”为事件 B,则 B=A 2∪A 3,又P(A 2)=,且 A 2、A 3互斥,所以 P( B )=P( A 2) +P( A3)=;(Ⅱ)由题意可知X 的所有可能取值为 0, 1, 2.P( X=0 ) =( 1﹣)2=,1(1﹣) = ,P( X=1 ) =C2P( X=2 ) =(2,) =所以 X 的分布列是X012pX 的数学期望 E( X ) =0×.【点评】此题是个中档题.本题考查古典概型及共概率计算公式,离散型随机变量的分布列数学期望、互斥事件和相互独立事件等基础知识,考查运用概率知识解决实际问题的能力.17.( 13 分)( 2011?天津)如图所示,在三棱柱ABC ﹣ A 1B 1C1中, H 是正方形 AA 1B1B 的中心, AA 1=21111., C H⊥平面 AA B B,且 C H=(1)求异面直线 AC 与 A 1 B1所成角的余弦值;(2)求二面角 A ﹣ A 1C1﹣ B1的正弦值;(3)设 N 为棱 B 1C1的中点,点 M 在平面 AA 1B 1B 内,且 MN ⊥平面 A 1B1C1,求线段 BM 的长.【考点】二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的性质.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】方法一:如图所示,建立空间直角坐标系,点 B 为坐标原点.(Ⅰ)求出中的有关向量,然后求出异面直线AC 与 A1B1所成角的余弦值;(Ⅱ)利用求出平面AA 1C1的法向量,通过求出平面 A 1B1C1的法向量,然后利用求二面角 A ﹣A 1C1﹣ B1的正弦值;(Ⅲ)设 N 为棱 B 1C1的中点,设 M( a,b,0),利用 MN ⊥平面 A 1B1C1,结合求出 a, b,然后求线段 BM 的长.方法二:( I )说明∠ C1A 1B1是异面直线 AC 与 A 1B1所成的角,通过解三角形C1A 1B1,利用余弦定理,.求出异面直线 AC 与 A 1B1所成角的余弦值为.(II )连接 AC 1,过点 A 作 AR ⊥ A 1C1于点 R,连接 B1R,说明∠ ARB 1为二面角 A ﹣A 1C1﹣B 1的平面角.连接 AB 1,在△ARB 1中,通过,求出二面角 A ﹣A 1C1﹣ B1的正弦值为.(III )首先说明MN ⊥ A1B 1.取 HB 1中点 D,连接 ND ,由于 N 是棱 B1C1中点,推出ND ⊥ A 1B1.证明 A 1B 1⊥平面 MND ,连接 MD 并延长交 A 1B1于点 E,延长 EM 交 AB 于点F,连接 NE.连接 BM ,在 Rt △ BFM 中,求出.【解答】方法一:如图所示,建立空间直角坐标系,点 B 为坐标原点.依题意得(I )解:易得,于是,所以异面直线AC 与 A 1B1所成角的余弦值为.(II )解:易知.设平面 AA 1C1的法向量 =( x, y, z),则即不妨令,可得,同样地,设平面A1B 1C1的法向量 =( x, y,z),则即不妨令,可得.于是,从而.所以二面角 A ﹣A 1C1﹣ B 的正弦值为.(III )解:由 N 为棱 B1C1的中点,得.设 M ( a, b, 0),则由MN ⊥平面 A 1B1C1,得即解得故.因此,所以线段BM 的长为.方法二:(I)解:由于AC ∥ A1C1,故∠ C1A 1B1是异面直线AC 与 A 1B 1所成的角.因为 C1H⊥平面 AA 1B1B ,又 H 为正方形 AA 1B 1B 的中心,,可得 A 1C1=B 1C1=3 .因此.所以异面直线AC 与 A 1B1所成角的余弦值为.(I I )解:连接 AC 1,易知 AC 1=B1C1,又由于 AA 1=B 1A 1, A 1C1=A 1C1,所以△ AC 1A 1≌△ B1C1A 1,过点 A 作 AR ⊥ A 1C1于点 R,连接 B 1R,于是 B1R⊥ A1C1,故∠ ARB 1为二面角 A ﹣ A 1C1﹣ B 1的平面角.在 Rt△ A 1RB 1中,.连接 AB 1,在△ARB 1中,=,从而.所以二面角 A ﹣A 1C1﹣ B1的正弦值为.(I II )解:因为 MN ⊥平面 A 1B1C1,所以 MN ⊥ A1B 1.取HB 1中点 D,连接 ND ,由于 N 是棱 B1C1中点,所以 ND ∥C1H 且.又C1H⊥平面 AA 1B1B,所以 ND ⊥平面 AA 1B1B,故 ND ⊥ A 1B 1.又MN ∩ND=N ,所以 A 1B 1⊥平面 MND ,连接 MD 并延长交 A 1B1于点 E,则ME ⊥ A1B1,故 ME ∥AA 1.由,得,延长 EM 交 AB 于点 F,可得.连接 NE .在 Rt△ ENM 中, ND ⊥ ME ,故2ND =DE ?DM .所以.可得.连接 BM ,在 Rt△ BFM 中,.【点评】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.18.( 13 分)(2011?天津)在平面直角坐标系xOy 中,点 P(a,b)( a> b> 0)为动点, F1,F2分别为椭圆的左、右焦点.已知△ F1PF2为等腰三角形.(Ⅰ)求椭圆的离心率e;(Ⅱ)设直线PF2与椭圆相交于A, B 两点, M 是直线 PF2上的点,满足,求点 M 的轨迹方程.【考点】直线与圆锥曲线的综合问题;轨迹方程;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)直接利用 △ F 1PF 2 为等腰三角形得 |PF 2|=|F 1F 2 |,解其对应的方程即可求椭圆的离心率 e ;(Ⅱ)先把直线方程与椭圆方程联立,求得A ,B 两点的坐标,代入 ,即可求点 M 的轨迹方程.【解答】 解:(Ⅰ)设 F 1(﹣ c ,0), F 2( c , 0)( c >0).由题得 |PF 2 |=|F 1F 2|,即=2c ,整理得 2 + ﹣ 1=0 ,得 =﹣ 1(舍),或 = ,所以 e= .(Ⅱ)由(Ⅰ) 知 a=2c ,b= c ,可得椭圆方程为3x 2+4y 2 =12c 2,直线方程为 y=(x ﹣ c ).A ,B 的坐标满足方程组,消 y 并整理得 5x 2﹣ 8xc=0 ,解得 x=0 ,x=,得方程组的解为 , ,不妨设 A ( c ,c ), B ( 0,﹣c ).设点 M 的坐标为( x ,y ),则=( x ﹣ c , y ﹣ c ), =(x , y+ c )由 y=( x ﹣ c )得 c=x ﹣y① ,由=﹣ 2 即( x ﹣ c ) x+ (y ﹣ c )( y+ c )=﹣ 2.将① 代入化简得 18x 2﹣16xy ﹣ 15=0 ,? y= 代入 ① 化简得 c=> 0.所以 x > 0,因此点 M 的轨迹方程为 18x 2﹣ 16xy ﹣15=0( x > 0).【点评】 本题主要考查椭圆的方程和几何性质,直线的方程, 平面向量等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.19.( 14 分)( 2011?天津)已知 a >0,函数 f (x ) =lnx ﹣ ax 2,x > 0.( f ( x )的图象连续不断)(Ⅰ)求 f ( x )的单调区间;(Ⅱ)当时,证明:存在 x 0∈( 2,+∞),使 ;(Ⅲ)若存在均属于区间 [1,3]的 α,β,且 β﹣ α≥1,使 (f α)=f (β),证明.【考点】利用导数研究函数的单调性;函数的零点;不等式的证明.【专题】导数的综合应用.【分析】( I )求导数 fˊ( x);在函数的定义域内解不等式 fˊ(x)> 0 和 f ˊ( x)< 0 确定函数的单调区间,若在函数式中含字母系数,往往要分类讨论.(II )由( I)知 f( x)在( 0, 2)内单调递增,在(2, +∞)内单调递减.令.利用函数f( x)在( 0, 2)内单调递增,得到.最后取.从而得到结论;(III )先由 f (α) =f (β)及( I)的结论知,从而f(x)在[α,β]上的最小值为 f( a).再依 1≤α≤2≤β≤3建立关于 a 的不等关系即可证得结论.【解答】解:( I),令.当 x 变化时, f' ( x), f ( x)的变化情况如下表:x(0,)(,+∞)f ′( x) +0﹣f ( x)增极大值减所以,(f x)的单调递增区间是的单调递减区间是.(II )证明:当.由( I)知 f( x)在( 0, 2)内单调递增,在( 2, +∞)内单调递减.令.由于 f( x)在( 0, 2)内单调递增,故.取.所以存在x0∈( 2, x'),使 g( x0) =0,即存在.(说明: x'的取法不唯一,只要满足x'> 2,且 g( x' )< 0 即可)(III )证明:由 f ( α)=f (β)及( I )的结论知,从而 f ( x )在 [ α,β]上的最小值为f ( a ).又由 β﹣ α≥1, α,β∈[1,3] ,知 1≤α≤2≤β≤3.故从而.【点评】 本小题主要考查导数的运算、利用导数研究函数的单调性、解不等式、函数的零点等基础知识,考查运算能力和运用函数思想分析解决问题的能力及分类讨论的思想方法.20.( 14 分)( 2011?天津)已知数列{a n } 与 {b n } 满足:, n ∈N *,且 a 1=2, a 2=4 .(Ⅰ)求 a 3,a 4, a 5 的值;(Ⅱ)设 c n2n ﹣1 2n+1, n ∈N *,证明: {c n=a+a} 是等比数列;(Ⅲ)设 S k =a 2+a 4+⋯+a 2k , k ∈N *,证明:.【考点】 数列与不等式的综合;等比关系的确定.【专题】 等差数列与等比数列. 【分析】(Ⅰ)要求 a 3, a 4, a 5 的值;通过赋值方法,利用已知条件化简求解即可.(Ⅱ)化简出a 2n ﹣ 1+a 2n+1, a 2n+1+a 2n+3的关系,即: c n+1 与 c n 的关系,从而证明 {c n } 是等比数列;就是利用(Ⅰ)的,用 2n ﹣ 1, 2n , 2n+1,替换中的 n ,化简出只含 “a n ”的关系式, 就是 a 2n﹣ 1+a 2n +2a 2n+1=0,① 2a 2n +a 2n+1+a 2n+2=0,② a 2n+1+a 2n+2+2a 2n+3=0,③ 然后推出 a 2n+1+a 2n+3=﹣( a 2n ﹣ 1+a 2n+1),得到 c n+1=﹣c n ( n ∈N *),从而证明 {c n } 是等比数列;(Ⅲ)先研究通项公式a 2k ,推出 S k 的表达式,然后计算,结合证明的表达式,利用表达式的特征,通过裂项法以及放缩法证明即可;就是:根据 a 2k ﹣1+a 2k+1=(﹣ 1) k,对任意k ∈N * 且 k ≥2,列出 n 个表达式,利用累加法求出 a 2k =(﹣ 1) k+1( k+3 ).化简 S 2k =( a 2+a 4)+(a 6+a 8)+⋯+( a 4k ﹣ 2+a 4k )=﹣ k ,k ∈N * ,,通过裂项法以及放缩法证明:.【解答】 20、满分 14 分.(I )解:由,可得又 b n a n +a n+1+b n+1a n+2=0,( I I )证明:对任意 n ∈N *, a 2n ﹣1+a 2n +2a 2n+1=0, ①2a 2n +a 2n+1+a 2n+2=0, ② a 2n+1+a 2n+2+2a 2n+3=0, ③ ② ﹣③ ,得 a 2n =a 2n+3. ④将④ 代入 ① ,可得 a 2n+1+a 2n+3=﹣( a 2n ﹣ 1+a 2n+1)即 c n+1=﹣ c n ( n ∈N *) 又 c 1=a 1+a 3=﹣ 1,故 c n ≠0,因此是等比数列.( I II )证明:由( II )可得 a 2k ﹣ 1+a 2k+1=(﹣ 1) k,于是,对任意 k ∈N *且 k ≥2,有将以上各式相加,得 a 1+(﹣ 1)ka 2k ﹣ 1=﹣( k ﹣1),即 a 2k ﹣ 1=(﹣ 1)k+1( k+1),此式当 k=1 时也成立.由 ④ 式得 a 2k =(﹣ 1) k+1( k+3).从而 S 2k =( a 2+a 4) +( a 6+a 8)+⋯+( a 4k ﹣ 2+a 4k )=﹣ k , S 2k ﹣1=S 2k ﹣ a 4k =k+3 .*所以,对任意 n ∈N , n ≥2,== ==对于 n=1 ,不等式显然成立.【点评】本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.赋值法是求数列前几项的常用方法,注意n=1 的验证,裂项法和放缩法的应用.。
野草中的梦与幻我有幸拜读了鲁迅先生所写的散文诗《野草》,诗中有的词藻华丽,有的依旧言辞犀利,在作者的梦幻中依旧有残酷现实的倩影,美丽的景物却要用血腥的言语来抨击现实依旧是个可怕的世界,他在虚幻中道出了真实,而这真是就反映在他的梦里面。
他在预计未来的死亡中,把握现在的生命,领悟着生之要义,有死亡感知生命。
在绝望与希望中挣扎,在作者的眼中一切的矛盾,一方的尽头即是另一方的开端,希望的尽头便是绝望,绝望到了极点便又有了希望:死亡的尽头才又有了重生;“沉舟侧畔千帆过,病树前头万木春”斗转星移的变迁中,都为另一个新的开始而始终前进着。
在《野草》中,多篇都以“我梦见”为开头,如《死火》,《狗的驳洁》,《失掉的好地狱》,《墓碣文》,《颓败线的颤动》,《立论》,《死后》。
在《好的故事》中虽未以“我梦见”为开头,但也在“我在蒙胧中,看见一个好的故事”中知道这是作者的想象了。
现实若用虚幻的梦境来显现,更是清晰得可怕。
然而作者的这些梦境如此奇丽,如此狂乱的恐怖,使得它们简直成了梦魇。
虽然这些写梦境的篇章,皆以梦境开头,让人明白这并非现实,可他所诉说的内容,又无不让人联想到现实。
将我们从现实中推开,自己置身在奇异的想象中。
这些梦不来自光明,不来自天上,却来自黑暗,来自地狱与深渊。
因为鲁迅认为不能“光梦‘大同世界’之类的光明,不要只做将来的梦,还要梦到目前的‘阶级斗争,白色恐怖,轰炸,虐杀,鼻子里灌辣椒水,电刑……’。
于是《野草》没有叫人完全轻松的好梦。
死亡,地狱,黑暗,挣扎,斗争……无不是极让人感觉很冷得意象。
在《好的故事》中,作者闭上眼睛感知到一片朦胧的世界,各种美丽的景色跃然于眼前,俨然是一片乡村祥和图,但“骤然一惊,睁开眼”,瞬间化为几点虹霓色的碎影,似乎说明这融汇着一切美丽事物的完满世界只是幻想,在现实世界中是不可能存在的。
一旦醒来,一切便难追回。
《墓碣文》中的梦境,给人一种恐怖的感觉,也只能疾走,不要回顾,仿佛生活中的一些令人畏惧的的事情,让人敬而远之。
2011年普通高等学校招生全国统一考试(天津卷)数学(理工类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1、(2011·天津·理,1)i 是虚数单位,复数131i i-=- ( )(A)2i + ( B)2i - (C)12i -- (D)12i - 2、(2011·天津·理,2)设,x y R ∈,则“2x ≥且2y ≥”时“224x y +≥”的 ( ) (A)充分而不必要条件 (B )必要而不充分条件 (C)充分必要条件 (D )既不充分而也不必要条件3、(2011·天津·理,3)阅读右边的程序框图,运行相应的程序,则输出i 的值为 ( ) (A )3 (B )4 (C )5 (D )64、(2011·天津·理,4)已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,n N *∈,则10S 的值为 ( ) (A )-110 (B )-90 (C )90 (D )1105、(2011·天津·理,5)在62⎛⎫- ⎝的二项展开式中,2x 的系数为 ( ) (A )154-(B )154(C )38-(D )386、(2011·天津·理,6)如图,在ABC ∆中,D 是边AC 上的点,且AB=AD ,2AB=,BC=2BD ,则sinC 的值为( ) (A )3(B 6(C 3(D67、(2011·天津·理,7)已知2log3.45a =,4log3.65b =,3log0.31()5c =,则( )(A )a b c >> (B )b a c >> (C )a c b >> (D )c a b >> 8、(2011·天津·理,8)对实数a 和b ,定义运算“⊗”:,1,,1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数22()(2)()f x x x x =-⊗-,x R ∈。
BABDCDCB二、填空题:本题考查基本知识和基本运算,每小题5分,满分30分.9.12 10.6π+ 11.213.{|25}x x-≤≤ 14.5三、解答题15.本小题主要考查两角和的正弦、余弦、正切公式,同角三角函数的基本关系,二倍角的正弦、余弦公式,正切函数的性质等基础知识,考查基本运算能力.满分13分.(I)解:由2,42x k k Zπππ+≠+∈,得,82kx k Zππ≠+∈.所以()f x的定义域为{|,}82kx R x k Zππ∈≠+∈()f x的最小正周期为.2π(II)解:由()2cos2,2af a=得tan()2cos2,4a aπ+=22sin()42(cos sin),cos()4aa aaππ+=-+整理得sin cos2(cos sin)(cos sin).cos sina aa a a aa a+=+--因为(0,)4aπ∈,所以sin cos0.a a+≠因此211(cos sin),sin2.22a a a-==即由(0,)4aπ∈,得2(0,)2aπ∈.所以2,.612a aππ==即16.本小题主要考查古典概型及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决简单的实际问题的能力.满分13分.(I)(i)解:设“在1次游戏中摸出i个白球”为事件(0,1,2,3),iA i==则2132322531().5C CP AC C=⋅=(ii)解:设“在1次游戏中获奖”为事件B,则23B A A= ,又22111322222222253531(),2C C C C CP AC C C C=⋅+⋅=且A2,A3互斥,所以23117()()().2510P B P A P A=+=+=(II)解:由题意可知X的所有可能取值为0,1,2.2122(0)(1),101007721(1)(1),101050749(2)().10100P X P X C P X ==-===-==== 所以X 的分布列是X0 1 2 P 9100 215049100X 的数学期望921497()012.100501005E X =⨯+⨯+⨯=17.本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分.方法一:如图所示,建立空间直角坐标系,点B 为坐标原点.依题意得(0,0,0),AB C111A B C (I )解:易得11((AC AB==- , 于是111111cos ,3||||AC A B AC A B AC A B ⋅===⋅所以异面直线AC 与A 1B 1(II )解:易知111(AA AC ==设平面AA 1C 1的法向量(,,)m x y z =,则11100m AC mAA ⎧⋅=⎪⎨⋅=⎪⎩ 即0,0.⎧+=⎪⎨=⎪⎩不妨令x =可得m =,同样地,设平面A 1B 1C 1的法向量(,,)n x y z =, 则11110,0.n AC n A B⎧⋅=⎪⎨⋅=⎪⎩即0,0.⎧+=⎪⎨-=⎪⎩不妨令y =可得n = 于是2cos ,,||||7m n m n m n ⋅===⋅从而sin ,7m n = 所以二面角A —A 1C 1—B的正弦值为7(III )解:由N 为棱B 1C 1的中点,得(22N 设M (a ,b ,0),则(,22MN a b =--中学教育大家谈h t t p://b1327668.x i c i.n e t由MN⊥平面A1B1C1,得11110, 0.MN A BMN A C⎧⋅=⎪⎨⋅=⎪⎩即()(0,2()(()(0.22aa b⎧-⋅-=⎪⎪⎨⎪-⋅+-⋅+⎪⎩解得24ab⎧=⎪⎪⎨⎪=⎪⎩故M因此(,,0)24BM=,所以线段BM的长为||4BM=方法二:(I)解:由于AC//A1C1,故111C A B∠是异面直线AC与A1B1所成的角.因为1C H⊥平面AA1B1B,又H为正方形AA1B1B的中心,11AA C H==可得11113.AC B C==因此2221111111111111cos2AC A BB CC A BAC A B+-∠==⋅所以异面直线AC与A1B1(II)解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1=C1,所以11AC A∆≌11BC A∆,过点A作11AR AC⊥于点R,连接B1R,于是111B R AC⊥,故1ARB∠为二面角A—A1C1—B1的平面角.在11Rt A RB∆中,11111sin3B R A B RA B=⋅∠=连接AB1,在1ARB∆中,2221111114,,cos2AR B RABAB AR B R ARBAR B R+-==∠=⋅27=-,从而1sin7ARB∠=所以二面角A—A1C1—B1的正弦值为7(III)解:因为MN⊥平面A1B1C1,所以11.MN A B⊥取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND//C1H且112ND C H==.又1C H⊥平面AA1B1B,所以ND⊥平面AA1B1B,故11.ND A B⊥又,MN ND N=所以11平面MND ,连接MD 并延长交A 1B 1于点E ,则111,//.ME A B ME AA ⊥故由1111111,4B E B D DE AA B A B A ===得12DE B E ==EM 交AB 于点F , 可得1BF B E ==连接NE. 在Rt ENM ∆中,2,.ND ME ND DE DM⊥=⋅故 所以2ND DMDE ==可得4FM = 连接BM ,在Rt BFM ∆中,BM == 18.本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力.满分13分.(I )解:设12(,0),(,0)(0)F c F c c ->由题意,可得212||||,PF F F =2.c =整理得22()10,1c c c aa a+-==-得(舍), 或1.2c a =所以1.2e = (II )解:由(I )知2,,a cb == 可得椭圆方程为2223412,x yc +=直线PF 2方程为).y x c =-A ,B 两点的坐标满足方程组2223412,).x y c y x c ⎧+=⎪⎨=-⎪⎩消去y 并整理,得2580.x cx-=解得1280,.5x x c == 得方程组的解21128,0,5,.5x cx y y c ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎪⎩=⎪⎩不妨设8(,),(0,)55A cB 设点M 的坐标为8(,),(,),(,)55x y AM x c y BM x y =--=+ 则,于是38(,),555AMy x y x =--().BM x = 由2,AM BM ⋅=-即38)()255y xx y x -⋅+=-, 化简得218150.x --= 将22105,0.316x y c x y c x +==-=>得 所以0.x >因此,点M 的轨迹方程是218150(0).x x --=>19.本小题主要考查导数的运算、利用导数研究函数的单调性、解不等式、函数的零点等基础知识,考查运算能力和运用函数思想分析解决问题的能力及分类讨论的思想方法.满分14分.(I )解:2112'()2,(0,)2ax f x ax x x -=-=∈+∞, 令'()0,fx =解得 当x 变化时,'(),()f x f x 的变化情况如下表:x(0,)2a 2a()2a+∞ '()f x+ 0 - ()f x 极大值所以,()f x 的单调递增区间是(0,()2f x a 的单调递减区间是().2a+∞ (II )证明:当211,()ln .88a f x x x ==-时 由(I )知()f x 在(0,2)内单调递增,在(2,)+∞内单调递减. 令3()()().2g x f x f =- 由于()f x 在(0,2)内单调递增,故3(2)(),2f f >即g(2)>0. 取23419'2,(')0.232e x e g x -=>=<则 所以存在00(2,'),()0,x x g x ∈=使即存在003(2,),()().2x f x f ∈+∞=使(说明:的取法不唯一,只要满足即可)(III )证明:由()()f f αβ=及(I )的结论知αβ<<, 从而()[,]f x αβ在上的最小值为().f a又由1βα-≥,,[1,3],αβ∈知12 3.αβ≤≤≤≤ 故(2)()(1),ln 24,(2)()(3).ln 24ln39.f f f a a f f f a a αβ≥≥-≥-⎧⎧⎨⎨≥≥-≥-⎩⎩即 从而ln 3ln 2ln 2.53a -≤≤20.本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.满分14分.(I )解:由*3(1),,2nn b n N +-=∈ 可得1,n n b ⎧=⎨⎩为奇数2,n 为偶数又1120,n n n n n b a a b a +++++=123123234434543;5;4.=-=-=当n=1时,a +a +2a =0,由a =2,a =4,可得a 当n=2时,2a +a +a =0,可得a 当n=3时,a +a +2a =0,可得a (II )证明:对任意*,n N ∈2122120,n n n a a a -+++=① 2212220,n n n a a a ++++=② 21222320,n n n a a a +++++=③ ②—③,得 223.n n a a +=④ 将④代入①,可得21232121()n n n n a a a a ++-++=-+即*1()n n c c n N +=-∈又1131,0,n c a a =+=-≠故c因此11,{}n n nc c c +=-所以是等比数列. (III )证明:由(II )可得2121(1)k k k a a -++=-, 于是,对任意*2k N k ∈≥且,有133********,()1,1,(1)() 1.k k k a a a a a a a a --+=--+=-+=--+=-将以上各式相加,得121(1)(1),k k a a k -+-=--即121(1)(1)k k a k +-=-+,此式当k=1时也成立.由④式得12(1)(3).k k a k +=-+从而22468424()()(),k k k S a a a a a a k -=++++++=-2124k k k -所以,对任意*,2n N n ∈≥,44342414114342414()n nk m m m m k m k m m m m S S S S S a a a a a ---==---=+++∑∑12221232()2222123nm m m m mm m m m =+-+=--++++∑123()2(21)(22)(22)nm m m m m ==++++∑ 2253232(21)(22)(23)nm m m n n ==++⨯+++∑ 21533(21)(21)(22)(23)n m m m n n =<++-+++∑151111113[()()()]3235572121(22)(23)n n n n =+⋅-+-++-+-+++1551336221(22)(23)7.6n n n =+-⋅++++<对于n=1,不等式显然成立.所以,对任意*,n N ∈2121212212n nn nS S S S a a a a --++++32121241234212()()()n n n n S S S S S S a a a a a a --=++++++22211121(1)(1)(1)41244(41)4(41)n n n=--+--++-----22211121()()()41244(41)44(41)n n n nn =-+-+--+--111().4123n n ≤-+=-。
【选择题】【1】.i 是虚数单位,复数i1i31--=( ). (A)2+i(B)2i -(C)12i -+ (D)12i --【2】.设R ∈y x ,,则“x ≥2且y ≥2”是“22y x +≥4”的( ).(A ) 充分而不必要条件 (B )必要而不充分条件 (C ) 充分必要条件 (D )既不充分也不必要条件 【3】.阅读下面的程序框图,运行相应的程序,则输出i 的值为( ). (A )3 (B )4 (C )5 (D )6【4】.已知{}n a 为等差数列,其公差为-2,且937a a a 与是的等比中项,{}n n a S 为的前n 项和,*n ∈N ,则10S 的值为( ).(A )—110(B )—90 (C )90(D )110【5】.在622⎪⎪⎭⎫⎝⎛-x x 的二项展开式中,2x 的系数为( ). (A )415- (B )415 (C )83- (D )83 【6】.如下图,在△ABC 中,D 是边AC 上的点,且AB AD =,2,2AB BC BD ==,则C sin 的值为( ). (A )33 (B) 63 (C) 36 (D) 66【7】.已知4.3log 25=a ,6.3log 45=b ,3.0log 351⎪⎭⎫ ⎝⎛=c ,则( ).(A )c b a >>(B )c a b >>(C )b c a >> (D )b a c >>【8】.对实数a 与b ,定义新运算“⊗”:,1,,1.aab a b b a b -≤⎧⊗=⎨->⎩ 设函数)()2()(22x x x x f -⊗-=R ∈x ,,若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是( ).(A )(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ (B )(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭(C )111,,44⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭ (D )311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭【填空题】【9】.一支田径队有男运动员48人,女运动员36人.若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为___________.【10】.一个几何体的三视图如下图所示(单位:m ),则该几何体的体积为__________3m .【11】.已知抛物线C 的参数方程为28,8x t y t ⎧=⎨=⎩,(t 为参数).若斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________.【12】.如下图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则线段CE 的长为__________.【13】.已知集合|4||3| |{-++∈=x x x A R ≤19},|46,(0,)B x x t t t ⎧⎫=∈=+-∈+∞⎨⎬⎩⎭R ,则集合A B ⋂=________.【14】.已知直角梯形ABCD 中,P BC AD ADC BC AD ,1,2,90,//==︒=∠是腰DC 上的动点,则|3|PB PA +的最小值为______. 【解答题】【15】.已知函数π()tan(2).4f x x =+(Ⅰ)求()f x 的定义域与最小正周期; (Ⅱ)设π0,4α⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小. 【16】.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在一次游戏中,(i )摸出3个白球的概率; (ii )获奖的概率;(Ⅱ)求在两次游戏中获奖次数X 的分布列及数学期望()E X .【17】.如下图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,1AA =1C H ⊥平面11AA B B ,且1C H=(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111B C A A --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.【18】.在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b +=的左、右焦点.已知△12F PF 为等腰三角形. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-, 求点M 的轨迹方程. 【19】.已知0a >,函数2()ln ,0.f x x ax x =->(()f x 的图像连续不断)(Ⅰ)求()f x 的单调区间; (Ⅱ)当18a =时,证明:存在0(2,)x ∈+∞,使03()()2f x f =; (Ⅲ)若存在均属于区间[]1,3的,αβ,且βα-≥1,使()()f f αβ=,证明ln 3ln 25-≤a ≤ln 23. 【20】.已知数列{}n a 与{}n b 满足1123(1)0,2nn n n n n n b a a b a b ++++-++==,*n ∈N ,且122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设121-2++=n n n a a c ,n ∈*N ,证明{}n c 是等比数列;(Ⅲ)设242,,kk S a a a k =++⋅⋅⋅+∈*N 证明:417()6nk k kS n a =<∈∑*N .【参考答案】 【1】.B 提示:i 22i24)i 1)(i 1()i 1)(i 31(i 1i 31-=-=+-+-=--.故选(B ). 【2】.A提示:充分性显然成立,而存在反例43122≥+,可知必要性不成立.故选(A ). 【3】.B提示:根据条件执行4次,过程如下: 当1=i 时,2a =,不合题意; 当2=i 时,5=a ,不合题意; 当3=i 时,16=a ,不合题意; 当4=i 时,65=a ,适合题意. 故应选(B ). 【4】.D提示:⎩⎨⎧-=⋅=,,29327d a a a 解得201=a ,则110291010110=⨯⨯+=d a S . 【5】.C提示:6326166C ((1)C 2rr r r r r r r T x ---+==-,令23=-r ,则,1=r 故2x 的系数为1463C (1)28--⨯=-. 【6】.D提 示:设x AB =,则,332,x BD x AD ==可求31co s =A ,那么322s i n =A ,又A C BC AB sin sin 43==,求得66sin =C .【7】.C提示:首先确定16.3log 04<<,则5<b ,而310log 3.0log 33551=⎪⎭⎫⎝⎛=c ,又1310log 4.3log 4.3log 332>>>,从而5>>c a ,故选(C ). 【8】.B提示:解1)()2(22≤---x x x ,得1-≤x ≤32,则⎪⎪⎩⎪⎪⎨⎧>-<-≤≤--=.231,,231,2)(22x x x x x x x f 或如下图,由图像可看出函数c y =与函数有两个交点时,c 的取值范围为(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭.故应选(B ).【9】.12提示:男女比例为:4:3,则样本中抽取男运动员的人数为127421=⨯. 【10】.π6+提示:根据所给的几何体的三视图,可以想到这个几何体是一个复合体.底座是一个长、宽、高分别为3,2,1的长方体,上面是一个半径为1的圆锥,且底面是长方体的上地面的内切圆,可得π63π31123+=⨯⨯+⨯⨯=V .【11】.2提示:抛物线方程为x y 82=,那么直线方程为2-=x y ,由相切可得:22|24|==-r .【12】.27提示:设,x BE =则,2,4x FB x AF ==圆的相交弦定理得FC DF FB AF ⋅=⋅,解得.21=x 由切割线定理知,2,CE EB EA =⋅解得27=CE . 【13】.2|{-x ≤x ≤5} 提示:|)4()3(|-++x x ≤|3||4|x x ++-≤9,即|12|-x ≤9,可得4|{-∈=R x A ≤x ≤5},而x x B |{=≥2}-,所以A B ⋂=2|{-x ≤x ≤5}.【14】.5提示:建立直角坐标系如下图所示,则),0,2(A 设),0(),,0(a C y P ,),1(a B ,那么),1(),,2(y a PB y PA -=-=,)43,5(3y a -=+,从而22)43(25|3|y a PB PA -+=+≥25,当且仅当a y 43=时,取等号.【15】.解(Ⅰ)因为由ππ2π,42x k k +≠+∈Z, 得ππ,82k x k ≠+∈Z . 所以()f x 的定义域为ππ{|,}82k x x k ∈≠+∈R Z . ()f x 的最小正周期为π.2(Ⅱ)由()2cos 2,2f αα=得πtan()2cos 2,4αα+= 即22πsin()42(cos sin ),πcos()4αααα+=-+ 整理得sin cos 2(cos sin )(cos sin ).cos sin αααααααα+=+--因为π(0,)4α∈,所以sin cos 0.αα+≠因此21(cos sin ),2αα-=即1sin 2.2α= 由π(0,)4α∈,得π2(0,)2α∈.所以π2,6α=即π.12α=【16】.解:(Ⅰ)(i )设“在1次游戏中摸出i 个白球”为事件(0,1,2,3),i A i =则213232253C C 1().C C 5P A =⋅= (ii )设“在1次游戏中获奖”为事件B ,则23B A A =,又2112133222222225353C C C C C 1(),C C C C 2P A =⋅+⋅= 且23A A ,互斥,所以23117()()().2510P B P A P A =+=+= (Ⅱ)由题意可知X 的所有可能取值为0,1,2.212279(0)(1),101007721(1)C (1),101050749(2)().10100P X P X P X ==-===⨯-====XX的数学期望()012.100501005E X =⨯+⨯+⨯=【17】.解:如下图所示,建立空间直角坐标系,点B为坐标原点.依题意得111A B C ,(0,0,0),A B C ,(Ⅰ)易得11(2,2,5),(22,0,0)AC AB =--=-,于是111111cos,3||||3AC A B AC A B AC A B ⋅===⋅⨯所以异面直线AC 与11A B (Ⅱ)易知111(0,22,0),(2,AA AC ==-设平面11AAC 的法向量(,,)x y z=m ,则11100.AC AA ⎧⋅=⎪⎨⋅=⎪⎩,m m即0,0.⎧+=⎪⎨=⎪⎩不妨令x =可得=m ,同样地,设平面111A B C 的法向量(,,)x y z =n ,则11110,0.AC A B ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.⎧+=⎪⎨-=⎪⎩不妨令y =可得=n于是2cos,,||||7⋅===⋅m n m n mn从而sin ,=m n 所以二面角111A AC B --(Ⅲ)由N 为棱11B C 的中点,得N 设(,,0)M a b ,则2(,,222MNa b =--. 由MN ⊥平面111A B C ,得11110,0.MN A BMN AC ⋅=⎧⎨⋅=⎩即)(0,()(()(0.222a ab ⎧-⨯-=⎪⎪⎨⎪-⨯+-⨯+=⎪⎩解得4a b ⎧=⎪⎪⎨⎪=⎪⎩故M因此2(24BM=,所以线段BM 的长为10||BM = 【18】.解:(Ⅰ)设12(,0),(,0)(0)F c F c c ->.由题意,可得212||||,PF F F =即2.c = 整理得22()10,1cc c aa a +-==-得(舍),或1.2c a =所以1.2e = (Ⅱ)由(Ⅰ)知2,,a c b ==可得椭圆方程为2223412,x y c +=直线2PF方程为).y x c =-,A B 两点的坐标满足方程组2223412,).x y c y x c ⎧+=⎪⎨=-⎪⎩消去y 并整理,得2580.x cx -=解得1280,.5x x c ==所以方程组的解21128,0,5,.x c x y y ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎪⎩=⎪⎩不妨设8(),(0,)5A c B 设点M的坐标为833(,),(,),(,)55xy AMx c y c BM x y =--=则,由),.3y x c c x y =-=-得于是838(,),55AM y x y x =--().BM x=由2,AM BM ⋅=- 即38)()255y x x y x -⋅+=-,化简得218150.x --=将22105,0.16x y c x y c x +===>得所以0.x >因此,点M 的轨迹方程是218150(0).xx --=>【19】.(Ⅰ)解:2112()2,(0,)ax f x ax x x x-'=-=∈+∞. 令()0,f x '=解得2x a=当x 变化时,(),()f x f x '的变化情况如下表:所以,()f x 的单调递增区间是()f x 的单调递减区间是).+∞ (Ⅱ)证明:当211,()ln .88a f x x x ==-时 由(Ⅰ)知()f x 在(0,2)内单调递增,在(2,)+∞内单调递减. 令3()()().2g x f x f =-由于()f x 在(0,2)内单调递增, 故3(2)(),2f fg >即(2)>0.取23419e e 2,()0232x g x -''=>=<则,所以存在00(2,),()0,x x g x '∈=使 即存在003(2,),()().2x f x f ∈+∞=使(说明:x '的取法不唯一,只要满足2,()0x g x ''><且即可).(Ⅲ)证明:由()()f f αβ=及(I )的结论知αβ<<, 从而()[,]f x αβ在上的最小值为().f α又由βα-≥1,,[1,3],αβ∈知1≤α≤2≤β≤3.故(2)()(1),ln 24,(2)()(3).ln 24ln39.f f f a a f f f a a αβ≥≥-≥-⎧⎧⎨⎨≥≥-≥-⎩⎩即 从而ln 3ln 25-≤a ≤ln 2.3【20】.(Ⅰ)解:由*3(1),,2nn b n +-=∈N 可得1,n n b n ⎧=⎨⎩为奇数,2,为偶数.又1120,n n n n n b a a b a +++++=123123234434553;5;4.n a a a a a a n a a a a n a a a a =-=-=当=1时,++2=0,由=2,=4,可得当=2时,2++=0,可得当=3时,++2=0,可得(Ⅱ)证明:对任意*,n ∈N2122120,n n n a a a -+++= ① 2212220,n n n a a a ++++= ② 21222320.n n n a a a +++++= ③②-③,得223.nn a a += ④将④代入①,可得21232121()n n n n a a a a ++-++=-+,即*1()n n c c n +=-∈N ,又1131,0,n c a a c =+=-≠故因此11,n nc c +=-所以{}n c 是等比数列. (Ⅲ)证明:由(Ⅱ)可得2121(1)k k k a a -++=-,于是,对任意*k k ∈N 且≥2,有133********,()1,1,(1)() 1.k k k a a a a a a a a --+=--+=-+=--+=-将以上各式相加,得121(1)(1),kk a a k -+-=--即121(1)(1)k k a k +-=-+,此式当k =1时也成立. 由④式得12(1)(3).k k a k +=-+从而22468424()()(),kk k S a a a a a a k -=++++++=-2124 3.k k k S S a k -=-=+所以,对任意*,n n ∈N≥2,44342414114342414()nnk m m m mk m k m m m mS S S S S a a a a a ---==---=+++∑∑ 12221232()2222123nm m m m mm m m m =+-+=--++++∑ 123()2(21)(22)(22)nm m m m m ==++++∑2253232(21)(22)(23)nm m m n n ==++⨯+++∑21533(21)(21)(22)(23)n m m m n n =<++-+++∑ (151111113()())]3235572121(22)(23)n n n n =+⨯-+-++-+-+++ 155137.36221(22)(23)6n n n =+-⨯+<+++ 对于n =1,不等式显然成立. 【End 】。
2011年普通高等学校招生全国统一考试(天津卷)数学(理)试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷参考公式:如果事件A ,B 互斥,那么 如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()().P AB P A P B =棱柱的体积公式.V Sh =圆锥的体积公式1.3V Sh =其中S 表示棱柱的底面面积 其中S 表示圆锥的底面面积 h 表示棱柱的高 h 表示圆锥的高一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. 1.i 是虚数单位,复数131ii--= A .2i + B .2i -C .12i -+D .12i --2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件 3.阅读右边的程序框图,运行相应的程序,则输出i 的值为 A .3 B .4 C .5 D .6 4.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .1105.在622x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,2x 的系数为 A .154- B .154 C .38- D .386.如图,在△ABC 中,D 是边AC 上的点,且AB=AD ,2AB=BD ,BC=2BD ,则sin C的值为A .33B .36 C .63D .667.已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则A .a b c >>B .b a c >>C .a c b >>D .c a b >>8.对实数a 和b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭B .(]3,21,4⎛⎫-∞-⋃--⎪⎝⎭ C .111,,44⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭第II 卷二、填空题:本大题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为___________ 10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为__________3m11.已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数)若斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________.12.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且2,::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则线段CE 的长为__________.13.已知集合{}1|349,|46,(0,)A x R x x B x R x t t t⎧⎫=∈++-≤=∈=+-∈+∞⎨⎬⎩⎭,则集合A B ⋂=________.14.已知直角梯形ABCD 中,AD //BC ,090ADC ∠=,2,1AD BC ==,P 是腰DC 上的动点,则3PA PB +的最小值为____________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数()tan(2),4f x x π=+(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小.16.(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中,(i )摸出3个白球的概率; (ii )获奖的概率; (Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望()E X . 17.(本小题满分13分)如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AAB B ,且1 5.C H =(Ⅰ)求异面直线AC 与A 1B 1所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.18.(本小题满分13分)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F PF 为等腰三角形.(Ⅰ)求椭圆的离心率e ; (Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-,求点M 的轨迹方程.19.(本小题满分14分)已知0a >,函数2()ln ,0.f x x ax x =->(()f x 的图像连续不断) (Ⅰ)求()f x 的单调区间;(Ⅱ)当18a =时,证明:存在0(2,)x ∈+∞,使03()()2f x f =; (Ⅲ)若存在均属于区间[]1,3的,αβ,且1βα-≥,使()()f f αβ=,证明ln 3ln 2ln 253a -≤≤.20.(本小题满分14分)已知数列{}n a 与{}n b 满足:1123(1)0,2n n n n n n n b a a b a b ++++-++==, *n ∈N ,且122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列; (III )设*242,,k k S a a a k N =++⋅⋅⋅+∈证明:4*17()6nk k kS n N a =<∈∑.答案解析一、选择题( 本大题共8 题, 共计40 分)1、(5分) B.2、(5分) A∵x≥2,∴x2≥4.∵y≥2,∴y2≥4.∴x2+y2≥8≥4.∴x≥2且y≥2?x2+y2≥4,反之令x2+y2=5≥4,可取x=2,y=1,无法推出y≥2.故选A项.3、(5分) B第一次运算:i=1,a=2,a<50;第二次运算:i=2,a=5,a<50;第三次运算:i=3,a =16,a<50;第四次运算:i=4,a=65,a>50.所以输出i=4.4、(5分) D设等差数列{a n}的首项为a,公差d=-2.则a7=a1+6d=a1-12;a3=a1+2d=a1-4;a9=a1+8d=a1-16.∵a7是a3与a9的等比中项,∴=a3·a9,∴(a1-12)2=(a1-4)(a1-16),∴a1=20.∴S10=10a1+d=110.5、(5分) C设含x2的项是二项展开式中第r+1项,则.令3-r=2,得r=1.∴x2的系数为.6、(5分) D设BD=a,则BC=2a,AB=AD=A.在△ABD中,由余弦定理,得cos A===.又∵A为△ABC的内角,∴sin A=.在△ABC中,由正弦定理得,.∴sin C=·sin A=·=.7、(5分) C,log23.4>log22=1,log43.6<log44=1,>log3 3=1,又log23.4>>,∴log23.4>>log43.6.又∵y=5x是增函数,∴a>c>b.8、(5分) B由题意得,即在同一坐标系内画出函数y=f(x)与y=c的图象如图所示,结合图象可知,当c∈(-∞,-2]∪(-1,)时两个函数的图象有两个公共点,从而方程f(x)-c=0有两个不同的根,即y=f(x)-c与x轴有两个不同交点.二、填空题( 本大题共6 题, 共计30 分)9、(5分) 12解析:设抽取男运动员人数为n,则女运动员人数21-n.由分层抽样知:,∴n=12.10、(5分) 6+π解析:由几何体的三视图可知,原几何体是一个长方体和一个圆锥的组合体.下面的长方体的长、宽、高分别是3 m,2 m,1 m,∴体积为3×2×1=6(m3).上面的圆锥底面圆半径为1 m,高为3 m,∴圆锥的体积为π×12×3=π(m3).∴该几何体的体积为(6+π) m3.11、(5分)解析:消去参数t,得抛物线标准方程y2=8x,其焦点F(2,0),∴过抛物线焦点斜率为1的直线方程:x-y-2=0,∵直线与圆(x-4)2+y2=r2相切,∴r=d=.12、(5分)解析:设BE=m,则BF=2m,AF=4m.∵AB与CD是圆的两条相交弦,交点为F,∴由相交弦定理,得AF·FB=CF·FD==2,∴4m·2m=2,∴m2=.又∵CE是圆的切线,根据切割弦定理,得CE2=EB·EA=m(m+2m+4m)=7m2=,∴CE=.13、(5分) {x|-2≤x≤5}解析:解不等式|x+3|+|x-4|≤9.(1)当x<-3时,|x+3|+|x-4|=-x-3+4-x≤9,∴x≥-4,即-4≤x<-3;(2)当-3≤x≤4时,|x+3|+|x-4|=x+3+4-x≤9恒成立,∴-3≤x≤4;(3)当x>4时,|x+3|+|x-4|=x+3+x-4≤9,∴x≤5,即4<x≤5.综上所述,A={x∈R|-4≤x≤5}.∵t∈(0,+∞),∴x=4t+-6≥2-6=-2,当且仅当t=时等号成立.∴B={x∈R|x≥-2}.∴A∩B={x∈R|-4≤x≤5}∩{x∈R|x≥-2}={x∈R|-2≤x≤5}.14、(5分) 5解析:根据题意,以AD为x轴,DC为y轴,建立平面直角坐标系,如图所示.∵AD=2,∴A(-2,0).∵BC=1,∴可设B(-1,n).∴点P在DC上运动,∴可设P(0,y)(0≤y≤n).∴=(-2,-y),=(-1,n-y),∴=(-5,3n-4y).∴.∴当3n=4y,即y=n时,取得最小值5.三、解答题( 本大题共6 题, 共计80 分)15..解:(1)由,得,所以f(x)的定义域为.f(x)的最小正周期为(2)由得,,整理得.因为,所以.因此由,得.所以16.解:(1)①设“在1次游戏中摸出i个白球”为事件A i(i=0,1,2,3),则②设“在1次游戏中获奖”为事件B,则B=A2∪A3.又且A2,A3互斥,所以.(2)由题意可知X的所有可能取值为0,1,2.所以X的分布列是X0 1 2PX的数学期望17. 解:(方法1)如图所示,建立空间直角坐标系,点B为坐标原点.依题意得(1)解:易得,于是所以异面直线AC与A1B1所成角的余弦值为(2)解:易知设平面AA1C1的法向量,则即不妨令可得,同样地,设平面A1B1C1的法向量,则即不妨令,可得于是从而所以二面角A—A1C1—B的正弦值为(3)解:由N为棱B1C1的中点,得设M(a,b,0),则由平面A1B1C1,得即解得故因此,所以线段BM的长为(方法2)(1)解:由于AC//A1C1,故是异面直线AC与A1B1所成的角. 因为平面AA1B1B,又H为正方形AA1B1B的中心,可得因此所以异面直线AC与A1B1所成角的余弦值为(2)解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1=C1,所以≌,过点A作于点R,连接B1R,于是,故为二面角A—A1C1—B1的平面角. 在中,连接AB1,在中,,从而所以二面角A—A1C1—B1的正弦值为(3)解:因为平面A1B1C1,所以取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND//C1H且.又平面AA1B1B,所以平面AA1B1B,故又所以平面MND,连接MD并延长交A1B1于点E,则由得,延长EM交AB于点F,可得连接NE.在中,所以可得连接BM,在中,18. 解:(1)设F1(-c,0),F2(c,0)(c>0).由题意,可得|PF2|=|F1F2|,即整理得(舍),或,所以.(2)由(1)知,可得椭圆方程为3x2+4y2=12c2,直线PF2方程为.A,B两点的坐标满足方程组,消去y并整理,得5x2-8cx=0.解得得方程组的解.不妨设.设点M的坐标为.由于是由,即,化简得将,所以x>0.因此,点M的轨迹方程是18x2-16xy-15=0(x>0).19. 解:(1).令.当x变化时,f′(x),f(x)的变化情况如下表:xf′(x) +0 -f(x) ↗极大值↘所以,f(x)的单调递增区间是的单调递减区间是.(2)证明:当由(1)知f(x)在(0,2)内单调递增,在(2,+∞)内单调递减.令由于f(x)在(0,2)内单调递增,故.取所以存在x0∈(2,x′),使g(x0)=0,即存在(说明:x′的取法不唯一,只要满足x′>2,且g(x′)<0即可.)(3)证明:由f(α)=f(β)及(1)的结论知,从而f(x)在[α,β]上的最小值为f(α).又由β-α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.故从而20. 解:(1)由可得又b n a n+a n+1+b n+1a n+2=0,当n=1时,a1+a2+2a3=0,由a1=2,a2=4,可得a3=-3;当n=2时,2a2+a3+a4=0,可得a4=-5;当n=3时,a3+a4+2a5=0,可得a5=4.(2)证明:对任意n∈N*,a2n-1+a2n+2a2n+1=0,①2a2n+a2n+1+a2n+2=0,②a2n+1+a2n+2+2a2n+3=0.③②-③,得a2n=a2n+3.④将④代入①,可得a2n+1+a2n+3=-(a2n-1+a2n+1).即c n+1=-c n(n∈N*).又c1=a1+a3=-1,故c n≠0,因此是等比数列.(3)证明:由(2)可得a2k-1+a2k+1=(-1)k,于是,对任意k∈N*且k≥2,有a1+a3=-1,-(a3+a5)=-1,a5+a7=-1,(-1)k(a2k-3+a2k-1)=-1.将以上各式相加,得a1+(-1)k a2k-1=-(k-1),即a2k-1=(-1)k+1(k+1),此式当k=1时也成立.由④式得a2k=(-1)k+1·(k+3).从而S2k=(a2+a4)+(a6+a8)+…+(a4k-2+a4k)=-k,S2k-1=S2k-a4k=k+3所以,对任意n∈N*,n≥2,对于n=1,不等式显然成立.。
2011天津理第Ⅰ卷本卷共8小题,每小题5分,共40分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,复数13i1i-=-( ). A .2i + B .2i - C .12i -+ D .12i --【解】()()()()13i 1i 13i 42i2i 1i 1i 1i 2-+--===---+.故选B. 2.设,x y ∈R ,则“2x ≥且2y ≥”是“224x y +≥”的( ). A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解】因为2x ≥且2y ≥,则24x ≥且24y ≥,因而224x y +≥,所以“2x ≥且2y ≥”是“224x y +≥”的充分条件,取x y ==224x y +≥, 但不满足2x ≥且2y ≥,所以“2x ≥且2y ≥”不是“224x y +≥”的必要条件.因此“2x ≥且2y ≥”是“224x y +≥”的充分而不必要条件.故选A.3.阅读右边的程序框图,运行相应的程序,则输出i 的值为( ). A .3 B .4 C .5 D .6【解】运算过程依次为:当1i =时,1112a =⨯+=,当2i =时,2215a =⨯+=, 当3i =时,53116a =⨯+=,当4i =时,16416550a =⨯+=>. 所以输出的4i =.故选B. 4.已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,n +∈N ,则10S 的值为 ( ).A .110-B .90-C .90D .110【解】因为等差数列的公差为2-,则314a a =-,7112a a =-,9116a a =-,因为7a 是3a 与9a 的等比中项,所以2739a a a =,即()()()211112416a a a -=--,221111241442064a a a a -+=-+,所以1480a =,120a =.于是()1011091010204521102S a d ⨯=+=⨯+⨯-=.故选D. 5.在62⎛⎫ ⎝的二项展开式中,2x 的系数为( ). A .154- B .154 C .38- D .38【解】()6326166C 1C 22rrr rr r r r T x ---+⎛⎛==- ⎝⎝⎭, 令32r -=,则1r =.()112262226631C 2168T x x x -=-=-=-. 所以,2x 的系数38-,故选C. 6.如图,在ABC ∆中,D 是边AC 上的点,且AB AD =,2AB =,2BC BD =,则sin C 的值为( ).ABCD【解】解法1.取BD 的中点E ,因为AB AD =,所以AE BD ⊥,因为2AB =,AB =.所以cos cos 3BE ABE ADB AB =∠==∠,于是sin sin 3ADB CDB ∠=∠=. 在BDC ∆中,由正弦定理得sin sin BC BDCDB C=∠,sin BD C =,所以sin C =.故选D. 解法2.设1BD =,由题设AB AD ==,2BC =. CBDAECB DA在ABD ∆中,由余弦定理得222331144cos 2324AB AD BD BAD AB AD +-+-∠===⋅⨯,所以sin BAD ∠=在ABC ∆中,由正弦定理得sin sin BC ABBAD C =∠2sin C=,所以sin C =.故选D. 7.2log 3.45a =,4log 3.65b =,3log 0.315c ⎛⎫= ⎪⎝⎭,则( ).A .a b c >>B .b a c >>C .a c b >>D .c a b >>【解】解法1.33310log 0.3log log 0.331555c -⎛⎫=== ⎪⎝⎭,下面比较2log 3.4a '=,4log 3.6b '=和310log 3c '=的大小. 因为1a '>,1c '>,1b '<,则b '最小.2310lg10lg 3.43log 3.4log 3lg 2lg 3a c ''-=-=-,因为10lg 3.4lg03>>,0lg 2lg3<<,所以11lg 2lg 3>, 因此10lglg 3.430lg 2lg 3a c ''-=->.所以a c ''>,因而a c b '''>>. 由于函数5x y =是R 上的增函数,所以a c b >>.故选C.解法2.33310log 0.3log log 0.331555c -⎛⎫=== ⎪⎝⎭,下面比较2log 3.4a '=,4log 3.6b '=和310log 3c '=的大小. 因为1a '>,1c '>,1b '<,则b '最小.因为3310log log 3.43c '=<, 所以233lg3.4lg3.410log 3.4log 3.4log lg 2lg33a c ''==>>>=,因而a c b '''>>. 由于函数5x y =是R 上的增函数,所以a c b >>.故选C. 解法3.由解法2,3310log log 3.43c '=<, 画出函数2log y x =和3log y x =的图象,比较 3.4x =的纵坐标,可得23log 3.4log 3.4>,于是23310log 3.4log 3.4log 3a c ''=>>=.因而a cb '''>>. 由于函数5x y =是R 上的增函数,所以ac b >>.故选C. 8.对实数a 和b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()()222f x x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .()3,21,2⎛⎫-∞-- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞---⎪⎝⎭ C .111,,44⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--+∞ ⎪⎪⎢⎝⎭⎣⎭【解】由题设()2232,1,23,12x x f x x x x x ⎧--≤≤⎪⎪=⎨⎪-<->⎪⎩或画出函数的图象,函数图象的四个端点(如图)为()1,1A --,31,24D ⎛⎫ ⎪⎝⎭,()1,2B --,33,24C ⎛⎫- ⎪⎝⎭, 从图象中可以看出,直线y c =穿过点C ,点A 之间时,直线y c =与图象有且只有两个公共点,同时,直线y c =穿过点B及其下方时,直线y c =与图象有且只有两个公共点,所以实数c 的取值范围是(]3,21,4⎛⎫-∞---⎪⎝⎭.故选B.第Ⅱ卷二、填空题:本答题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人.若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为 .【解】12.抽取男运动员的人数为2121484812483684⨯=⨯=+(人).10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为 3m .【解】6π+.几何体是由一个长方体与一个圆锥组合的.体积为213211363V ππ=⨯⨯+⨯⨯⨯=+.11.已知抛物线C 的参数方程为28,8x t y t⎧=⎨=⎩(t 为参数).若斜率为1的直线经过抛物线C 的焦点,且与圆()()22240x y r r -+=>相切,则r = .【解抛物线C 的普通方程为28y x =,其焦点为()2,0F . 直线方程为2y x =-.因为直线与圆()()22240x y r r -+=>相切,则圆心到直线的距离等于半径,即r ==.12.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且DF CF ==::4:2:1AF FB BE =,若CE与圆相切,则线段CE 的长为 .【解】2.因为::4:2:1AF FB BE =,所以设BE a =,2FB a =,俯视图侧视图正视图FDCBA4AF a =.由相交弦定理,242DF CF AF FB a a ⋅=⋅==⋅, 所以12a =,12BE =,772AE a ==.因为CE 与圆相切,由切割线定理,2177224CE AE BE =⋅=⋅=.所以CE =. 13.已知集合{}349A x x x =∈++-≤R ,()146,0,B x x t t t⎧⎫=∈=+-∈+∞⎨⎬⎩⎭R ,则集合A B = .【解】{}25x x -≤≤.解集合A .当3x <-时,不等式化为349x x --+-≤,解得4x ≥-.所以解为43x -≤<-; 当34x -≤≤时,不等式化为349x x ++-≤,即79≤.所以解为34x -≤≤; 当4x >时,不等式化为349x x ++-≤,解得5x ≤,所以解为45x <≤. 综合以上,{}45A x x =-≤≤. 解集合B .因为0t >,所以1466462x t t =+-≥=-=-, 所以{}2B x x =≥-,因而{}25A B x x =-≤≤ .14.已知直角梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,1BC =,P 是腰DC 上的动点,则3PA PB +的最小值为 .【解】5.解法1 .以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,建立如图的直角坐标系.由题设,()2,0A ,设()0,C c ,()0,P y ,则()1,B c .()2,PA y =- ,()1,PB c y =-. ()35,34PA PB c y +=-.35PA PB += ,当且仅当34c y =时,等号成立,于是,当34cy =时,3PA PB + 有最小值5.解法2 . 以相互垂直的向量,为基底表示3+,得x()533332P A P BD A D P P C C B D A P C D P+=-++=+-. 又P 是腰DC 上的动点,即与共线,于是可设λ=,有)13(253-+=+λ. 所以2222553(31)(31)42PA PB DA DP DA DP λλ⎡⎤+=+-+⨯-⋅⎣⎦即[]213(25)13(-+=-+=+λλ. 由于P 是腰DC 上的动点,显然当31=λ,即DP PC 31=时,所以3PA PB +有最小值5.解法3 .如图,3PB PF =,设E 为AF 的中点,Q 为AB 的中点,则12QE BF PB ==,32PA PB PA PF PE +=+=, ①因为PB PQ PE += ,PB PQ QB -=.则22222222PB PQ PB PQ PB PQ PE QB ++-=+=+ . ②(实际上,就是定理:“平行四边形的对角线的平方和等于各边的平方和”) 设T 为DC 的中点,则TQ 为梯形的中位线,()1322TQ AD BC =+=. 设P 为CT 的中点,且设,CP a PT b ==,则221PB a =+ ,2294PQ b =+ ,()2214QB a b =++ ,代入式②得()()222222912221244PB PQ a b PE a b ⎛⎫+=+++=+++ ⎪⎝⎭ ,于是()22252544PE a b =+-≥ ,于是25PE ≥ ,当且仅当a b =时,等号成立. 由式①,325PA PB PE +=≥,所以3PA PB +有最小值5.三、解答题:本大题共6小题,共80分。
2011年天津市高考数学试卷(理科)
一、选择题(共8小题,每小题5分,满分40分)
1.(5分)(2011•天津)i是虚数单位,复数=()
A.2+i B.2﹣i C.﹣1+2i D.﹣1﹣2i
2.(5分)(2011•天津)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
3.(5分)(2011•天津)阅读程序框图,运行相应的程序,则输出i的值为()
A.3 B.4 C.5 D.6
4.(5分)(2011•天津)已知{a n}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,S n为{a n}的前n项和,n∈N*,则S10的值为()
A.﹣110 B.﹣90 C.90 D.110
5.(5分)(2011•天津)在的二项展开式中,x2的系数为()A.B.C. D.
6.(5分)(2011•天津)如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为()
A.B.C.D.
7.(5分)(2011•天津)已知,则()A.a>b>c B.b>a>c C.a>c>b D.c>a>b
8.(5分)(2011•天津)对实数a与b,定义新运算“⊗”:.设函数f
(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()
A.B.
C.D.
二、填空题(共6小题,每小题5分,满分30分)
9.(5分)(2011•天津)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数
为.
10.(5分)(2011•天津)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为m3.
11.(5分)(2011•天津)已知抛物线C的参数方程为(t为参数),若斜率为1的直线经过抛物线C的焦点,且与圆(x﹣4)2+y2=r2(r>0)相切,则r=.
12.(5分)(2011•天津)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.
13.(5分)(2011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},
B=,则集合A∩B=.
14.(5分)(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为.
三、解答题(共6小题,满分80分)
15.(13分)(2011•天津)已知函数f(x)=tan(2x+),
(1)求f(x)的定义域与最小正周期;
(2)设α∈(0,),若f()=2cos2α,求α的大小.
16.(13分)(2011•天津)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中,
(i)摸出3个白球的概率;
(ii)获奖的概率;
(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望E(X).
17.(13分)(2011•天津)如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.
(1)求异面直线AC与A1B1所成角的余弦值;
(2)求二面角A﹣A1C1﹣B1的正弦值;
(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM 的长.
18.(13分)(2011•天津)在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆的左、右焦点.已知△F1PF2为等腰三角形.
(Ⅰ)求椭圆的离心率e;
(Ⅱ)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足,求点M的轨迹方程.
19.(14分)(2011•天津)已知a>0,函数f(x)=lnx﹣ax2,x>0.(f(x)的图象连续不断)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当时,证明:存在x0∈(2,+∞),使;
(Ⅲ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.20.(14分)(2011•天津)已知数列{a n}与{b n}满足:
,n∈N*,且a1=2,a2=4.
(Ⅰ)求a3,a4,a5的值;
(Ⅱ)设c n=a2n﹣1+a2n+1,n∈N*,证明:{c n}是等比数列;
(Ⅲ)设S k=a2+a4+…+a2k,k∈N*,证明:.。