帧同步、帧识别实验报告
- 格式:docx
- 大小:1.20 MB
- 文档页数:4
帧同步实验报告
实验目的:
本次实验旨在掌握帧同步原理、实现帧同步并进行数据解码。
实验原理:
帧同步是在数据传输中保证数据包在接收端的正确性和完整性的一项重要技术。
帧同步技术的实现需要采用同步信号来保证接收端与发送端的时间同步,从而使接收端能够将数据包正确地区分开来。
实验步骤:
1.配置实验环境:使用Verilog HDL进行代码编写,ModelSim 进行仿真。
2.编写帧同步模块:根据实验原理编写帧同步模块,实现同步信号的产生、时钟与数据同步。
3.编写数据解码模块:根据实验要求编写数据解码模块,将接收到的数据进行解码并显示在屏幕上。
4.进行仿真实验:使用ModelSim进行仿真实验并进行数据观察与分析。
实验结果:
经过本次实验,我们成功实现了帧同步技术,并且实现了接收到数据的解码与显示。
通过观察数据我们可以发现,在同步信号的作用下,数据包能够正确地区分开来,并且数据的完整性得到了保障。
从而验证了帧同步技术的重要性和实用性。
实验总结:
帧同步技术在现代通信和网络传输中有着广泛的应用。
通过本次实验我们深刻地掌握了帧同步技术的原理和实现方法,并且通过仿真实验验证了帧同步技术的可行性和实用性。
这对我们今后的学习和工作都将有着重要的启示作用。
帧同步提取实验报告一、实验背景哎呀,在这个信息爆炸的时代呢,各种信号的处理可是超级重要的。
帧同步提取呢,就像是在一堆乱码里找到那把正确的钥匙,打开有序信息的大门。
咱在学习通信相关知识的时候,这帧同步提取就是一个必须要攻克的小堡垒,它对于保证数据准确传输啥的可有着大作用呢。
二、实验目的咱做这个实验呀,就是想搞清楚帧同步提取到底是咋回事儿呗。
想知道怎么从复杂的信号流里把帧同步信号准确地找出来,还有就是想了解这个过程里用到的那些个原理和方法。
就像探索一个神秘的宝藏,想把里面的宝贝都挖出来看看。
三、实验设备和材料咱用到的设备可不少呢。
有信号发生器,这家伙就像是一个信号的源头,不断地给咱提供信号。
还有示波器,这就像是一双敏锐的眼睛,可以让咱看到信号的波形啥的。
然后就是各种连接线啦,就像桥梁一样把各个设备连接起来。
四、实验步骤1. 首先得把设备连接好呀。
把信号发生器和示波器用那些连接线连起来,这可不能马虎,就像搭积木一样,每一块都得放对位置。
要是连错了,后面的实验就全乱套了。
2. 然后调整信号发生器的参数。
设置合适的频率、幅度啥的,就像给它下命令一样,让它产生咱们需要的信号。
这个过程得小心翼翼的,就像走钢丝一样,参数稍微不对,那出来的信号就不是咱想要的了。
3. 接着呢,在示波器上观察信号的波形。
这时候就像是在看一幅神秘的画,要从那些弯弯曲曲的线条里找到帧同步信号的特征。
有时候可能看半天都看不出来,得有点耐心呢。
4. 再根据观察到的波形,运用咱们学过的算法和原理来提取帧同步信号。
这就像是解谜一样,要把那些隐藏在波形里的信息找出来。
5. 最后呢,对提取出来的帧同步信号进行验证。
看看是不是真的准确提取到了,要是不准确,就得回头检查是哪一步出了问题。
五、实验结果经过一番折腾,咱还真的成功提取出了帧同步信号呢。
在示波器上看到那个清晰的帧同步信号波形的时候,心里可高兴了,就像打游戏通关了一样。
不过呢,这个结果也不是十全十美的,在提取过程中还是存在一些小误差的。
实验十一帧同步信号提取实验一、实验目的1、掌握用集中插入法提取帧同步信号的原理与实现方法。
2、了解帧同步系统的性能分析。
二、实验内容1、提取复用模块时分复用数据的帧同步信号。
2、提取信号源模块NRZ码的帧同步信号。
三、实验仪器1、信号源模块一块2、基带同步提取模块一块3、频带同步提取模块一块4、复用模块一块5、20M双踪示波器一台四、实验原理基带同步提取模块和频带同步提取模块均采用集中插入法提取帧同步信号。
接收端收到NRZ码数据后,已知同步码组,从接收NRZ码中检测到这个特定的同步码组后,产生一个窄脉冲输出。
基带同步提取模块提取时分复用数据的帧同步信号,时分复用数据32位一帧,每帧的24位信息码元之前,集中插入8位的同步码组“01110010”(巴克码1110010前面补一位0),提取出的帧同步信号为窄帧,对应同步码组的第一位“0”。
频带同步提取模块提取NRZ码的帧同步信号,NRZ码要求24位一帧,每帧的16位信息码元之前,集中插入8位的同步码组“11100100”(巴克码1110010后面补一位0),提取出的帧同步信号为窄帧,对应同步码组后的第一位数据。
五、实验步骤1、将模块小心地固定在主机箱中,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,再分别按下四个模块中的电源开关,对应的发光二极管灯亮,四个模块均开始工作。
(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3、实验连线如下:信号源模块复用模块2048K——————————2048K64K——————————位同步(时分复用输入)8K ——————————帧同步(时分复用输入)复用模块基带同步提取模块数据(时分复用输出)————NRZ输入(帧同步提取)位同步(时分复用输出)————BS输入(帧同步提取)4、时分复用数据帧同步提取(1)复用模块“第三路复用数据码型拨码设置”拨码开关任意设置。
实验十三 帧同步信号提取实验一、实验目的1、掌握巴克码识别原理。
2、掌握同步保护原理。
3、掌握假同步、漏同步、捕捉态、维持态的概念。
二、实验内容1、观察帧同步码无错误时帧同步器的维持态。
2、观察帧同步器的假同步现象、漏识别现象和同步保护现象。
三、实验仪器1、信号源模块2、同步信号提取模块3、20M 双踪示波器 一台4、频率计(选用) 一台5、连接线 若干四、实验原理由于数字通信系统传输的是一个接一个按节拍传送的数字信号单元,即码元,因而在接收端必须按与发送端相同的节拍进行接收,否则,会因收发节拍不一致而导致接收性能变差。
此外,为了表述消息的内容,基带信号都是按消息内容进行编组的,因此,编组的规律在收发之间也必须一致。
在数字通信中,称节拍一致为“位同步”,称编组一致为“帧同步”。
在时分复用通信系统中,为了正确地传输信息,必须在信息码流中插入一定数量的帧同步码,它可以是一组特定的码组,也可以是特定宽度的脉冲,可以集中插入,也可以分散插入。
集中式插入法也称为连贯式插入法,即在每帧数据开头集中插入特定码型的帧同步码组,这种帧同步法只适用于同步通信系统,需要位同步信号才能实现。
适合做帧同步码的特殊码组很多,对帧同步码组的要求是它们的自相关函数尽可能尖锐,便于从随机数字信息序列中识别出这些帧同步码组,从而准确定位一帧数据的起始时刻。
由于这些特殊码组123{,,,...,}n x x x x 是一个非周期序列或有限序列,在求它的自相关函数时,除了在时延j =0的情况下,序列中的全部元素都参加相关运算外,在j ≠0的情况下,序列中只有部分元素参加相关运算,其表示式为∑-=+=jn i j i i x x j R 1)( (13-1)通常把这种非周期序列的自相关函数称为局部自相关函数。
对同步码组的另一个要求是识别器应该尽量简单。
目前,一种常用的帧同步码组是巴克码。
巴克码是一种非周期序列。
一个n 位的巴克码组为{x 1,x 2,x 3,…,x n },其中x i 取值为+1或-1,它的局部自相关函数为⎪⎩⎪⎨⎧≥<<±===∑-=+nj n j j n x x j R j n i j i i 00100)(1或 (13-2) 目前已找到的所有巴克码组如表13-1所列。
帧同步电路实验报告一、实验目的本次实验旨在理解帧同步的原理以及如何设计和实现一个简单的帧同步电路。
二、实验原理帧同步是指在数据传输过程中,接收方能够准确识别出每一个帧的起始点和终止点,确保数据的传输正确和完整。
帧同步电路一般由以下几个部分组成:1. 帧起始检测:通过检测数据信号的起始标志位,判断帧的开始位置。
2. 帧结束检测:通过判断数据信号的终止标志位,确定帧的结束位置。
3. 数据缓存:用于存储接收到的数据,以便后续的处理。
4. 同步信号生成:根据接收到的帧同步信号,生成同步信号,确保数据的同步传输。
三、实验器材1. FPGA开发板2. 电脑3. JTAG下载线四、实验步骤1. 首先,根据实验原理,设计帧同步电路的框图。
确定所需的功能模块和信号连接方式。
2. 在FPGA开发板上搭建电路,连接各个功能模块和信号线。
3. 使用Verilog HDL或者VHDL语言编写帧同步电路的代码,并进行仿真验证。
4. 将代码下载到FPGA开发板上,并进行实际测试。
五、实验结果与分析经过实验,我们成功实现了一个简单的帧同步电路。
通过测试,我们发现帧同步电路能够准确识别每一个帧的起始和终止位置,并将数据正确地传输到后续的处理模块。
同时,我们还注意到帧同步电路的设计需要考虑以下几个方面:1. 起始和终止标志位的选择:在设计帧同步电路时,需要选择适合具体应用场景的起始和终止标志位,以确保准确识别。
2. 帧同步信号的生成:帧同步电路需要根据接收到的帧同步信号生成同步信号,确保数据的同步传输。
生成同步信号需要考虑时序问题,以确保正确性和稳定性。
3. 数据缓存:帧同步电路需要使用缓存存储接收到的数据。
缓存的设计需要考虑数据的容量和访问速度,以满足实际需求。
六、实验总结通过本次实验,我们深入了解了帧同步电路的原理和设计方法。
帧同步电路在数据传输中起着重要的作用,能够确保数据的正确和完整。
在实际应用中,帧同步电路的设计需要根据具体需求进行调整和优化,以提高数据传输的效率和可靠性。
实验十五帧同步信号提取实验实验十五帧同步信号提取实验一、实验目的1.掌握巴克码识别原理。
2.掌握同步保护原理。
3.掌握假同步、漏同步、捕捉态、维持态的概念。
二、实验内容1.观察帧同步码无错误时帧同步器的维持态。
2.观察帧同步器的假同步现象、漏识别现象和同步保护现象。
三、实验器材1.信号源模块2.同步信号提取模块3.20M双踪示波器4.频率计一台一台四、实验原理于数字通信系统传输的是一个接一个按节拍传送的数字信号单元,即码元,因而在接收端必须按与发送端相同的节拍进行接收,否则,会因收发节拍不一致而导致接收性能变差。
此外,为了表述消息的内容,基带信号都是按消息内容进行编组的,因此,编组的规律在收发之间也必须一致。
在数字通信中,称节拍一致为“位同步”,称编组一致为“帧同步”。
在时分复用通信体统中,为了正确地传输信息,必须在信息码流中插入一定数量的帧同步码,它可以是一组特定的码组,也可以是特定宽度的脉冲,可以集中插入,也可以分散插入。
集中式插入法也称为连贯式插入法,即在每帧数据开头集中插入特定码型的帧同步码组,这种帧同步法只适用于同步通信系统,需要位同步信号才能实现。
适合做帧同步码的特殊码组很多,对帧同步码组的要求是它们的自相关函数尽可能尖锐,便于从随机数字信息序列中识别出这些帧同步码组,从而准确定位一帧数据的起始时刻。
于这些特殊码组{x1,x2,x3,?,xn}是一个非周期序列或有限序列,在求它的自相关函数时,除了在时延j=0的情况下,序列中的全部元素都参加相关运算外;在j≠0的情况下,序列中只有部分元素参加相关运算,其表示式为R(j)??xixi?j i?1n?j通常把这种非周期序列的自相关函数称为局部自相关函数。
对同步码组的另一个要求是识别器应该尽量简单。
目前,一种常用的帧同步码组是巴克码。
巴克码是一种非周期序列。
一个n位的巴克码组为{x1,x2,x3,?,xn},其中xi取值为+1或-1,它的局部自相关函数为15-1 R(j)??xixi?ji?1n?j?n???0或?1?0?j?00?j?n j?n目前已找到的所有巴克码组如表15-1所列。
(精编)哈工大通信原理实验报告H a r b i n I n s t i t u t e o f T e c h n o l o g y通信原理实验报告课程名称:通信原理院系:电子与信息工程学院班级:姓名:学号:指导教师:倪洁实验时间:2015年12月哈尔滨工业大学实验二帧同步信号提取实验一、实验目的1.了解帧同步的提取过程。
2.了解同步保护原理。
3.掌握假同步,漏同步,捕捉动态和维持态的概念。
二、实验原理时分复用通信系统,为了正确的传输信息,必须在信息码流中插入一定数量的帧同步码,帧同步码应具有良好的识别特性。
本实验系统帧长为24比特,划分三个时隙,每个时隙长度8比特,在每帧的第一时隙的第2至第8码元插入七位巴克码作为同步吗。
第9至24比特传输两路数据脉冲。
帧结构为:X11100101010101011001100,首位为无定义位。
本实验模块由信号源,巴克码识别器和帧同步保护电路三部分构成,信号源提供时钟脉冲和数字基带脉冲,巴克码识别器包裹移位寄存器、相加器和判决器。
其余部分完成同步保护功能。
三、实验内容1.观察帧同步码无错误时帧同步器的维持状态。
2.观察帧同步码有一位错误时帧同步器的维持态和捕捉态3.观察帧同步器假同步现象和同步保护器。
四、实验步骤1.开关K301接2.3脚。
K302接1.2脚。
2.接通电源,按下按键K1,K2,K300,使电路工作。
3.观察同步器的同步状态将信号源中的SW001,SW002,SW003设置为11110010,10101010,11001100(其中第2-8位为帧同步码),SW301设置为1110,示波器1通道接TP303,2通道接TP302,TP304,TP305,TP306,观察上述信号波形,使帧同步码(SW001的2-8位)措一位,重新做上述观察,此时除了TP303外,个点波形不变,说明同步状态仍在维持。
4.观察同步器的失步状态。
关闭电源,断开K302,在开电源(三个发光二极管全亮)。
目录1. 前言 (2)2. 实验目的 (2)3. 实验任务 (2)4. 帧同步系统实现原理 (2)4.1帧结构 (2)4.2帧同步的原理 (4)5. 帧同步电路模块设计 (5)5.1模块外部管脚 (5)5.2设计思路 (5)6. 帧同步检测模块设计 (6)7.仿真、测试、综合与分析 (8)8.实验总结与心得 (11)9. Verilog代码 (13)9.1主模块代码 (13)9.2测试模块代码 (15)1.前言两个工作站之间以报文分组为单位传输信息时,必须将线路上的数据流划分成报文分组规程的帧,以帧的格式进行传送。
帧的帧标识位用来标识帧的开始和结束。
通信开通时,当检测到帧标识,即认为是帧的开始,然后在数据传输过程中一旦检测到帧标识F即表示帧结束。
之所以要把比特组合成以帧为单位传送,是为了在出错时,可只将有错的帧重发,而不必将全部数据重新发送,从而提高了效率。
帧同步指的是接收方应当能从接收到的二进制比特流中区分出帧的起始与终止。
本文中在linux操作系统下,用具有强大的行为描述能力和丰富的仿真语句的verilog HDL语言来描述PCM帧同步检测及告警系统,并用大型EDA软件cadence对其进行仿真、综合和逻辑验证。
2.实验目的1.掌握利用Verilog进行专用集成电路设计的流程和方法。
2.学习用cadence软件进行EDA设计综合的方法。
3.提高用书本知识解决实际问题的能力。
3.实验任务1.画出电路实现帧同步、失步的检测流程。
2.用verilog HDL 进行frame电路的描述。
3.写出正确的测试文件,测试文件必须包括从“帧同步”到“帧同步”再到“帧同步”的状态转变过程。
4.在linux环境下使用Verilog XL模拟器进行verilog语言文件进行仿真测试,测试无误后进行电路综合。
4.帧同步系统实现原理4.1 帧结构编码数字信号是一个无头无尾的数码流,尽管其中含有大量的信息,但若不能分辨一个样值所对应的码子,将无法进行正确的译码。
帧同步提取系统实验一.实验目的1、了解帧同步的机理2、熟悉帧同步的性能3、熟悉帧失步对数据业务的影响二.实验内容1、帧同步过程观察;2、误码环境下的帧同步性能测试;3、帧失步下对接受帧内的数据信号传输的定性观测。
三.实验仪器1、JH5001通信原理综合实验系统一台2、20MHz双踪示波器一台四.原理与电路在TDM复接系统中,要保证接收端分路系统和发送端一致,必须要有一个同步系统,以实现发送端和接收端同步。
帧定位同步系统是复接/解复接设备中最重要的部分。
在帧定位系统中要解决的设计问题有:1)同步搜索方法;2)帧定位码型设计;3)帧长度的确定;4)帧定位码的码长选择;5)帧定位保护方法;6)帧定位保护参数的选择;等等。
这些设计完成后就确定了复接系统的下列技术性能:1)平均同步搜捕时间;2)平均发现帧时间;3)平均确认同步时间;4)平均发生失帧的时间间隔;5)平均同步持续时间;6)失帧引入的平均误码率,等等。
通常帧定位同步方法有两种:逐码移位同步搜索法和置位同步搜索法。
通信原理综合实验系统中的解复接同步搜索方法采用逐码移位同步法。
逐码移位同步搜索法的基本工作原理是调整收端本地帧定位码的相位,使之与收到的总码流中的帧定位码对准。
同步后用收端各分路定时脉冲就可以对接收到的码流进行正确的分路。
如果本地帧同步码的相位没有对准码流接收信号码流的帧定位码位,则检测电路将输出一个一定宽度的扣脉冲,将接收时钟扣除一个,这等效将数据码流后移一位码元时间,使帧定位检测电路检测下一位信码。
如果下一位检测结果仍不一致,则再扣除一位时钟,这过程称“同步搜索”。
搜索直至检测到帧定位码为止。
因接收码流除有帧定位码型外,随机的数字码流也可能存在与帧定位码完全相同的码型。
因此,只有在同一位置,多次连续出现帧定位码型,方可算达到并进入同步。
这一部分功能由帧定位检测电路内的校核电路完成。
无论多么可靠的同步电路,由于各种因素(例如强干扰、短促线路故障等),总会破坏同步工作状态,使帧失步。
实验十三 帧同步信号提取实验一、实验目的1、掌握巴克码识别原理。
2、掌握同步保护原理。
3、掌握假同步、漏同步、捕捉态、维持态的概念。
二、实验内容1、观察帧同步码无错误时帧同步器的维持态。
2、观察帧同步器的假同步现象、漏识别现象和同步保护现象。
三、实验仪器1、信号源模块2、同步信号提取模块3、20M 双踪示波器 一台4、频率计(选用) 一台5、连接线 若干四、实验原理由于数字通信系统传输的是一个接一个按节拍传送的数字信号单元,即码元,因而在接收端必须按与发送端相同的节拍进行接收,否则,会因收发节拍不一致而导致接收性能变差。
此外,为了表述消息的内容,基带信号都是按消息内容进行编组的,因此,编组的规律在收发之间也必须一致。
在数字通信中,称节拍一致为“位同步”,称编组一致为“帧同步”。
在时分复用通信系统中,为了正确地传输信息,必须在信息码流中插入一定数量的帧同步码,它可以是一组特定的码组,也可以是特定宽度的脉冲,可以集中插入,也可以分散插入。
集中式插入法也称为连贯式插入法,即在每帧数据开头集中插入特定码型的帧同步码组,这种帧同步法只适用于同步通信系统,需要位同步信号才能实现。
适合做帧同步码的特殊码组很多,对帧同步码组的要求是它们的自相关函数尽可能尖锐,便于从随机数字信息序列中识别出这些帧同步码组,从而准确定位一帧数据的起始时刻。
由于这些特殊码组123{,,,...,}n x x x x 是一个非周期序列或有限序列,在求它的自相关函数时,除了在时延j =0的情况下,序列中的全部元素都参加相关运算外,在j ≠0的情况下,序列中只有部分元素参加相关运算,其表示式为∑-=+=jn i j i i x x j R 1)( (13-1)通常把这种非周期序列的自相关函数称为局部自相关函数。
对同步码组的另一个要求是识别器应该尽量简单。
目前,一种常用的帧同步码组是巴克码。
巴克码是一种非周期序列。
一个n 位的巴克码组为{x 1,x 2,x 3,…,x n },其中x i 取值为+1或-1,它的局部自相关函数为⎪⎩⎪⎨⎧≥<<±===∑-=+nj n j j n x x j R j n i ji i 00100)(1或 (13-2) 目前已找到的所有巴克码组如表13-1所列。