模式识别实验报告
- 格式:pdf
- 大小:5.05 MB
- 文档页数:24
实验一、二维随机数的产生1、实验目的(1) 学习采用Matlab 程序产生正态分布的二维随机数 (2) 掌握估计类均值向量和协方差矩阵的方法(3) 掌握类间离散度矩阵、类内离散度矩阵的计算方法(4) 熟悉matlab 中运用mvnrnd 函数产生二维随机数等matlab 语言2、实验原理多元正态分布概率密度函数:11()()2/21/21()(2)||T X X d p X eμμπ---∑-=∑其中:μ是d 维均值向量:Td E X μμμμ=={}[,,...,]12Σ是d ×d 维协方差矩阵:TE X X μμ∑=--[()()](1)估计类均值向量和协方差矩阵的估计 各类均值向量1ii X im X N ω∈=∑ 各类协方差矩阵1()()iTi iiX iX X N ωμμ∈∑=--∑(2)类间离散度矩阵、类内离散度矩阵的计算类内离散度矩阵:()()iTi iiX S X m X m ω∈=--∑, i=1,2总的类内离散度矩阵:12W S S S =+类间离散度矩阵:1212()()Tb S m m m m =--3、实验内容及要求产生两类均值向量、协方差矩阵如下的样本数据,每类样本各50个。
1[2,2]μ=--,11001⎡⎤∑=⎢⎥⎣⎦,2[2,2]μ=,21004⎡⎤∑=⎢⎥⎣⎦ (1)画出样本的分布图;(2) 编写程序,估计类均值向量和协方差矩阵;(3) 编写程序,计算类间离散度矩阵、类内离散度矩阵; (4)每类样本数增加到500个,重复(1)-(3)4、实验结果(1)、样本的分布图(2)、类均值向量、类协方差矩阵根据matlab 程序得出的类均值向量为:N=50 : m1=[-1.7160 -2.0374] m2=[2.1485 1.7678] N=500: m1=[-2.0379 -2.0352] m2=[2.0428 2.1270] 根据matlab 程序得出的类协方差矩阵为:N=50: ]0628.11354.01354.06428.1[1=∑ ∑--2]5687.40624.00624.08800.0[N=500:∑--1]0344.10162.00162.09187.0[∑2]9038.30211.00211.09939.0[(3)、类间离散度矩阵、类内离散度矩阵根据matlab 程序得出的类间离散度矩阵为:N=50: ]4828.147068.147068.149343.14[=bS N=500: ]3233.179843.169843.166519.16[b =S根据matlab 程序得出的类内离散度矩阵为:N=50:]0703.533088.73088.71052.78[1=S ]7397.2253966.13966.18975.42[2--=S ]8100.2789123.59123.50026.121[=W SN=500: ]5964.5167490.87490.86203.458[1--=S ]8.19438420.78420.70178.496[2=S ]4.24609071.09071.06381.954[--=W S5、结论由mvnrnd 函数产生的结果是一个N*D 的一个矩阵,在本实验中D 是2,N 是50和500.根据实验数据可以看出,当样本容量变多的时候,两个变量的总体误差变小,观测变量各个取值之间的差异程度减小。
基于K-L 变换的iris 数据分类一、实验原理K-L 变换是一种基于目标统计特性的最佳正交变换。
它具有一些优良的性质:即变换后产生的新的分量正交或者不相关;以部分新的分量表示原矢量均方误差最小;变换后的矢量更趋确定,能量更集中。
这一方法的目的是寻找任意统计分布的数据集合之主要分量的子集。
设n 维矢量12,,,Tn x x x ⎡⎤⎣⎦=x ,其均值矢量E ⎡⎤⎣⎦=μx ,协方差阵()T x E ⎡⎤⎣⎦=--C x u)(x u ,此协方差阵为对称正定阵,则经过正交分解克表示为x =T C U ΛU ,其中12,,,[]n diag λλλ=Λ,12,,,n u u u ⎡⎤⎣⎦=U 为对应特征值的特征向量组成的变换阵,且满足1T -=U U 。
变换阵T U 为旋转矩阵,再此变换阵下x 变换为()T -=x u y U ,在新的正交基空间中,相应的协方差阵12[,,,]x n diag λλλ==x UC U C 。
通过略去对应于若干较小特征值的特征向量来给y 降维然后进行处理。
通常情况下特征值幅度差别很大,忽略一些较小的值并不会引起大的误差。
对经过K-L 变换后的特征向量按最小错误率bayes 决策和BP 神经网络方法进行分类。
二、实验步骤(1)计算样本向量的均值E ⎡⎤⎣⎦=μx 和协方差阵()T x E ⎡⎤⎣⎦=--C x u)(x u 5.8433 3.0573 3.7580 1.1993⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=μ,0.68570.0424 1.27430.51630.04240.189980.32970.12161.27430.3297 3.1163 1.29560.51630.1216 1.29560.5810x ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦----=--C (2)计算协方差阵x C 的特征值和特征向量,则4.2282 , 0.24267 , 0.07821 , 0.023835[]diag =Λ-0.3614 -0.6566 0.5820 0.3155 0.0845 -0.7302 -0.5979 -0.3197 -0.8567 0.1734 -0.0762 -0.4798 -0.3583 0.0755 -0.5458 0.7537⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=U 从上面的计算可以看到协方差阵特征值0.023835和0.07821相对于0.24267和4.2282很小,并经计算个特征值对误差影响所占比重分别为92.462%、5.3066%、1.7103%和0.52122%,因此可以去掉k=1~2个最小的特征值,得到新的变换阵12,,,new n k u u u -⎡⎤⎣⎦=U 。
模式识别作业《模式识别》大作业人脸识别方法一 ---- 基于PCA 和欧几里得距离判据的模板匹配分类器一、 理论知识1、主成分分析主成分分析是把多个特征映射为少数几个综合特征的一种统计分析方法。
在多特征的研究中,往往由于特征个数太多,且彼此之间存在着一定的相关性,因而使得所观测的数据在一定程度上有信息的重叠。
当特征较多时,在高维空间中研究样本的分布规律就更麻烦。
主成分分析采取一种降维的方法,找出几个综合因子来代表原来众多的特征,使这些综合因子尽可能地反映原来变量的信息,而且彼此之间互不相关,从而达到简化的目的。
主成分的表示相当于把原来的特征进行坐标变换(乘以一个变换矩阵),得到相关性较小(严格来说是零)的综合因子。
1.1 问题的提出一般来说,如果N 个样品中的每个样品有n 个特征12,,n x x x ,经过主成分分析,将它们综合成n 综合变量,即11111221221122221122n nn n n n n nn ny c x c x c x y c x c x c x y c x c x c x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ij c 由下列原则决定:1、i y 和j y (i j ≠,i,j = 1,2,...n )相互独立;2、y 的排序原则是方差从大到小。
这样的综合指标因子分别是原变量的第1、第2、……、第n 个主分量,它们的方差依次递减。
1.2 主成分的导出我们观察上述方程组,用我们熟知的矩阵表示,设12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是一个n 维随机向量,12n y y Y y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是满足上式的新变量所构成的向量。
于是我们可以写成Y=CX,C 是一个正交矩阵,满足CC ’=I 。
坐标旋转是指新坐标轴相互正交,仍构成一个直角坐标系。
变换后的N 个点在1y 轴上有最大方差,而在n y 轴上有最小方差。
同时,注意上面第一条原则,由此我们要求i y 轴和j y 轴的协方差为零,那么要求T YY =Λ12n λλλ⎡⎤⎢⎥⎢⎥Λ=⎢⎥⎢⎥⎣⎦令T R XX =,则T T RC C =Λ经过上面式子的变换,我们得到以下n 个方程111111212112111221122111121211()0()0()0n n n n n n nn n r c r c r c r c r c r c r c r c r c λλλ-+++=+-++=+++-=1.3 主成分分析的结果我们要求解出C ,即解出上述齐次方程的非零解,要求ij c 的系数行列式为0。
实验七基于神经网络的模式识别实验一、实验目的利用神经网络实现模式识别,并验证其性能。
掌握基于神经网络的模式识别方法。
二、实验原理1.神经网络神经网络是一种模仿生物神经系统的计算模型,它由大量的神经元节点相互连接而成。
在模式识别中,我们一般采用多层前向神经网络进行模式的训练和识别。
2.神经网络的训练过程神经网络的训练过程可以分为两步:前向传播和反向传播。
前向传播是指将输入样本通过网络的各个层传递到输出层,并计算输出结果。
反向传播是指根据输出结果和目标结果之间的误差,将误差反向传播到网络的各个层,并根据误差调整网络中的权值。
3.模式识别对于模式识别问题,我们首先需要将输入模式转化为特征向量,然后通过神经网络来训练这些特征向量,并将其与已知类别的模式进行比较,从而进行模式的识别。
三、实验步骤1.数据准备选择适当的模式识别数据集,例如手写数字识别的MNIST数据集,将其分为训练集和测试集。
2.特征提取对于每个输入模式,我们需要将其转化为一个特征向量。
可以使用各种特征提取方法,例如像素值,轮廓等。
3.神经网络设计设计合适的神经网络结构,包括输入层、隐藏层和输出层,并确定各层的神经元数目。
4.神经网络训练使用训练集对神经网络进行训练,包括前向传播和反向传播过程。
可以使用各种优化算法,例如梯度下降法。
5.模式识别使用测试集对训练好的神经网络进行测试和验证,计算识别的准确率和性能指标。
6.性能评估根据得到的结果,评估神经网络的性能,并分析可能的改进方法。
四、实验结果通过实验我们可以得到神经网络模式识别的准确率和性能指标,例如精确度、召回率和F1-score等。
五、实验总结在本次实验中,我们利用神经网络实现了模式识别,并验证了其性能。
通过实验,我们可以掌握基于神经网络的模式识别方法,了解神经网络的训练和识别过程,以及模式识别中的特征提取方法。
实验结果表明,神经网络在模式识别问题中具有较好的性能,并且可以根据需要进行改进和优化。
实验七基于神经网络的模式识别实验
一、实验背景
模式识别是机器学习领域中的一项重要研究领域,它可以被应用于多个领域,包括计算机视觉,图像处理,智能交通,自然语言处理和生物信息学等。
模式识别的目的是从观察到的数据中检测,理解和预测结果。
其中,神经网络(应用模式识别)是人工智能的关键部分,它模拟人类的神经元的工作方式,并且可以被用来识别,分类,计算和获取模式。
二、实验目标
本次实验的目的是,探讨神经网络在模式识别中的应用,并使用一个基于神经网络的模式识别系统来识别模式。
三、实验内容
(一)数据预处理
在进行本次实验之前,需要进行数据预处理,以便能够更好地使用神经网络。
数据预处理的目的是通过将原始数据处理成神经网络可以处理的格式,以便更好地提取特征。
(二)神经网络模型设计
(三)神经网络模型训练
在训练神经网络模型时,首先需要准备一组被识别的模式。
模式识别实验
一、实验任务
本次实验任务是模式识别,主要包括形式化的目标追踪、字符流分类和语音识别等。
二、所需软件
本实验所需软件包括MATLAB、Python等。
三、实验步骤
1. 首先需要安装MATLAB 和Python等软件,并建立实验环境。
2. 然后,通过MATLAB 进行基于向量量化(VQ) 的目标追踪实验,搭建端到端的系统,并使用Matlab编程实现实验内容。
3. 接着,使用Python进行字符流分类的实验,主要包括特征提取、建模和识别等,并使用Python编程实现实验内容。
4. 最后,使用MATLAB 进行语音识别的实验,主要是使用向量量化方法识别语音,并使用Matlab编程实现实验内容。
四、结果分析
1.在基于向量量化的目标追踪实验中,我们通过计算误差,确定了最优参数,最终获得了较高的准确率。
2.在字符流分类实验中,我们通过选择最佳分类器,得到了较高的准确率。
3.在语音识别实验中,我们使用向量量化方法,最终也获得了不错的准确率。
五、总结
本次实验研究了基于向量量化的目标追踪、字符流分类和语音识别等三项模式识别技术,经实验,探讨了不同方法之间的优劣,并获得了较高的准确率。
本次实验的结果为日常模式识别工作提供了有价值的参考。
模式识别miniproject实验报告一、算法介绍:本实验采用了SVM( Support Vector Machines)分类模型。
由于实际问题中很少线性可分,故本实验采用非线性SVM方法。
即通过一个适当的非线性映射ϕ(x) ,将数据由原始特征空间映射到一个新特征空间,然后在新空间中寻求最优(线性)判定面。
本实验选取的的核函数为RBF(径向基函数)中的高斯核函数,即k(x,y) = exp(-0.5*(norm(x-y)/s)^2)。
关于支持向量机的类型,本实验选取为二类分类算法,即svc_c。
算法方面,由于同时求解n个拉格朗日乘子涉及很多次迭代,计算开销太大,所以实验采用Sequential Minimal Optimization(SMO)算法,即每次只更新两个乘子,迭代获得最终解。
计算时,首先根据预先设定的规则,从所有样本中选出两个拉格朗日因子,然后保持其他拉格朗日乘子不变,更新所选样本对应的拉格朗日乘子,循环N次直到满足要求。
二、实验1、评价标准本实验采用正确率来作为评价指标,即。
2、整体试验方法及步骤(1)定义核函数的类型及相关参数;(2)构建两类训练样本:(考虑到实验程序运行时间问题,本实验只选用了testdata的第200至1200项共1000个作为训练样本)(3)训练支持向量机;(4)寻找支持向量;(5)测试输出;(6)计算评价指标,即正确率3、分类器训练算法的参数调整步骤(1)随机生成多个参数向量(解)(2)在目标函数上验证解的质量(3)根据解的质量由好到坏进行排序。
取出其中较好的一部分(例如一半)解,在这些解的每一个元素上加上一个随机数,从而得到一些新解(4)把新解和老解比较,取出最好的一部分,作为下一次迭代的初始解4、实验结果经实验,得到测试输出,将其第十一列,即样本类别与testdata 中的第十三列相比,即可得到正确率。
本实验将以上结果取于EXECL 中进行统计,部分结果截图如下。
《模式识别》实验报告-贝叶斯分类一、实验目的通过使用贝叶斯分类算法,实现对数据集中的样本进行分类的准确率评估,熟悉并掌握贝叶斯分类算法的实现过程,以及对结果的解释。
二、实验原理1.先验概率先验概率指在不考虑其他变量的情况下,某个事件的概率分布。
在贝叶斯分类中,需要先知道每个类别的先验概率,例如:A类占总样本的40%,B类占总样本的60%。
2.条件概率后验概率指在已知先验概率和条件概率下,某个事件发生的概率分布。
在贝叶斯分类中,需要计算每个样本在各特征值下的后验概率,即属于某个类别的概率。
4.贝叶斯公式贝叶斯公式就是计算后验概率的公式,它是由条件概率和先验概率推导而来的。
5.贝叶斯分类器贝叶斯分类器是一种基于贝叶斯定理实现的分类器,可以用于在多个类别的情况下分类,是一种常用的分类方法。
具体实现过程为:首先,使用训练数据计算各个类别的先验概率和各特征值下的条件概率。
然后,将测试数据的各特征值代入条件概率公式中,计算出各个类别的后验概率。
最后,取后验概率最大的类别作为测试数据的分类结果。
三、实验步骤1.数据集准备本次实验使用的是Iris数据集,数据包含150个Iris鸢尾花的样本,分为三个类别:Setosa、Versicolour和Virginica,每个样本有四个特征值:花萼长度、花萼宽度、花瓣长度、花瓣宽度。
2.数据集划分将数据集按7:3的比例分为训练集和测试集,其中训练集共105个样本,测试集共45个样本。
计算三个类别的先验概率,即Setosa、Versicolour和Virginica类别在训练集中出现的频率。
对于每个特征值,根据训练集中每个类别所占的样本数量,计算每个类别在该特征值下出现的频率,作为条件概率。
5.测试数据分类将测试集中的每个样本的四个特征值代入条件概率公式中,计算出各个类别的后验概率,最后将后验概率最大的类别作为该测试样本的分类结果。
6.分类结果评估将测试集分类结果与实际类别进行比较,计算分类准确率和混淆矩阵。
一、贝叶斯估计做分类【问题描述】实习题目一:用贝叶斯估计做分类。
问题描述:给出试验区裸土加水田的tif图像,要求通过贝叶斯估计算法对房屋、水田及植被进行分类。
问题分析:首先通过目视解译法对图像进行分类,获取裸土、水田和植被的DN值,在此基础上,通过该部分各个类别的面积计算先验概率,然后带入公式进行计算,从而对整个图像进行分类。
【模型方法】与分布有关的统计分类方法主要有最大似然/ 贝叶斯分类。
最大似然分类是图像处理中最常用的一种监督分类方法,它利用了遥感数据的统计特征,假定各类的分布函数为正态分布,在多变量空间中形成椭圆或椭球分布,也就是和中个方向上散布情况不同,按正态分布规律用最大似然判别规则进行判决,得到较高准确率的分类结果。
否则,用平行六面体或最小距离分类效果会更好。
【方案设计】①确定需要分类的地区和使用的波段和特征分类数,检查所用各波段或特征分量是否相互已经位置配准;②根据已掌握的典型地区的地面情况,在图像上选择训练区;③计算参数,根据选出的各类训练区的图像数据,计算和确定先验概率;④分类,将训练区以外的图像像元逐个逐类代入公式,对于每个像元,分几类就计算几次,最后比较大小,选择最大值得出类别;⑤产生分类图,给每一类别规定一个值,如果分10 类,就定每一类分别为1 ,2 ……10 ,分类后的像元值便用类别值代替,最后得到的分类图像就是专题图像. 由于最大灰阶值等于类别数,在监视器上显示时需要给各类加上不同的彩色;⑥检验结果,如果分类中错误较多,需要重新选择训练区再作以上各步,直到结果满意为止。
【结果讨论】如图所示,通过贝叶斯算法,较好地对图像完成了分类,裸土、植被和水田三个类别清晰地判别出来。
在计算先验概率时,选择何种数据成为困扰我的一个问题。
既有ENVI自身提供的精确的先验概率值,也可以自己通过计算各个类别的面积,从而获取大致的先验概率值。
最后,在田老师的讲解下,我知道了虽然数据可能不太精确,但是,计算先验概率时,总体的倾向是一致的,所以在最后判别时,因此而引起的误差是微乎其微的,所以,一定要弄清楚算法原理,才能让自己的每一步工作都有理可循。