二元一次方程组应用题(提高)
- 格式:doc
- 大小:83.50 KB
- 文档页数:13
二元一次方程组解应用题强化训练100题列方程解应用题的基本关系量(1)行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度(2)工程问题:工作效率×工作时间=工作量(3)浓度问题:溶液×浓度=溶质(4)银行利率问题:免税利息=本金×利率×时间二元一次方程组解决实际问题的基本步骤1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)列方程组解应用题的常见题型(1)和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2)产品配套问题:加工总量成比例(3)速度问题:速度×时间=路程(4)航速问题:此类问题分为水中航速和风中航速两类1.顺流(风):航速=静水(无风)中的速度+水(风)速2.逆流(风):航速=静水(无风)中的速度--水(风)速(5)工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题(6)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量(7)浓度问题:溶液×浓度=溶质(8)银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9)利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%(10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量(11)数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12)几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13)年龄问题:抓住人与人的岁数是同时增长的讲解:(分配调运问题)某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?解:设到甲工厂的人数为x人,到乙工厂的人数为y人题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数可列方程为:x-9=2、抽5人后到甲工厂的人数=可列方程为:(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?解;设共买x枚10分邮票,y枚20分邮票题中的两个相等关系:1、10分邮票的枚数+20分邮票的枚数=总枚数可列方程为:2、10分邮票的总价+ =全部邮票的总价可列方程为:10X+ =(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?题中的两个相等关系:1、做4个小狗的时间+ =3时42分可列方程为:2、+做6个小汽车的时间=3时37分可列方程为:(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
二元一次方程组应用题1、用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?2、一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?3、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?4、某厂第二车间的人数比第一车间的人数的五分之四少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人?5、共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115名学生积极参与,已知九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?6、某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先乘车、乙组步行。
车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。
已知车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。
7、运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?8、现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?9、一船队运送一批货物,如果每艘船装50吨,还剩下25吨装不完;如果每艘船再多装5吨,还有35吨空位.求这个船队共有多少艘船,共有货物多少吨?10、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?11、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?12、加工一批零件,甲先单独做8小时,然后又与乙一起加工5小时完成任务。
二元一次方程组应用题经典题及答案一、行程问题题目:A、B 两地相距 120 千米,甲、乙两人分别从 A、B 两地同时出发,相向而行。
甲的速度是每小时 10 千米,乙的速度是每小时 20 千米。
经过多少小时两人相遇?答案:设经过 x 小时两人相遇。
甲行驶的路程为 10x 千米,乙行驶的路程为 20x 千米。
由于两人是相向而行,所以他们行驶的路程之和等于两地的距离,可列出方程:10x + 20x = 12030x = 120x = 4答:经过 4 小时两人相遇。
二、工程问题题目:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成。
若两人合作,需要多少天完成?答案:设两人合作需要 x 天完成。
把这项工程的工作量看作单位“1”,甲每天的工作效率是 1/10,乙每天的工作效率是 1/15。
两人合作每天的工作效率是(1/10 + 1/15),可列出方程:(1/10 + 1/15)x = 1(3/30 + 2/30)x = 15/30 x = 1x = 6答:两人合作需要 6 天完成。
三、商品销售问题题目:某商店将进价为 8 元的商品按每件 10 元售出,每天可售出200 件。
现在采用提高售价,减少销售量的办法增加利润,如果这种商品每件的销售价每提高 05 元,其销售量就减少 10 件,问应将每件售价定为多少元时,才能使每天利润为 640 元?答案:设将每件售价定为 x 元。
每件的利润为(x 8)元,售价提高了(x 10)元。
因为售价每提高 05 元,销售量减少 10 件,所以销售量减少了 10×(x 10)÷05 = 20(x 10)件。
实际销售量为200 20(x 10)件。
根据利润=每件利润×销售量,可列出方程:(x 8)200 20(x 10)= 640(x 8)(200 20x + 200)= 640(x 8)(400 20x)= 640400x 20x² 3200 + 160x = 640-20x²+ 560x 3840 = 0x² 28x + 192 = 0(x 12)(x 16)= 0解得 x₁= 12,x₂= 16答:应将每件售价定为 12 元或 16 元时,才能使每天利润为 640 元。
二元一次方程组应用题(50题)1. 婆婆家的流水问题婆婆家有一个流水池,从自来水管道接入流水池中,再从流水池中通过自来水管道供应给家中的各个水龙头。
假设自来水管道的水流速度为x,流水池的容积为y,通过自来水管道流出的水量为z。
已知当自来水管道的水流速度为8升/分钟时,流水池会在20分钟内完全注满。
求出流水池的容积和通过自来水管道流出的水量之间的关系。
解题思路:设流水池的容积为y升,通过自来水管道流出的水量为z升。
根据题意得到以下方程组: 1. 自来水管道的水流速度与流水池的注水时间关系:8升/分钟 = y/20分钟 2. 流水池的容积与自来水管道流出的水量关系:z = y根据方程组可以求得:y = 160升,z = 160升。
2. 兰兰购买书籍兰兰去书店购买了几本书,每本书的价格不等。
已知兰兰购买的这几本书的总价格为x元,当其中两本书的价格分别减少5元和增加7元后,他们的价格相等。
求出每本书的原始价格。
解题思路:设第一本书的价格为y元,第二本书的价格为z元。
根据题意得到以下方程组: 1. 兰兰购买的这几本书的总价格:x = y + z 2. 当其中两本书的价格分别减少5元和增加7元后,他们的价格相等:y - 5 = z + 7将第二个方程式代入第一个方程式中,求解可以得到:y = (x + 12) / 2,z = (x - 12) / 2。
3. 成绩排名班级里有30个学生,数学和英语两门课的成绩分别用x和y表示。
已知数学成绩平均分为80分,英语成绩平均分为85分。
学生成绩排名中,有10个学生的数学成绩高于平均分,有15个学生的英语成绩高于平均分。
求出数学和英语成绩中,既高于平均分,又相等的学生人数。
解题思路:设数学成绩高于平均分且相等的学生人数为y,英语成绩高于平均分且相等的学生人数为z。
根据题意得到以下方程组: 1. 数学成绩平均分为80分:(80 * 30 + y) / 30 =80 2. 英语成绩平均分为85分:(85 * 30 + z) / 30 = 85 3. 学生成绩排名中,有10个学生的数学成绩高于平均分:y = 10 4.学生成绩排名中,有15个学生的英语成绩高于平均分:z =15求解方程组可以得到:y = 10,z = 15,既高于平均分,又相等的学生人数为10。
完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。
类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。
类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
八年级数学上册第五章《二元一次方程组》应用练习题1.某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?2.育德中学800名学生参加第二十届运动会开幕式大型表演,道具选用红黄两色锦绣手幅.已知红色手幅每个4元;黄色手幅每个2.5元;购买800个道具共花费2420元,那么两种手幅各多少个?3.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?4.某山区有若干名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,资助一名小学生的学习费用需要b元.某校学生积极捐款,初中各年级学生捐款数额与其捐助贫困中学生和小学生人数的部分情况如下表:捐款数额/元资助贫困中学生人数/名资助贫困小学生人数/名七年级4000 2 4八年级4200 3 3九年级5000(1)求a,b的值;(2)九年级学生的捐款恰好解决了剩余贫困中小学生的学习费用,请计算九年级学生可捐助的贫困小学生人数.5.某写字楼门口安装了一个如图所示的旋转门,旋转门每转一圈按正常负载可以出去6人,每分钟转4圈.(1)问:按正常负载半小时此旋转门可出去多少人?(2)紧急情况时,旋转门每圈负载出去人数可增加50%,但因此每分钟门的转速降低25%.①直接写出紧急情况时旋转门每分钟可以出去人;②该写字楼有9层,每层10间办公室,平均每个办公室6人,为了符合消防安全要求,要在一楼再安装几近普通侧门,每近侧门每分钟能通过45人,在紧急情况下,要使整写字楼的人能在5分钟内全部安全离(下楼时间忽略不计),至少要安装几道普通侧门.6.工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?7.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”8.列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?9.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?10.某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?参考答案1.解:(1)设打折前甲种商品每件x元,乙种商品每件y元,依题意,得:,解得:.答:打折前甲种商品每件40元,乙种商品每件120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这些商品比不打折可节省3640元.2.解:设购买红色手幅x个;购买黄色手幅y个,根据题意得,解得,答:购买红色手幅280个;购买黄色手幅520个.3.解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.4.解:(1)由题意得:解得:(2)设初三年级学生捐助x名贫困中学生,捐助y名贫困小学生.由题意得:800x+600y=5000得:4x+3y=25∵x、y均为非负整数∴x=1,y=7或x=4,y=3答:初三年级学生可捐助1名贫困中学生,捐助7名贫困小学生;或捐助4名贫困中学生,捐助3名贫困小学生.5.解:(1)正常负载下,半小时可出去:30×4×6=720人(2)①紧急情况下,出去人数可增加50%,则每圈出去人数为:6×(1+50%)=9人,每分钟门转速降低25%,即每分钟转的圈数为4×(1﹣25%)=3圏则每分钟可以出去:3×9=27人故答案填27②写字楼的总人数为:9×10×6=540人急情况下,要使整写字楼的人能在5分钟,旋转门出去的人数为:5×27=135人则剩下的人数为540﹣135=405人,要从普通侧门通过则有405÷(45×5)≈1.8,即至少安装2道普通侧门6.解:(1)设甲种规格的纸板有x个,乙种规格的纸板有y个,依题意,得:,解得:.答:甲种规格的纸板有1000个,乙种规格的纸板有1600个.(2)1600×3÷2=2400(个).。
二元一次方程组应用题1、 甲、乙两人在东西方向的公路上行走,甲在乙的西边300米,若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟后相遇,问甲、乙两人的速度是多少?2、一列快车长168米,一列慢车长184米,如果两车相同而行,从相遇到离开需4秒;如果同向而行,从快车追及慢车到离开需16秒,求两车的速度3、 某铁桥长1 000米,一列火车从桥上通过,从车头到桥到车尾离桥共用一分钟时间,整列火车完全在桥上的时间为40秒钟,求火车车身的总长和速度.4、通讯员要在规定时间内将密件从师部送到团部。
如果他以50km/h 的速度行驶就会迟到24min ;如果他以75km/h 的速度行驶就会提前24min 到达团部。
求若要在规定时间到达速度应该为多少km/h 。
5、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,甲、乙今年分别多少岁?6、今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.7、有两种药水,一种浓度为60%,另一种浓度为90%,现要配制浓度为70%的药水300克,问各种各需多少克?8、 甲乙两盒中各有一些小球,如果从甲盒中拿出10个放入乙盒,则乙盒球就是甲盒球数的6倍,若从乙盒中拿出10个放入甲盒,乙盒球数就是甲盒球数的3倍多10个,求甲乙两盒原来的球数各是多少?9、 一个两位数字,个位数字比十位数字大5,如果把这两数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.10、某车间每天能生产甲种零件120个,或者乙种零件100个,或者丙种零件200个,甲,乙,丙3种零件分别取3个,2个,1个,才能配一套,要在30天内生产最多的成套产品,问甲,乙,丙3种零件各应生产多少天?11.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.12.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?13、某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68个,扁担40根,问这个班的男女生各有多少人?14、甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水恰好是甲桶容量的31,求这两个水桶的容量。
苏科版数学七年级下《二元一次方程组》实际应用培优专练习(二)1.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.2.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.3.某厂工人小王某月工作的部分信息如下:信息一:工作时间为每天上午8:00~12:00,下午14:00~16:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系如表:生产甲种产品件数(件)生产乙种产品件数(件)所用总时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产1件甲种产品可得1.5元,每生产1件乙种产品可得2.8元.根据以上信息,回答下列问题:(1)小王每生产1件甲种产品、1件乙种产品分别需要多少分钟?(2)小王该月最多能得多少元?此时分别生产甲、乙两种产品多少件?4.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35 (1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.5.某商场出售A、B两种型号的自行车,已知购买1辆A型号自行车比1辆B型号自行车少20元,购买2辆A型号自行车与3辆B型号自行车共需560元,求A、B两种型号自行车的购买价各是多少元?6.深圳市某小区为了以崭新的面貌迎接“创文”工作,决定请甲、乙两个装饰公司对小区外墙进行装饰维护.若由甲、乙两个公司合作,需8天完成,小区需支付费用12.8万元;若由甲公司单独做4天后,剩下的由乙公司来做,还需10天才能完成,小区需支付费用12.4万元.问:甲、乙两个装饰公司平均每天收取的费用分别是多少万元?7.某电器商场销售进价分别为120元、190元的A、B两种型号的电风扇,如下表所示是近二周的销售情况(进价、售价均保持不变,利润=销售收入﹣进货成本):销售时段销售数量销售收入A种型号B种型号第一周 5 6 2310第二周8 9 3540 (1)求A、B两种型号的电风扇的销售单价;(2)若商场再购进这两种型号的电风扇共120台,并且全部销售完,该商场能否实现这两批电风扇的总利润为8240元的目标?若能,请给出相应的采购方案:若不能,请说明理由.8.某大学组织“大手拉小手,义卖献爱心”活动,该校美术社团计划购买黑、白两种颜色的文化衫进行手绘创作后出售,并将所获利润全部捐给山区困难孩子.已知美术社团从批发市场花4800元购买了黑、白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表所示:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)美术社团购进黑、白文化衫各多少件?(要求列方程组解答)(2)这批文化衫手绘创作后全部售出,求美术社团这次义卖活动所获利润.9.今年新型冠状病毒肺炎(COVID﹣19,简称为新冠肺炎)疫情在全球蔓延,我们国家坚决打赢这场无硝烟的人民战争,我市各单位为同学们的返校复学采取了一系列前所未有的举措.复课返校后,为了拉大学生锻炼的间距,某学校决定增购适合独立训练的两种体育器材:跳绳和毽子,原来购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个毽子共需120元.(1)求跳绳和毽子的售价原来分别是多少元?(2)学校计划购买跳绳和毽子两种器材共400个,由于受疫情影响,商场决定对这两种器材打折销售,其中跳绳以八折出售,毽子以七五折出售,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.10.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?11.杭州某公司准备安装完成5700辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工a人,现招聘n名新工人(a>n),使得最后能刚好一个月(30天)完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占5%,求n的值.12.五一节前,某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台.已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?13.某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)1000 1200 1500(1)若全部物资都用甲、乙两种车型来运送,需运费24000元,问分别需甲、乙两种车型各多少辆?(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送).14.滨江区各学校积极参加“给贫困山区献爱心”活动,教育局筹集了120吨的衣物书籍等物品运往山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)200 250 300(1)全部物资可用甲型车8辆,乙型车5量,丙型车辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费4100元,问分别需甲、乙两种车型各几辆?(3)为了节省运费,教育局打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?参考答案1.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴或或,∵m<n,∴不合题意舍去,∴共2种购买方案,方案一:购进A型车4辆,B型车10辆;方案二:购进A型车2辆,B型车15辆.2.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.3.解:(1)设小王每生产1件甲种产品需要x分钟,每生产1件乙种产品需要y分钟,依题意,得:,解得:.答:小王每生产1件甲种产品需要15分钟,每生产1件乙种产品需要20分钟.(2)设小王该月生产m件甲种产品,该月获得的报酬为w元,则小王该月生产件乙种产品,依题意,得:w=1.5m+2.8×=﹣0.6m+1260.∵﹣0.6<0,∴当m=60时,w取得最大值,最大值为1224,此时=405.答:小王该月最多能得1224元,此时生产甲种产品60件,乙种产品405件.4.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.5.解:设A型号自行车的购买价为x元,B型号自行车的购买价为y元,依题意,得:,解得:.答:A型号自行车的购买价为100元,B型号自行车的购买价为120元.6.解:设甲装饰公司平均每天收取的费用为x万元,乙装饰公司平均每天收取的费用为y 万元,依题意,得:,解得:.答:甲装饰公司平均每天收取的费用为0.6万元,乙装饰公司平均每天收取的费用为1万元.7.解:(1)设A种型号的电风扇的销售单价为x元/台,B种型号的电风扇的销售单价为y 元/台,依题意,得:,解得:.答:A种型号的电风扇的销售单价为150元/台,B种型号的电风扇的销售单价为260元/台.(2)设再购进A种型号的电风扇m台,则购进B种型号的电风扇(120﹣m)台,依题意,得:2310+3540+150m+260(120﹣m)﹣120(5+8+m)﹣190[6+9+(120﹣m)]=8240,解得:m=40,∴120﹣m=80.答:再购进A种型号的电风扇40台,B种型号的电风扇80台,就能实现这两批电风扇的总利润为8240元的目标.8.解:(1)设美术社团购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:美术社团购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:美术社团这次义卖活动共获得3800元利润.9.解:(1)设跳绳原来的售价为x元,毽子原来的售价为y元,依题意得:,解得:.答:跳绳原来的售价为20元,毽子原来的售价为16元.(2)设学校购进m根跳绳,则购进(400﹣m)个毽子,依题意得:,解得:300≤m≤310.设学校购进跳绳和毽子一共花了w元,则w=20×0.8m+16×0.75(400﹣m)=4m+4800,∵4>0,∴w随m的增大而增大,∴当m=300时,w取最小值,此时400﹣m=100.∴学校花钱最少的购买方案为:购进跳绳300根,毽子100个.10.解:设A型号客车用了x辆,B型号客车用了y辆,依题意,得:,解得:.答:A型号客车用了6辆,B型号客车用了2辆.11.解:(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据题意得:,解得:.答:每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车.(2)根据题意得:30×(8n+12a)×(1﹣5%)=5700,整理得:n=25﹣a,∵n,a均为正整数,且n<a,∴,,.∴n的值为1或4或7.12.解:(1)设A、B两种品牌电风扇每台的进价分别是x元、y元,,解得,答:A、B两种品牌电风扇每台的进价分别是100元、150元;(2)设购进A种品牌的电风扇a台,购进B种品牌的电风扇b台,利润为w元,w=(180﹣100)a+(250﹣150)b=80a+100b,∵某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台,∴100a+150b=1000且a≥1,b≥1,∴2a+3b=20(a≥1,b≥1),∴或或,∴当a=1,b=6时,w=80×1+100×6=680,当a=4,b=4时,w=80×4+100×4=720,当a=7,b=2时,w=80×7+100×2=760,由上可得,当a=7,b=2时,w取得最大值,答:为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风2台.13.解:(1)设需甲种车型x辆,乙种车型y辆,由题意得:,解得:,答:需甲种车型6辆,需乙种车型15辆;(2)设需甲车型x辆,乙车型y辆,丙车型z辆,由题意得:,消去z得:5x+2y=30,x=6﹣y,∵甲、乙、丙三种车型都参与运送,∴x、y、z是正整数,且不大于18,得y=5,10,解得:,,∴有两种运送方案:①甲车型4辆,乙车型5辆,丙车型9辆;②甲车型2辆,乙车型10辆,丙车型6辆;∴应该是甲车型4辆,乙车型5辆,丙车型6辆;或甲车型2辆,乙车型10辆,丙车型3辆;两种方案的运费分别是:①1000×4+1200×5+1500×9=23500(元),②1000×2+1200×10+1500×6=23000(元),∵23000<23500,∴甲车型2辆,乙车型10辆,丙车型6辆,运费最省.14.解:(1)根据题意得:(120﹣5×8﹣5×8)÷10=4(辆),答:丙型车需4辆来运送.故答案为:4.(2)设需要甲x辆,乙y辆,根据题意得:,解得:,答:分别需甲、乙两种车型为8辆和10辆.(3)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,由题意得5a+8b+10(14﹣a﹣b)=120,即a=4﹣b,∵a、b、14﹣a﹣b均为正整数,∴b只能等于5,从而a=2,14﹣a﹣b=7,∴甲车2辆,乙车5辆,丙车7辆,则需运费200×2+250×5+300×7=3750(元),答:甲车2辆,乙车5辆,丙车7辆,需运费3750元.。
二元一次方程组练习题(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( ) 5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( ) 6、若x +y =0,且|x |=2,则y 的值为2 …………( ) 7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2;(B )34->a ; (C )342<<-a ; (D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________;26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;35、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________; 四、解方程组36、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 37、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 38、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 39、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 40、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 41、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;五、解答题:请写出这个方程组,并求出此方程组的解;42、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;43、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;44、要使下列三个方程组成的方程组有解,求常数a 的值。
2022-2023学年七年级数学下学期复习备考高分秘籍【人教版】专题2.10二元一次方程组的应用12大类型大题专练(培优强化48道)类型一、和差倍分问题,从乙库运出存粮的40%,那么乙库所余粮食是甲库1.若甲、乙两库共存粮95吨,现从甲库运出存粮的23的2倍,问甲、乙两库原来各有多少吨粮食?2.近年来,妇女权益得到有力保障,参加养老保险(即城镇职工养老保险和城乡居民养老保险)的妇女人数越来越多,2022年某地区参加养老保险的妇女共有165万人,比2010年增加120万人,其中参加城镇职工养老保险和城乡居民养老保险的人数分别是2010年的1.5倍和8倍,分别求2022年参加城镇职工养老保险和城乡居民养老保险的妇女人数.3.学校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.求大、小两种垃圾桶的单价.4.疫情防控常态化后,核酸检测进入校园.某校一次核酸检测时,发现操场上恰有100个同学排成甲、乙两队,且甲队人数是乙队的2倍多7人,求甲、乙两队的学生数.类型二、分配问题5.小明在某商店购买商品A,共三次,只有其中一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如表所示:购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第次购物打了折扣;(2)求出商品A、B的标价;6.张氏包装厂承接了一批纸盒加工任务,用如图①所示的长方形和正方形纸板作侧面和底面,做成如图②所示的竖式与横式两种上面无盖的长方体纸盒(加工时接缝材料不计).(1)做1个竖式纸盒和2个横式纸盒,需正方形纸板___________张(直接填空),需长方形纸板___________张(直接填空).(2)若该厂购进正方形纸板162张,长方形纸板338张,问竖式纸盒、横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(要求列二元一次方程组解决此问题)7.某工厂车间采用智能数字机床生产纸杯和杯盖,已知一台机床每小时平均可以生产纸杯600个或者生产杯盖800个,车间共有14台机床,应怎样分配机床,才能使每小时生产的杯身和杯盖正好配套?8.某蔬菜基地第一次向甲地运输124吨蔬菜,恰好装满5辆大货车和2辆小货车;第二次向甲地运输180吨蔬菜,恰好装满6辆大货车和5辆小货车.(1)装满2辆大货车和3辆小货车能运输多少吨蔬菜?(2)第三次安排大、小货车共12辆向甲地运输208吨蔬菜,若要使得每辆车都装满,则大货车和小货车分别需要多少辆?类型三、行程问题9.某人从吉林驱车赶往长春共用2小时,吉林至长春全程为120km,全程分为公路和市区道路两部分,在公路上行驶的平均速度为80km/h,在市区道路上行驶的平均速度为40km/h.根据题意,甲、乙两名同学分别列出的方程组一部分如下:甲:{x+y=120x80+y40=□乙:{80x+40y==(1)请你在方框中补全甲、乙两名同学所列的方程组;(2)求这个人在公路上驱车行驶的时间.10.已知A,B两地相距120千米,甲、乙两车分别从A,B两地同时出发,相向而行,其终点分别为B,A 两地.两车均先以a千米每小时的速度行驶,再以b千米每小时的速度行驶,且甲车以两种速度行驶的路程相等,乙车以两种速度行驶的时间相等.(1)若b=32a,且甲车行驶的总时间为54小时,求a和b的值;(2)若b−a=30,且乙车行驶的总时间为85小时.①求a和b的值;②求两车相遇时,离A地多少千米.11.A、B两地相距4千米,甲从A地出发步行到B地,乙从B地出发骑自行车到A地,两人同时出发,30分钟后两人相遇,又经过10分钟,甲剩余路程为乙剩余路程的3倍.(1)求甲、乙每小时各行多少千米?(2)在他们出发后多长时间两人相距1千米?12.小红家离学校1400米.其中有一段为上坡路,另一段为下坡路.她跑步去学校共用10分钟,已知小红在上坡路上的平均速度是4.8千米/时,而她在下坡路上的平均速度是12千米/时,小红上坡、下坡各用多少时间?类型四、工程问题13.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元,玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)设甲公司的每周工作效率为m,乙公司每周的工作效率为n,则可列出方程为.(2)如果从节约时间的角度考虑应选哪家公司?(3)如果从节的开支的角度考虑呢?请说明理由.14.甲、乙、丙三人完成一项工程,其中甲的工作效率是乙和丙工作效率之和的13,乙的工作效率是甲和丙工作效率之和的14、已知甲、乙合作完成这项工作需要8天,则甲、丙合作完成这项工作需要多少天?15.某建筑公司有A、B两个工程队,先后接力完成河边道路整治任务,A工程队每天整治15米,B工程队每天整治10米,共用时25天.(1)若这段河边道路长为300米,根据题意甲、乙两个同学分别列出了尚不完整的方程组如下:甲:{x+y=15x+=乙:{x+y=x15+y10=根据甲、乙两名同学所列的方程组,请你在下列选项中选出未知数x,y表示的意义,A.A的工作天数B.B的工作天数C.A的工作量D.B的工作量E.A的工作效率F.B的工作效率甲:x表示______,y表示______;乙:x表示______,y表示______;(2)在(1)的条件下,求A、B两工程队分别整治河道多少米?(3)若A工程队工作一天的费用是0.6万元,B工程队工作一天的费用是0.8万元,要使总费用不超过18万元,A工程队至少工作多少天?16.目前,近几年来,新能源汽车在中国已然成为汽车工业发展的主流趋势,某汽车制造厂开发了一款新式电动汽车,计划一年生产安装288辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:2名熟练工和1名新工人每月可安装10辆电动汽车;3名熟练工和2名新工人每月可安装16辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂抽调n(0<n<5)名熟练工,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?类型五、销售问题17.列方程组解应用题:为了丰富学生的课外体育活动,八年级2班需要购买排球和跳绳,根据下列对话,求出肖雨所购买的排球和跳绳的单价.18.儿童节来临之际,重庆沁园食品有限公司推出了“纯享七星伴月糕点”礼盒,由一个香草冰淇淋口味的明月月饼和七款明星小饼干组成,明月月饼口味不可选择,但明星小饼干的口味可以自由搭配.(1)现有A、B两种礼盒的“纯享七星伴月糕点”,五月份礼盒上市,经经销商初步定价,买6个A礼盒的钱刚好可以购买5个B礼盒;购买3个A礼盒的花费比购买2个B礼盒多210元.求A、B两种礼盒的售价.(2)在第一问的基础上,六月份,该经销商将两种礼盒的月饼进行促销:A礼盒每盒售价打九折销售,B礼盒,B礼盒全部售卖完,但卖出去的B礼盒的每盒售价直接降价m元,结果六月份售卖结束,A礼盒还剩余了116数量为A礼盒总数量的15,经销商决定将剩余的A礼盒赠送给自己的员工作为福利;已知每盒A礼盒成本价为32250元,每盒B礼盒的成本价为300元,六月份销售结束,该经销商的利润为20%,求m的值.19.五一节前,某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台.已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?20.某商场从厂家购进了A、B两种品牌篮球,第一批购买了这两种品牌篮球各40个,共花费了7200元.全部销售完后,商家打算再购进一批这两种品牌的篮球,最终第二批购进50个A品牌篮球和30个B品牌篮球共花费了7400元.两次购进A、B两种篮球进价保持不变.(1)求A、B两种品牌篮球进价各为多少元一个;(2)第二批次篮球在销售过程中,A品牌篮球每个原售价为140元,售出40个后出现滞销,商场决定打折出售剩余的A品牌篮球;B品牌篮球每个按进价加价30%销售,很快全部售出.已知第二批次两种品牌篮球全部售出后共获利2440元,求A品牌篮球打几折出售?类型六、方案问题21.面对当前疫情形势,某工厂迅速反应,研发出两种新型口罩和消毒液.已知1平方米甲型布料可以制成20个A型口罩和10个B型口罩.1平方米乙型布料可以制成10个A型口罩和20个B型口罩,现需要制作1500个A型口罩和1800个B型口罩.为了支援某灾区,现有消毒液19吨.计划同时租用甲型车a辆,乙型车b辆,一次运完,甲型车一次满载2吨,乙型车一次满载3吨,且恰好每辆车都载满消毒液.根据以上信息,解答下列问题:(1)恰好需要甲,乙布料各多少平方米?(2)在运送消毒液时,请你设计所有可能的租车方案.22.某商场计划拨款9万元购进50台电视机.已知厂家生产三种不同型号的电视机,出厂价分别为:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,问有多少种不同的进货方案?并写出这些方案.(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在第(1)小题的几个方案中,为使销售时获得利润最多,你选择哪种方案?并说明理由.23.请根据图中提供的信息,回答下列问题.(1)KN95型口罩与普通医用口罩的单价分别是多少元?(2)甲、乙两家药店同时出售同样的KN95型口罩与普通医用口罩.5月,两家药店开展促销活动.甲药店规定:这两种口罩都打九折.乙药店规定:买一个KN95型口罩赠送一个普通医用口罩.若某家庭想要买20个KN95型口罩和50个普通医用口罩,请问选择哪家药店购买更合算,并说明理由.24.元旦期间,七(1)班明明等同学随家长一同到某景区游玩,该景区门票价格规定如图:(1)明明他们一共12人,分别按成人和学生购票,共需550元,求他们一共去了几个成人,几个学生?(2)购完票后,明明发现,如果购团体票更省钱,正在此时,七(2)班涛涛等8名同学和他们的12名家长共20人也来购票,请你为七(2)班设计出最省钱的购票方案,并求出此时的购票费用.类型七、年龄问题25.根据小头爸爸与大头儿子的对话,求出大头儿子现在的年龄.小头爸爸:儿子,现在我的年龄比你大23岁.大头儿子:5年后,您的年龄比我的年龄的2倍还多8岁.26.今年(2022年)4月20日,是云大附中建校95周年暨云大附中恢复办学40周年校庆日,我校初一年级数学兴趣小组的小明同学发现这样一个有趣的巧合;小明的爸爸和爷爷都是云附的老校友,且爸爸和妹妹的年龄差恰好与爷爷和小明的年龄差的和为95,而爸爸的年龄恰好比爷爷的年龄小40.已知小明今年13岁,妹妹今年4岁.(1)求今年小明的爸爸和爷爷的年龄分别是多少岁?(要求用二元一次方程组解答)(2)假如小明的爸爸和爷爷都是15岁初中华业的,请问小明的爸爸和爷爷分别是哪一年毕业的云附学子?27.已知甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,求甲、乙现在的年龄的差.28.10年前,小明妈妈的年龄是小明的6倍;10年后,小明妈妈的年龄将是小明的2倍.小明和他妈妈现在的年龄分别是多少?类型八、数字问题29.我们知道:如果mx+n=0,其中m,n为有理数,x为无理数,那么m=0且n=0.(1)如果(a−3)√2+b+2=0,其中a,b为有理数,那么a=_______,b=________.(2)若x,y均为有理数,并且满足x2+2y+√2y=17−4√2,求x−2y的值.30.小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!31.有一个三位数,现将最左边的数字移到最右边,得到的数比原来的数小45,又已知百位数字的9倍比由十位数字和个位数字组成的两位数小3,求原来的三位数.32.有一个两位数,个位上的数比十位上的数的3倍多2,若把个位数与十位数对调,所得新的两位数比原来的两位数的3倍少2,求原来的两位数.类型九、几何问题33.如图,用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的面积是多少平方厘米?34.小明在拼图时发现8个一样大小的长方形恰好可以拼成一个大的长方形如图(1),小红看见了说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为1mm 的小正方形.请问每个小长方形的面积是多少?35.在长为10m,宽为8m的长方形空地中,沿平行于长方形各边的方向分割出三个全等的小长方形花圃,其示意图如图所示.则小长方形花圃的长和宽分别是多少?36.某居民小区为了改善小区环境,建设和谐家园,准备将一块周长为76米的长方形空地,设计成全等的9块小长方形,如图所示,小长方形的长和宽各是多少米?类型十、图表信息问题37.疫情期间,某人要将一批抗疫物资从海口运往东方,准备租用汽车运输公司的甲乙两种货车、已知过去两次租用这两种货车(均装满货物)的情况如表:甲种货车(辆)乙种资车(辆)总量(吨)第一次4531第二次3630问甲、乙两种货车每辆分别能装货多少吨?38.某山区有23名中、小学生因贫困失学需要资助,已知资助一名中学生的学习费用为a元,资助一名小学生的学习费用为b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好资助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)资助贫困中学生人数(名)资助贫困小学生人数(名)初一年400024级初二年420033级初三年7400级(1)求a、b的值;(2)初三年级学生的捐款恰好解决了其余贫困中小学生的学习费用,求初三年级学生的捐款可资助的贫困中、小学生人数分别为多少.39.在下面3×3的方阵图中每行、每列及对角线上的3个数(或代数式)的和都相等.(1)如图1,则m=________,n=________(2)如图2,则a=________(用含b的代数式表示)(3)如图3,则a=________,b=________40.某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,购买4千克的甲食材比购买5千克的乙食材多花60元.营养品信息表营养成分每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克(1)甲、乙两种食材每千克的进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完,那么该公司每日购进甲、乙两种食材各多少千克?类型十一、古代数学问题41.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问兽、禽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?42.我国古代数学名著《九章算术》是人类科学史上应用数学的“算经之首”,上面记载有这样一个问题:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?请你解答这个问题.43.《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,…”问:1个大桶和1个小桶分别盛酒多少斛?44.我国古代数学著作《九章算术》中记载有这样一个问题:“今有甲、乙二人,持钱不知其数.甲得乙半而钱五十,乙得甲大半而钱亦五十.问甲、乙持钱各几何?”题目大意是:今有甲、乙二人,各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的2,那么乙也共有钱50,问甲、乙二3人各带了多少钱?(1)求甲、乙两人各带的钱数;(2)若小明、小颖去文具店购买作业本,两人带的钱数(单位:元)恰好等于甲、乙两人各带的钱数,已知作业本的单价为2.5元/本.由于开学之际,文具店搞促销活动,凡消费50元可以打八折,那么他们合起来购买可以比单独购买多多少本作业本?类型十二、开放性问题45.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a 阶派生点”(其中a为常数,且a≠0).例如:点P(1,4)的“2阶派生点”为点Q(2×1+4,1+2×4),即点Q (6,9).(1)若点P的坐标为(﹣1,5),则它的“3阶派生点”的坐标为;(2)若点P的“5阶派生点”的坐标为(﹣9,3),求点P的坐标;(3)若点P(c+1,2c﹣1)先向左平移2个单位长度,再向上平移1个单位长度后得到了点P1.点P1的“﹣4阶派生点”P2位于坐标轴上,求点P2的坐标.46.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示m,p之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示s,t之间的关系,并写出所有s,t可能的取值.47.青山化工厂与A、B两地有公路、铁路相连这家工厂从A地购买一批每吨1000元的原料经铁路120km 和公路10km运回工厂,制成每吨8000元的产品经铁路110km和公路20km销售到B地,已知铁路的运价为1.2元/(吨·千米),公路的运价为1.5元/(吨·千米),且这两次运输共支出铁路运124800元,公路运费19500元.(1)设原料重x吨,产品重y吨,根据题中数量关系填写下表(表格内填化简的结果).原料x吨产品y吨合计(元)铁路运费公路运费根据上表列方程组求原料和产品的重量.(2)这批产品的销售款比原料费与运输费的和多多少元?48.某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)。
第八章:二元一次方程组第二讲:二元一次方程组应用题(提高)【课标导航】【知识梳理】一、列方程解应用题的体步骤是:1)审题:理解题意,弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
2)设元(未知数):①直接未知数②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
3)用含未知数的代数式表示相关的量。
4)寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。
一般地,未知数个数与方程个数是相同的。
5)解方程及检验。
6)答。
二、常用的相等关系1)行程问题(匀速运动)基本关系:s=vt⑴相遇问题(同时出发):⑵追及问题(同时出发):⑶水(风)中航行:2)配料问题:溶质=溶液×浓度溶液=溶质+溶剂3)增长率问题:4)工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
5)数字表示问题:如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc6)几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
【经典例题】【例1】 某单位组织了200人到甲、乙两地旅游,到甲地的人数比到乙地的人数的2倍少10人.到两地参加旅游的人数各是多少【变式1-1】一种口服液有大小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.大盒、小盒每盒各装多少瓶【变式1-2】甲、乙两数和为42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x ,乙数为y ,则下列方程组正确的是( ).(A)⎩⎨⎧==+.34,42y x y x(B)⎩⎨⎧⋅==+y x y x 43,42(C)⎩⎨⎧⋅==+y x y x 43,4234 (D)⎩⎨⎧⋅==+y x y x 34,4243【变式1-3】某车间工人举行茶话会,如果每桌12人,还有一桌空着;如果每桌10人,则还差两个桌子.此车间共有工人多少名【例2】一个两位数,十位上的数字为x,个位上的数字为y,这个两位数为______;若将十位与个位上的数字对调,新的两位数是______.【变式2-1】一个两位数,个位数和十位数数字之和为8,个位与十位互换后,所得的新数比原数小18,则这个两位数是______.【例3】某铁路桥长1000米,一列火车从桥上通过,从上桥到离开桥共用1分钟,整列火车全在桥上的时间为40秒钟,则火车的长度为______,火车的速度为______.【例4】甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲种服装按50%的利润定价,乙种服装按40%的利润定价.在实际出售时,应顾客要求,两种服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元【变式4-1】某商场购进甲、乙两种商品共50件,甲种商品每件的进价为35元,利润率是20%,乙种商品每件的进价为20元,利润率是15%,共获利278元,则甲、乙两种商品各购进多少件【例5】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套【变式5-1】现用190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,1个盒身与2个盒底配成一个完整的盒子。
问:用多少张铁皮制盒身、多少张铁皮制盒底,可以正好制成一批完整的盒子【例6】足球比赛的积分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛负5场共得19分,那么这个队胜了多少场【变式6-1】在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只输了2场,那么此队胜几场平几场【例7】某地生产一种绿色蔬菜,在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司加工能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但这两种加工方式不能同时进行.因受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售或加工完毕,为此,公司研究出了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及加工的到市场直接销售.方案三:将一部分粗加工,其余部分进行精加工,并恰好用15天完成.你认为选择哪种方案获利最多为什么【变式6-1】一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用两种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货.如果按每吨运费30元,问货主应支付运费多少元【强化训练】&【课后作业】(注:本专题根据学生的程度及上课接受情况适当选择部分进行上课练习,部分做为课后作业。
)【A卷】1.小红有5分和2分的硬币共20枚,共6角7分,设5分硬币有x枚,2分硬币有y枚,则可列方程组为。
2.有大小两种货车,2辆大车与3辆小车一次可以运货吨,5辆大车与6辆小车一次可以运货35吨,问大车和小车一次可以运货各多少吨3.一张方桌由1个桌面和4条桌腿组成。
如果1立方米木料可以做方桌的桌面50个或做桌腿300条,现有10立方米木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面和桌腿恰好能配成方桌4.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶(2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶5.一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.问题:根据这些信息,请你推测这群学生共有多少人6.在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元.求:(1)A型洗衣机和B型洗衣机的售价各是多少元(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元7.17.某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘制了扇形统计图(如图).由于三月份开展促销活动,男、女服装的销售收入分别比二月份增长了40%,64%,已知第一季度男女服装的销售总收入为20万元.(1)一月份销售收入为万元,二月份销售收入为万元,三月份销售收入为万元;(2)二月份男、女服装的销售收入分别是多少万元8.18.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等. (1)求x ,y 的值;(2)在备用图中完成此方阵图.9.19.某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件。
(1)求A 、B 两种纪念品的进价分别为多少(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少–2342y ––234xy【B卷】1.奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买(0)x x 支钢笔需要花y元,请你求出y与x的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.2.某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先乘车、乙组步行。
车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。
已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。
3.甲乙两地相距60千米,A、B两人骑自行车分别从甲乙两地相向而行,如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。
求A、B两人骑自行车的速度。
(只需列出方程即可)4.已知甲、乙两种商品的原价和为200元。
因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。
求甲、乙两种商品的原单价各是多少元。