分析实际问题的背景和条件,明确问题的 核心和目标。
求解数学模型
通过求解数学模型,得到问题的解或最优 解。
建立数学模型
根据问题的特点,建立合适的数学模型, 如代数方程、不等式等。
检验解的合理性
对于求解出的解需要进行检验,确保其符 合实际情况和逻辑。
05
代数式的扩展知识
指数与对数
指数函数
是指数运算的一种函数形式,一般地,形如y = ax的函数,其中a为常数且以大于 0的a为底数, a是函数的底数,x是自变量,函数值等于幂运算的结果。
对数函数
是对数运算的一种函数形式,一般地,形如y = log(a)x的函数,其中a为常数且 以大于0的a为底数, a是函数的底数,x是自变量,函数值等于幂运算的指数。
不等式与不等式组
不等式
用不等号连接两个代数式,表示它们之间的关系,一般可分 为一元一次不等式、一元二次不等式、多元一次不等式等。
不等式组
由几个不等式联立起来组成的一组不等式,通常称为不等式 组,一般用来解决实际问题的最优决策问题。
数列与数列的极限
数列
按照一定次序排列的一列数,通常用a1, a2, a3, ..., an表示。
数列的极限
当数列的项数n无限增大时,数列的通项an无限接近某一常数,这个常数称为 该数列的极限。
导数与微积分初步
3
括号表示法
在表示多项式时,用括号将各项括起来,并注 明各项的符号。
02
代数式的运算
加法与减法
总结词
代数式的基本运算,加法与减法操作简单,但需注意运算顺序和括号的使用 。
详细描述
加法与减法是代数式的基本运算,操作相对简单。在进行加法运算时,可以 直接进行相加;在进行减法运算时,需要注意减号后面应该加上括号。