金属材料的主要性能指标及涵义
- 格式:docx
- 大小:23.88 KB
- 文档页数:5
金属材料主要性能指标模具钢在工作性能方面的要求1)硬度模具在工作时受力状态是复杂的,如热作模具通常在交变的温度场下承受交变应力作用,因此它应具有良好的抗软化或塑性变形状态的能力,在长期工作环境下仍能保持模具的形状和尺寸精度。
硬度是模具钢的重要性能之一。
对冷作模具的硬度一般选择在58HRC以上,而热作模具尤其是要求高的抗热疲劳性能的模具,通常硬度在45HRC左右。
对普通使用的塑料模具,一般硬度要求在35HRC左右。
2)强度与韧度零件的成形使模具承受着巨大的冲击、扭曲等负荷,尤其是现代高速冲压、高速精锻造和液态成形等技术以及一次成型技术的发展,模具承受着更大的负荷,往往由于模具钢的强度和韧度不够,造成型腔边缘或局部塌陷、崩刃或断裂而早期失效,因此模具热处理后应具有较高的硬度和韧度。
3)耐磨性零件成形时材料与模具型腔表面发生相对运动,使型腔表面产生了磨损,从而使得模具的尺寸精度、形状和表面的粗糙度发生变化而失效。
磨损是一种复杂的过程,影响因素很多,除取决作用于模具的外界条件外,还在很大程度上取决于采用模具钢的化学成分不均匀性、组织状态、力学性能等。
4)疲劳性能模具工作时承受着机械冲击和热冲击的交变应力,热作模具在工作的过程中,热交变应力更明显地导致模具热裂。
受应力和温度梯度的影响而引起裂纹,往往是在型腔表面形成浅而细的裂纹,他的迅速传播和扩展导致模具失效。
另外,模具钢的化学成分及组织的不均匀,模具钢中存在的冶金缺陷如非金属夹杂物,气孔、显微裂纹等均可导致模具钢的疲劳强度降低,因为在交变应力的作用下,首先在这些薄弱地区产生疲劳裂纹并发展为疲劳破坏。
5)粘着性工模具零件的表面由于两金属原子相相互扩散或单相扩散的作用,往往会有一些被加工金属粘附着,尤其是一些切削、剪切工具和冲压工具的表面会产生粘附或结疤现象,这会影响刃口的锋利程度和局部组织、化学成分的改变,使刃口部分崩裂或粘附金属的脱落划伤模具,使工件表面粗糙。
金属的物理性能包括哪些内容?含义各是什么?金属的物理性能主要包括比重(密度)、熔点、热膨胀性、导热性、导电性和磁性等。
(1)密度:密度是物体质量和其体积的比值。
它的单位为克/立方厘米(g/cm³)。
在体积相同的情况下,物体的密度越大,质量也越大。
(2)熔点:金属从固态向液体状态转变时的熔化温度称为熔点。
熔点一般用摄氏温度(℃)表示。
(3)热膨胀性:热膨胀性是指金属材料受热时,体积会增大,冷却时则收缩的一种性能。
热膨胀的大小一般由线膨胀系数表示。
(4)导热性:导热性是指金属材料在加热或冷却时传导热能的性能,一般由导热系数表示。
导热系数的单位为千卡/米·时·℃。
(5)导电性:导电性是指金属材料传导电流能力的性能。
(6)磁性:金属能导磁的性能称为磁性。
具有导磁能力的金属都能被磁铁吸引。
金属的机械性能主要包括哪些内容?含义各是什么?金属材料的机械性能主要包括强度、弹性、塑性、硬度、韧性、疲劳强度等。
(1)强度:强度是指材料在静载荷作用下抵抗变形和破坏的能力。
强度的单位为帕斯卡(Pa)(牛顿/毫米²)。
根据载荷作用在材料上的不同,强度又可分为抗拉强度、抗压强度、抗弯强度、抗扭强度和抗剪强度五种。
(2)弹性:金属材料在外力作用下产生变形,当外力去除后,变形消失,材料恢复原状的性能称为弹性。
(3)塑性:金属材料在外力作用下产生变形而不破坏,当外力去除后,仍能使变形保留下来的性能称为塑性。
塑性是用长度延伸率(δ)和断面收缩率(ψ)这两个指标来表示的。
(4)硬度:硬度是指金属材料表面抵抗比它硬的物体压入引起塑性变形的能力。
在实际生产中,最常用的硬度试验方法有布氏硬度试验和洛氏硬度试验两种。
(5)韧性:金属材料抵抗冲击载荷而不致破坏的性能称为韧性。
(6)疲劳强度:金属材料在无数次交变载荷作用下而不致破坏的最大应力称为疲劳强度。
钢材的主要性能有哪些?各性能相应的指标是什么?钢材的主要性能包括力学性能和工艺性能。
力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。
工艺性能是钢材在各加工过程中表现出的性能,包括冷弯性能和可焊性。
(1)抗拉性能。
表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。
屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。
发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。
抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6~0.65,低合金结构钢为0.65~0.75,合金结构钢为0.84~0.86。
伸长率是指金属材料在拉伸时,试样拉断后,其标距部分所增加的长度与原标距长度的百分比;断面收缩率是指金属试样拉断后,其缩颈处横截面面积的最大缩减量与原横截面面积的百分比。
伸长率和断面收缩率越大,钢材的塑性越好。
(2)冷弯性能。
冷弯性能是指钢材在常温下抵抗弯曲变形的能力,表示钢材在恶劣条件下的塑性。
钢材按规定的弯曲角度a和弯心直径d弯曲后,通过检查弯曲处的外面和侧面有无裂纹、起层或断裂等进行评定。
通过冷弯可以揭示钢材内部的应力、杂质等缺陷,还可用于钢材焊接质量的检验,能揭示焊件在受弯面的裂纹、杂质等缺陷。
(3)冲击韧性。
冲击韧性是指钢材抵抗冲击荷载作用而不破坏的能力。
工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功Ak,单位为焦耳(J)。
钢材的冲击韧性是衡量钢材质量的一项指标,特别对经常承受荷载冲击作用的构件,如重量级的吊车梁等,要经过冲击韧性的鉴定。
冲击韧性越大,表明钢材的冲击韧性越好。
(4)硬度。
硬度是指金属抵抗硬物体压人其表面的能力,硬度不是一个单纯的物理量,而是反映弹性、强度、塑性等的一个综合性能指标。
金属材料的力学性能指标金属材料是工程中常用的材料之一,其力学性能指标对于材料的选择和设计具有重要意义。
力学性能指标是评价金属材料力学性能的重要依据,主要包括强度、韧性、塑性、硬度等指标。
下面将对金属材料的力学性能指标进行详细介绍。
首先,强度是评价金属材料抵抗外部力量破坏能力的指标。
强度可以分为屈服强度、抗拉强度、抗压强度等。
其中,屈服强度是材料在受到外部力作用下开始产生塑性变形的应力值,抗拉强度是材料在拉伸状态下抵抗破坏的能力,抗压强度是材料在受到压缩力作用下抵抗破坏的能力。
强度指标直接影响着材料的承载能力和使用寿命。
其次,韧性是材料抵抗断裂的能力。
韧性指标包括冲击韧性、断裂韧性等。
冲击韧性是材料在受到冲击载荷作用下抵抗破坏的能力,断裂韧性是材料在受到静态载荷作用下抵抗破坏的能力。
韧性指标反映了材料在受到外部冲击或载荷作用下的抗破坏能力,对于金属材料的使用安全性具有重要意义。
再次,塑性是材料在受力作用下产生塑性变形的能力。
塑性指标包括伸长率、收缩率等。
伸长率是材料在拉伸破坏前的延展性能指标,收缩率是材料在受力破坏后的收缩性能指标。
塑性指标直接影响着金属材料的加工性能和成形性能,对于金属材料的加工工艺和成形工艺具有重要影响。
最后,硬度是材料抵抗划伤、压痕等表面破坏的能力。
硬度指标包括洛氏硬度、巴氏硬度等。
硬度指标反映了材料表面的硬度和耐磨性能,对于金属材料的耐磨性和使用寿命具有重要意义。
综上所述,金属材料的力学性能指标是评价材料性能的重要依据,强度、韧性、塑性、硬度等指标直接影响着材料的使用性能和工程应用。
在工程设计和材料选择中,需要根据具体的工程要求和使用环境,综合考虑各项力学性能指标,选择合适的金属材料,以确保工程的安全可靠性和经济性。
金属材料机械性能的指标及意义材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。
锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等。
(1)强度强度是指金属材料在外力作用下对变形或断裂的抗力。
强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σs或σ0.2(国外用re表示)和抗拉强度σb(国外用rm表示),高温下工作时,还要考虑蠕变极限σn和持久强度σd。
(2)塑性塑性就是指金属材料在脱落前出现塑性变形的能力。
塑性指标包含:伸长率δ,即为试样折断后的相对弯曲量;断面收缩率ψ,即为试样折断后,折断处横截面内积的相对增大量;冷弯(角)α,即为试件被伸展至受到拉面发生第一条裂纹时所测出的角度。
(3)韧性韧性是指金属材料抵抗冲击负荷的能力。
韧性常用冲击功ak和冲击韧性值αk表示。
αk值或αk值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化。
而且ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性。
则表示材料韧性的一个代莱指标就是断裂韧性δ,它就是充分反映材料对裂纹拓展的抵抗能力。
(4)硬度硬度是衡量材料软硬程度的一个性能指标。
硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。
最常用的是静负荷压入法硬度试验,即布氏硬度(hb)、洛氏硬度(hra、hrb、hrc)、维氏硬度(hv),其值表示材料表面抵抗坚硬物体压入的能力。
而肖氏硬度(hs)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。
因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。
在断裂力学基础上创建出来的材料抵抗裂纹拓展脱落的韧性性能称作断裂韧性。
(kic,gic)常用的35crmo在850℃油淬,550℃回火后,机械性能如下:σb≥980mpa;σs≥835mpa;δ5≥12%;ψ≥45%;ak≥63j;而高级优质的35crmoa的性能应该更加优良稳定。
阐述金属材料的力学性能及其指标在机械加工领域,常研究的金属材料的力学性能主要包括以下几个方面:材料强度与塑性、材料硬度、冲击韧性与疲劳强度。
通过对金属材料力学性能的研究,在满足零部件加工性能的同时,更好更合理的选材。
一、强度与强度指标金属材料在机械加工时,承受静载荷的作用,其抵抗塑性变形或断裂的能力称之为强度。
载荷就是金属材料在使用及加工过程中所承受的各种外力,其中载荷分为静载荷、冲击载荷、交变载荷。
顾名思义静载荷就是力的大小和方向均不发生变化的载荷,而冲击载荷就是冲击力比较大,作用在工件上的时间比较短、速度比较快,交变载荷与静载荷相反,力的大小和方向随时间发生周期性的变化。
我们所研究的强度指标就是在静载荷作用下研究的。
屈服强度是用来表示金属材料强度指标最有效的形式。
当金属材料受力达到一定程度出现屈服现象时,发生塑性变形并且变形能力不随力增加而改变,此时所对应的应力称之为屈服强度。
在机械加工领域,常用到的材料一般不允许存在塑性变形,这就决定了屈服强度是我们设计零部件和选材的最主要依据。
二、塑性与塑性指标金属材料在机械加工时承受载荷作用时发生变形,当载荷增加一定程度时发生断裂,在断裂前所承受的最大塑性变形的能力我们称之为材料塑性。
拉伸试验是我们获得金属材料的强度和塑性指标最有效的试验。
首先把被测材料加工成标准试样,将试样安装在拉伸试验机上通过缓慢施加拉伸载荷,获得拉伸载荷与式样伸长量的关系,即拉伸曲线。
三、硬度和硬度试验金属材料的硬度就是指金属材料抵抗局部塑性变形和破坏的能力。
金属材料的力学性能中最重要的指标之一就是硬度。
与拉伸试验相比,硬度试验相对操作比较简单,可以直接在零部件表面进行试验,比较直观,应用比较广泛。
硬度试验方法种类比较多,最常用的有以下三种试验方法。
1、布氏硬度试验法(1)布氏硬度试验原理布氏试验就是先使用硬质合金球做压头压入金属表面,在施加一定的压力,在规定时间后消除试验力,最后测量压痕表面直径,根据试验压力,作用时间,压痕直径,带入公式,通过计算公式得出其硬度值。
指标项目 单位 意义说明比例极限σpMPa金属材料应力与应变成正比例关系的最大应力,即拉伸图上开始偏离直线时的应力称为比例极限σp ,σp =P p /A 0,式中P p 为比例极限负荷(N ),A 0为试样原始截面积(mm 2)。
比例极限精确测定困难,标准规定以拉伸曲线的切线与负荷轴间夹角的正切值较弹性直线部分之值增加50%作为偏离值,其应力称为规定比例极限,也可将偏离值为25%或10%分别以σp25或σp10表示。
比例极限σeMPa金属在弹性变形范围内,试样不产生塑性变形时所能承受的最大应力称为弹性极限σe ,σe =P e /A 0,式中P e 为弹性极限负荷(N ),A 0为试样原始截面积(mm 2)。
弹性极限精确测定困难,标准规定以残余伸长为0.01%的应力作为规定弹性极限,弹性极限和比例极限数值很相近,常以规定的σp 值代替σe 。
弹性模量MPa金属在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。
拉伸时:)(l A Pl E ∆==00εσ,式中σ为正应力(MPa ),ε为应变,用百分数表示,P 为垂直力(N ),A 0为试样原始截面积(mm 2),l 0为试样原长(mm ),∆l 为绝对伸长(mm ),E 称为正弹性模量。
剪切时:p bI ML G )(210ϕϕγτ-==,式中τb 为切应力(MPa ),γ为切应变,即相对扭转滑移,M 为扭转力矩,L 0为试样计算长度,φ1和φ2为计算长度两端的扭转角度,I p 为扭转时试样截面相对于轴线的截面二次极矩,G 为切变模量。
弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
续表屈服点 MPa 在拉伸过程中,负荷不增加,试样还继续发生变形的最小应力称为屈服点σs ,σs =p s /A 0,式中,Ps 为屈服负荷(N ),A 0为试样原始截面积(mm 2)。
㈠物理性能指标密度符号:γ单位:kg/m3或g/cm3涵义说明:密度是金属材料的特性之一,它表示某种金属材料单位体积的质量,不同金属材料的密度是不同的。
在机械制造业上,通常利用“密度”来计算零件毛坯的质量(习惯上称质量)。
金属材料的密度也直接关系到由它所制成的零件或构件的质量或紧凑程度,这点对于要求减轻机件自重的航空和宇航工业制件具有特别重要的意义㈡弹性指标弹性模量符号:E 单位Mpa; 切削模量符号:G 单位Mpa涵义说明:金属材料在弹性范围内,外力和变形成比例地增加,即应力与应变成正比例关系时(胡克定律),这个比例系数就称为弹性模量。
根据应力,应变的性质通常又分为:弹性模量(E)和切削模量(G),弹性模量的大小,相当于引起物体单位变形时所需应力的大小,所以,它在工程技术上是衡量材料刚度的指标,弹性模量越大,刚度也越大,亦即在一定应力作用下,发生的弹性变形越小。
任何机器零件,在使用过程中,大都处于弹性状态,对于要求弹性变形较小的零件,必须选用弹性模量大的材料比例极限符号:σ(R P)单位Mpa 涵义说明:指伸长与负荷成正比地增加,保p持直线关系,当开始偏离直线时的应力称比例极限,但此位置很难精确测定,通常把能引起材料试样产生残余变形量为试样原长的0.001%或0.003%、0.005%、0.02%时的应力,规定为比例极限弹性极限符号:σ单位Mpa 涵义说明:这是表示金属材料最大弹性大的指标,e即在弹性变形阶段,试样不生产塑性变形时所能承受的最大应力,它和σp一样也难精确测定,一般多不进行测定,而以规定的σp数值代替之㈢强度性能指标强度极限符号:σ单位Mpa涵义说明:指金属材料受外力作用,在断裂前,单位面积上所能承受的最大载荷抗拉强度符号:σ(R m)单位Mpa 涵义说明:指外力是拉力时的强度极限,它是b衡量金属材料强度的主要性能指标抗弯强度符号:σ(σw)单位Mpa 涵义说明:指外力是弯曲力时的强度极限bb抗压强度符号:σ(σy)单位Mpa涵义说明:指外力是压力时的强度极限,压缩bc试验主要适用于低塑性材料,如铸铁等抗剪强度符号:τ单位Mpa 涵义说明:指外力是剪切力时的强度极限抗扭强度符号:τ单位Mpa涵义说明:指外力是扭转力时的强度极限b屈服点符号:σ单位Mpa 涵义说明:金属材料受载荷时,当载荷不再增加,但金s属材料本身的变形,却继续增加,这种现象叫做屈服,产生屈服现象时的应力,叫屈服点屈服强度符号:σ单位Mpa 涵义说明:金属材料屈服现象时,为便于测量,通常0.2按其产生永久残余变形量等于试样原长0.2%时的应力作为“屈服强度”,或称“条件屈服极限”持久强度符号:σ(h)单位Mpa涵义说明:指金属材料在一定的高温条件下,b/时间经过规定时间发生断裂时的应力,一般所指的持久强度,是指在一定温度下,试样经十万小时后的破断强度,这个数值,通常也是用外推力的方法取得的蠕变极限符号:σ变形量(%)/时间(h)单位Mpa涵义说明:金属材料在高温环境下,即使所受应力小于屈服点,也会随着时间的增长而缓慢地产生永久变形,这种现象叫做蠕变,在一定的温度下,经一定时间,金属材料的蠕变速度仍不超过规定的数值,此时所能承受的最大应力,称为蠕变极限㈣硬度性能指标布氏硬度(GB/T231-1984)符号:HBS或HBW 单位Kgf/mm2涵义说明:用淬硬小钢球或硬质合金球压入金属材料表面,以其压痕面积除加在钢球上的载荷,所得之商,以相应的实验压力,经规定保持时间后即为金属材料的布氏硬度数值。
金属材料的性能金属材料是工程材料中应用最广泛的一类材料,其性能直接影响着材料在工程中的应用效果。
金属材料的性能主要包括力学性能、物理性能、化学性能和加工性能等方面,下面将对这些性能进行详细介绍。
首先,力学性能是金属材料的重要性能之一。
力学性能包括强度、硬度、韧性、塑性和疲劳性能等指标。
强度是材料抵抗外部力量破坏的能力,硬度是材料抵抗局部变形和切削的能力,韧性是材料抵抗断裂的能力,塑性是材料在受力作用下发生形变的能力,疲劳性能是材料在受交变载荷作用下抵抗疲劳破坏的能力。
这些力学性能指标直接影响着金属材料在工程中的承载能力和使用寿命。
其次,物理性能是金属材料的另一个重要性能。
物理性能包括密度、导热性、导电性、热膨胀系数等指标。
密度是材料单位体积的质量,导热性是材料传导热量的能力,导电性是材料传导电流的能力,热膨胀系数是材料在温度变化时的膨胀程度。
这些物理性能指标影响着金属材料在工程中的热传导、电传导和尺寸稳定性等方面的应用效果。
此外,化学性能也是金属材料的重要性能之一。
化学性能包括耐蚀性、耐热性、耐磨性等指标。
耐蚀性是材料抵抗化学介质侵蚀的能力,耐热性是材料在高温环境下保持稳定性的能力,耐磨性是材料抵抗磨损的能力。
这些化学性能指标直接影响着金属材料在恶劣环境下的使用寿命和稳定性。
最后,加工性能也是金属材料的重要性能之一。
加工性能包括可焊性、可切削性、可锻性、可淬火性等指标。
可焊性是材料在焊接过程中的适应性,可切削性是材料在切削加工中的易加工性,可锻性是材料在锻造加工中的变形性,可淬火性是材料在热处理过程中的适应性。
这些加工性能指标直接影响着金属材料在工程加工过程中的加工性能和加工效率。
综上所述,金属材料的性能包括力学性能、物理性能、化学性能和加工性能等多个方面,这些性能指标直接影响着金属材料在工程中的应用效果。
因此,在工程设计和材料选择过程中,需要充分考虑金属材料的各项性能指标,以确保材料能够满足工程的要求,提高工程的质量和可靠性。
金属材料的性能金属材料的性能分为使用性能和工艺性能。
●使用性能是指金属材料为保证机械零件或工具正常工作应具备的性能,即在使用过程中所表现出的特性。
金属材料的使用性能包括力学性能、物理性能和化学性能等;●工艺性能是指金属材料在制造机械零件和工具的过程中,适应各种冷加工和热加工的性能。
工艺性能也是金属材料采用某种加工方法制成成品的难易程度,它包括铸造性能、锻造性能、焊接性能、热处理性能及切削加工性能等。
一、金属材料的力学性能●金属材料的力学性能是指金属材料在力作用下所显示的与弹性和非弹性反应相关或涉及应力──应变关系的性能,如强度、塑性、硬度、韧性、疲劳强度等。
●物体受外力作用后导致物体内部之间相互作用的力,称为内力。
●单位面积上的内力,称为应力σ(N/mm2)。
●应变є是指由外力所引起的物体原始尺寸或形状的相对变化(%)。
金属材料的力学性能主要有:强度、刚度、塑性、硬度、韧性和疲劳强度等。
(一)强度与塑性●金属材料在力的作用下,抵抗永久变形和断裂的能力称为强度。
●塑性是指金属材料在断裂前发生不可逆永久变形的能力。
金属材料的强度和塑性指标可以通过拉伸试验测得。
1.拉伸试验●拉伸试验是指用静拉伸力对试样进行轴向拉伸,测量拉伸力和相应的伸长,并测其力学性能的试验。
(1)拉伸试样。
拉伸试样通常采用圆柱形拉伸试样,分为短试样和长试样两种。
长试样L0=10d0;短试样L0=5d0。
a)拉断前 b)拉断后图1-5 圆形拉伸试样(2)试验方法。
2.力伸长曲线●在进行拉伸试验时,拉伸力F和试样伸长量△L之间的关系曲线,称为力伸长曲线。
试样从开始拉伸到断裂要经过弹性变形阶段、屈服阶段、变形强化阶段、缩颈与断裂四个阶段。
图1-7 退火低碳钢力伸长曲线3.强度指标金属材料的强度指标主要有:屈服点σs、规定残余伸长应力σ0.2、抗拉强度σb等。
(1)屈服点和规定残余延伸应力。
●屈服点是指试样在拉伸试验过程中力不增加(保持恒定)仍然能继续伸长(变形)时的应力。
㈠物理性能指标
密度符号:γ单位:kg/m3或g/cm3涵义说明:密度是金属材料的特性之一,它
表示某种金属材料单位体积的质量,不同金属材料的密度是不同的。
在机械制造业上,通常利用“密度”来计算零件毛坯的质量(习惯上称质量)。
金属材料的密度也直接关系到由它所制成的零件或构件的质量或紧凑程度,这点对于要求减轻机件自重的航空和宇航工业制件具有特别重要的意义
㈡弹性指标
弹性模量符号:E 单位Mpa; 切削模量符号:G 单位Mpa涵义说
明:金属材料在弹性范围内,外力和变形成比例地增加,即应力与应变成正比例关系时(胡克定律),这个比例系数就称为弹性模量。
根据应力,应变的性质通常又分为:弹性模量(E)和切削模量(G),弹性模量的大小,相当于引起物体单位变形时所需应力的大小,所以,它在工程技术上是衡量材料刚度的指标,弹性模量越大,刚度也越大,亦即在一定应力作用下,发生的弹性变形越小。
任何机器零件,在使用过程中,大都处于弹性状态,对于要求弹性变形较小的零件,必须选用弹性模量大的材料
比例极限符号:σ
(R P)单位Mpa 涵义说明:指伸长与负荷成正比地增
p
加,保持直线关系,当开始偏离直线时的应力称比例极限,但此位置很难精确测定,通常把能引起材料试样产生残余变形量为试样原长的0.001%或0.003%、0.005%、0.02%时的应力,规定为比例极限
弹性极限符号:σ
单位Mpa 涵义说明:这是表示金属材料最大弹性大的
e
指标,即在弹性变形阶段,试样不生产塑性变形时所能承受的最大应力,它和σp一样也难精确测定,一般多不进行测定,而以规定的σp数值代替之
㈢强度性能指标
强度极限符号:σ单位Mpa 涵义说明:指金属材料受外力作用,在断裂前,单位面积上所能承受的最大载荷
抗拉强度符号:σ
(R m)单位Mpa 涵义说明:指外力是拉力时的强度
b
极限,它是衡量金属材料强度的主要性能指标
抗弯强度符号:σ
(σw)单位Mpa 涵义说明:指外力是弯曲力时的强度
bb
极限
抗压强度符号:σ
(σy)单位Mpa涵义说明:指外力是压力时的强度极
bc
限,压缩试验主要适用于低塑性材料,如铸铁等
抗剪强度符号:τ单位Mpa 涵义说明:指外力是剪切力时的强度极限
抗扭强度符号:τ
单位Mpa涵义说明:指外力是扭转力时的强度极限
b
屈服点符号:σ
单位Mpa 涵义说明:金属材料受载荷时,当载荷不再增加,
s
但金属材料本身的变形,却继续增加,这种现象叫做屈服,产生屈服现象时的应力,叫屈服点
屈服强度符号:σ
单位Mpa 涵义说明:金属材料屈服现象时,为便于测
0.2
量,通常按其产生永久残余变形量等于试样原长0.2%时的应力作为“屈服强度”,或称“条件屈服极限”
持久强度符号:σ
(h)单位Mpa涵义说明:指金属材料在一定的高
b/时间
温条件下,经过规定时间发生断裂时的应力,一般所指的持久强度,是指在一定温度下,试样经十万小时后的破断强度,这个数值,通常也是用外推力的方法取得的
蠕变极限符号:σ变形量(%)/时间(h)单位Mpa涵义说明:金属材料在高温环境下,即使所受应力小于屈服点,也会随着时间的增长而缓慢地产生永久变形,这种现象叫做蠕变,在一定的温度下,经一定时间,金属材料的蠕变速度仍不超过规定的数值,此时所能承受的最大应力,称为蠕变极限
㈣硬度性能指标
布氏硬度(GB/T231-1984)符号:HBS或HBW 单位Kgf/mm2涵义说
维氏硬度(GB/T4340.1-1999)符号:HV 单位Mpa 涵义说明:用49.03~980.7N以内的载荷,将顶角为136°的金刚石四方角锥体压头压入金属材料的表面,以其压痕面积除载荷所得之商,即为维氏硬度值,HV只适用于测定很薄(0.3~0.5mm)的金属材料,或厚度为0.03~0.05mm的零件表面硬化层(如镀铬、渗碳、氮化、碳氮共渗层)的硬度
维氏硬度机测得的压痕,轮廓清晰,数值比较准确
肖氏硬度(GB/T4341-2001)符号:HSC (HSD) 涵义说明:利用一定质量
(2.5g)的钢球或金刚石球,自一定的高度(一般为254mm)落下,撞击金属后,球又回跳到某一高度h,此高度为肖氏硬度值,其优点是在金属表面上不留下伤痕,故适用于测定表面光滑的一些精密量具或精密零件,也常用来测定大型零件。
缺点是测定数值不够准确,现在很少使用××HSC(目测型),××HSD(指示型)表示法
㈤塑性指标
断面收缩率符号:ψ(Z)单位% 涵义说明:金属材料受外力作用被拉断以后,其横截面的缩小量与原来横截面积相比的百分数,称为断面收缩率
δψ的数值愈高,表明这种材料的塑性愈好,易于进行压力加工
伸长率L0=5d L0=10d 符号:δ(A)或δ
(A)或δ10(A11.3)单位%涵
5
义说明:金属材料受外力作用被拉断以后,在标距内总伸长长度同原来标距长度相比的百分数,称为伸长率。
根据试样长度的不同,通常用符号δ5或δ10来表示;δ5是试样标距长度为其直径5倍时的伸长率,δ10是试样标距长度为其直径10倍时的伸长率
冲击韧度符号:α
或αkv单位J/cm2冲击吸收功A KU或A Kv 单位J
ku
涵义说明:冲击韧度是评定金属材料于动载荷下承受冲击抗力的力学性能指标,通常都是以大量的一次冲击值(αku或αkv)作为标准的。
它是采用一定尺寸和形状的标准试样,在摆锤式一次冲击试验机上来进行试验,试验结果,以冲断试样上所消耗的功(A KU 或A Kv)与断口处横截面积(F)之比值大小来衡量。
冲击试样的基本类型有:梅氏、夏氏、艾氏、DVM等数种,我国一般多采用GB/T229-1994《夏比缺口冲击试样》为标准试样,其形状、尺寸和试验方法参见标准中的规定。
由于αK值的大小,不仅取决于材料本身,同时还随试样尺寸、形状的改变及试验温度的不同而变化,因而αK值只是一个相对指标。
目前国际上许多国家直接采用冲击功A K作为冲击韧度的指标
㈥疲劳性能指标
疲劳极限(或称疲劳强度)符号:σ
或σ-1n单位Mpa涵义说明:金属
-1
材料在交变负荷的作用下,经过无限次应力循环而不致引起断裂的最大循环应力,称为疲劳极限或极限疲劳强度
σ-1――表示光滑试样的对称弯曲疲劳极限
σ-1n――表示缺口试样的对称弯曲疲劳极限
按我国国家标准,一般金属材料采用107循环次数而不断裂的最大应力来确定其疲劳极限
㈦断裂韧度性能指标。