金属材料力学性能最常用的几项指标
- 格式:doc
- 大小:105.50 KB
- 文档页数:8
第四章工程材料复习题一、填空题1、金属的力学性能主要包括强度、硬度、塑性、韧性、疲劳强度等指标,其中衡量金属材料在静载荷下机械性能的指标有强度、硬度、塑性。
衡量金属材料在交变载荷和冲击载荷作用下的指标有疲劳强度和冲击韧性。
2、钢以铁、碳为主要元素,其中碳的质量分数为小于2.11%,铸铁是含碳质量分数大于2.11%的铁碳合金。
3、钢按用途分为结构钢、工具钢和特殊性能钢。
4、普通质量的结构钢主要用于工程结构和机械零件方面。
5、金属分为黑色金属和有色金属。
6、碳钢的编号为:碳素结构钢采用拼音字母Q和数字表示其屈服强度;优质碳素结构钢用两位数字表示钢中平均碳的质量分数的万分之几,如45钢;碳素工具钢用字母T表示;铸造碳钢用ZG代表铸钢二字汉语拼音首位字母。
7、合金钢的编号为:低低合金高强度结构钢由代表屈服点的汉语拼音字母Q;合金结构钢如40Cr表示平均碳的质量分数ωc= 0.40%,平均铬的质量质量分数ωCr<1.5%;滚动轴承在牌号前加G。
8、合金钢是为了改善钢的性能,在钢中加入其他合金元素。
9、合金钢分为合金结构钢、合金工具钢和特殊性能钢。
10、铸铁可分为灰铸铁、球墨铸铁和可锻铸铁。
11、灰铸铁的断口呈浅白色,其牌号用符号HT和数字表。
12、球墨铸铁的牌号用符号QT和数字表示。
13、机械零件需要强度、塑性和韧性都较好的材料,应选用中碳钢。
14、碳的质量分数在0.30%~0.55%之间的属于中碳钢。
15、钢的普通热处理(也叫整体热处理)有退火、正火、淬火和回火,钢的表面热处理有表面淬火热处理和化学热处理。
16、降低钢的硬度,改善切削加工性能常用的热处理有退火和正火,若是高碳钢或是高合金钢要采用退火处理。
17、钢淬火常用的冷却介质有水和油,淬火处理的目的是提高工件的强度、强度和耐磨性。
淬火后钢的硬度主要取决于钢的含碳量高低。
18、淬火和高温回火结合的处理称为调质,处理后钢的性能特点是有良好的综合性能,适合轴和齿轮类零件的热处理。
材料力学性能-考前复习总结(前三章)金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。
材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性第一章单向静拉伸力学性能应力和应变:条件应力条件应变 =真应力真应变应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。
其中必有一主平面,切应力为零,只有主应力,且,满足胡克定律。
应力软性系数:最大切应力与最大正应力的相对大小。
1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
ae=1/2σeεe=σe2/2E。
取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。
需通过合金强化及组织控制提高弹性极限。
2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。
①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。
金属中点缺陷的移动,长时间回火消除。
弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。
吸收变形功循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。
②包申格效应:定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了)解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。
第一章金属材料的力学性能机械制造中使用的材料品种很多,为了正确使用材料,并把它加工成合格的工件,必须掌握材料的使用性能和工艺性能。
使用性能,是指为保证工件正常工作材料应具备的性能,包括力学性能、物理和化学性能等。
工艺性能,是指材料在加工过程中所表现出来的性能,包括铸造性能、锻压性能、焊接性能和切削加工性等。
所谓力学性能,是指材料在外力作用下所表现出来的性能,主要有强度、塑性、硬度、冲击韧性、疲劳强度等,是设计机械零件时选材的重要依据。
这些性能指标是通过试验测定的。
第一节刚度、强度、塑性刚度、强度和塑性是根据试验测定出来的。
将材料制成标准试样(图1-1a),然后把试样装在试验机上施加静拉力,随着拉力的增加试样逐渐变形,直到拉断为止(图1-1b)。
将试样从开始到拉断所受的力F 及所对应的伸长量ΔL绘制在F—ΔL坐标上,得出力一伸长曲线。
低碳钢的力一伸长曲线如图1—2所示。
从图1—2可知,在OE 阶段,试样的伸长量随拉力成比例增加,若去除拉力后试样恢复原状,这种变形称为弹性变形。
超过E 点后,若去除拉力试样不能完全恢复原状,尚有一部分伸长量保留下来,这部分保留下来的变形称为塑性变形。
当拉力增加到F s 时,力一伸长曲线在S 点呈现水平台阶,即表示外力不再增加而试样继续伸长,这种现象称为屈服,该水平台阶称为屈服台阶。
屈服以后,试样又随拉力增加而逐渐均匀伸长。
达到B 点,试样的某一局部开始变细,出现缩颈现象。
由于在缩颈部分试样横截面积迅速减小,因此使试样继续伸长所需的拉力也就相应减小。
当达到K 点时,试样在缩颈处断裂。
低碳钢在拉伸过程中经历了弹性变形、弹一塑性变形和断裂三个阶段。
F —ΔL 曲线与试样尺寸有关。
为了消除试样尺寸的影响,把拉力F 除以试样原始横截面积A0,得出试样横截面积上的应力,同时把伸长量ΔL 除以试样原始标距L 0,得到试样的应变LL ε∆=0F A σ=σ—ε曲线与F —ΔL 曲线形状一样,只是坐标不同。
第1章工程材料1.1 金属材料的力学性能金属材料的性能包括使用性能和工艺性能。
使用性能是指金属材料在使用过程中应具备的性能,它包括力学性能(强度、塑性、硬度、冲击韧性、疲劳强度等)、物理性能(密度、熔点、导热性、导电性等)和化学性能(耐蚀性、抗氧化性等)。
工艺性能是金属材料从冶炼到成品的生产过程中,适应各种加工工艺(如:铸造、冷热压力加工、焊接、切削加工、热处理等)应具备的性能。
金属材料的力学性能是指金属材料在载荷作用时所表现的性能。
1.1.1 强度金属材料的强度、塑性一般可以通过金属拉伸试验来测定。
1.拉伸试样图1.1.1拉伸试样与拉伸曲线2.拉伸曲线拉伸曲线反映了材料在拉伸过程中的弹性变形、塑性变形和直到拉断时的力F时,拉伸曲线Op为一直线,即试样的伸长量与载荷学特性。
当载荷不超过p成正比地增加,如果卸除载荷,试样立即恢复到原来的尺寸,即试样处于弹性变形阶段。
载荷在Fp-Fe间,试样的伸长量与载荷已不再成正比关系,但若卸除载荷,试样仍然恢复到原来的尺寸,故仍处于弹性变形阶段。
当载荷超过Fe后,试样将进一步伸长,但此时若卸除载荷,弹性变形消失,而有一部分变形当载荷增加到Fs时,试样开始明显的塑性变形,在拉伸曲线上出现了水平的或锯齿形的线段,这种现象称为屈服。
当载荷继续增加到某一最大值Fb时,试样的局部截面缩小,产生了颈缩现象。
由于试样局部截面的逐渐减少,故载荷也逐渐降低,试样就被拉断。
3.强度强度是指金属材料在载荷作用下,抵抗塑性变形和断裂的能力。
(1) 弹性极限金属材料在载荷作用下产生弹性变形时所能承受的最大应力称为弹性极限,用符号σe 表示:(2) 屈服强度金属材料开始明显塑性变形时的最低应力称为屈服强度在拉伸试验中不出现明显的屈服现象,无法确定其屈服点。
所以国标中规定,以试样塑性变形量为试样标距长度的0.2%时,材料承受的应力称为“条件屈服强度”,并以符号σ0.2 表示。
1.1.2 塑性金属材料在载荷作用下,产生塑性变形而不破坏的能力称为塑性。
第五章金属材料的主要性能1 金属材料的力学性能指的是什么性能?常用的力学性能包括哪些方面的内容?答:金属的力学性能是指在力的作用下,材料所表现出来的一系列力学性能指标,反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力。
主要包括:强度、塑性、硬度、冲击韧度和疲劳等。
2 衡量金属材料强度、塑性及韧性常用哪些性能指标?各用什么符号和单位表示?答:衡量金属材料的强度指标为:比例极限σp、弹性极限σe、弹性模量E、屈服强度σs、抗拉强度σb、屈强比σs/σb。
衡量金属材料的塑性指标为:延伸率δ、断面收缩率ψ。
衡量金属材料的韧性指标为:冲击韧性指标:冲击吸收功Ak;断裂韧性指标:断裂韧度。
3、硬度是否为金属材料独立的性能指标?它反映金属材料的什么性能?有5种材料其硬度分别为449HV、80HRB 、291HBS 、77HRA 、62 HRC,试比较五种材料硬度高低。
答:硬度不是金属材料的独立性能(它与金属抗拉强度成正比),是反映材料软硬程度的指标,表征材料表面抵抗外物压入时所引起局部塑性变形的能力。
80HRB<291HBS<449HV<77HRA <62HRC。
4、为什么说金属材料的力学性能是个可变化的性能指标?答:(1)温度的改变会影响金属的塑性,而塑性与韧性和强度、硬度有关,则改变温度会导致力学性能改变;(2)不同的承载情况会改变材料的力学性能,如很小的交变载荷也可使钢丝折断;不同的加工工艺也会改变材料的力学性能(为了使材料有不同的性能来满足我们的需要,就用了回火、淬火、正火等加工工艺)。
5、金属材料的焊接性能包括哪些内容?常用什么指标估算金属材料的焊接性能?答:金属的焊接性能:①接合性能:金属材料在一定焊接工艺条件下,形成焊接缺陷的敏感性。
②使用性能:某金属材料在一定的焊接工艺条件下其焊接接头对使用要求的适应性,也就是焊接接头承受载荷的能力。
金属的焊接性能指标:碳当量、冷裂纹敏感系数。
本文详细介绍金属材料试验时几个常用的概念,以供参考学习。
一、抗拉强度抗拉强度,表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。
符号为Rm,单位为MPa。
抗拉强度(tensile strength)试样拉断前承受的最大标称拉应力。
抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。
对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。
符号为Rm,单位为MPa。
试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。
它表示金属材料在拉力作用下抵抗破坏的最大能力。
计算公式为:σ=Fb/So式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm²。
抗拉强度( Rm)指材料在拉断前承受最大应力值。
万能材料试验机当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。
此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。
钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。
单位:N/mm2(单位面积承受的公斤力)抗拉强度:Tensile strength.抗拉强度=Eh,其中E为杨氏模量,h为材料厚度目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定!二、屈服强度屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。
金属材料的力学性能任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。
如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。
这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。
这种能力就是材料的力学性能。
金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。
钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。
在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。
金属材料的机械性能1、弹性和塑性:弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。
力和变形同时存在、同时消失。
如弹簧:弹簧靠弹性工作。
塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。
(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。
塑性变形:在外力消失后留下的这部分不可恢复的变形。
2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。
强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。
工程中常用的强度指标有屈服强度和抗拉强度。
拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。
材料在常温、静载作用下的宏观力学性能。
是确定各种工程设计参数的主要依据。
这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力-应变曲线。
对于韧性材料,有弹性和塑性两个阶段。
弹性阶段的力学性能有:比例极限:应力与应变保持成正比关系的应力最高限。
当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。
弹性极限:弹性阶段的应力最高限。
名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收塑性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。
金属力学性能测试标准金属材料作为工程领域中使用最广泛的材料之一,其力学性能的测试标准对于材料的质量控制和工程设计具有重要意义。
本文将从金属力学性能测试的目的、方法以及标准等方面进行详细介绍,以期为相关领域的研究人员和工程师提供参考。
一、目的。
金属力学性能测试的主要目的在于评估材料的力学性能,包括抗拉强度、屈服强度、延伸率、硬度等指标。
通过测试,可以了解材料在受力情况下的表现,为工程设计和材料选择提供依据。
同时,测试结果也可以用于质量控制和产品认证,确保产品符合相关标准和要求。
二、方法。
1. 抗拉强度测试。
抗拉强度是评价材料抗拉性能的重要指标。
测试时,将试样加在拉伸试验机上,施加逐渐增加的拉力,直到试样发生断裂。
根据试验过程中的拉力和变形量,可以计算出材料的抗拉强度。
2. 屈服强度测试。
屈服强度是材料在拉伸过程中发生塑性变形的临界点。
测试方法与抗拉强度测试类似,但需要额外考虑材料的流变行为,通过对应力-应变曲线的分析,确定材料的屈服强度。
3. 延伸率测试。
延伸率是评价材料延展性能的指标,通常通过拉伸试验来进行测试。
在试验中,可以观察试样的变形情况,计算出材料的延伸率,从而评估其延展性能。
4. 硬度测试。
硬度是材料抵抗外力的能力,通常用来评价材料的耐磨性和耐压性。
常见的硬度测试方法包括布氏硬度、洛氏硬度、维氏硬度等,通过在材料表面施加一定载荷,测量材料的硬度值。
三、标准。
金属力学性能测试的标准主要包括国际标准和行业标准两类。
国际标准由国际标准化组织(ISO)制定,通常适用于全球范围内的材料测试。
而行业标准则是由各个行业协会或组织制定,针对特定材料或产品的测试要求。
在进行金属力学性能测试时,应当严格遵守相关的测试标准,以确保测试结果的准确性和可比性。
同时,随着科学技术的发展,测试标准也会不断更新和完善,因此在进行测试时,应当关注最新的标准要求,以保证测试结果的有效性。
总结。
金属力学性能测试是评价材料质量和性能的重要手段,通过测试可以全面了解材料的力学性能,为工程设计和产品制造提供依据。
金属材料力学性能最常用的几项指标
硬度是评定金属材料力学性能最常用的指标之一。
对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。
就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。
硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。
硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。
对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。
由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。
金属硬度检测主要有两类试验方法。
一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。
硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。
静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。
其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。
而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。
另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。
这里包括肖氏和里氏硬度试验法。
动态试验法主要用于大型的及不可移动工件的硬度检测。
1.布氏硬度计原理
对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验
力除以压痕表面积的商来计算。
图1布氏硬度试验原理
HB =F / S ……………… (1-1)
=F / πDh ……………… (1-2)
=……………… (1-3)
式中:F ——试验力,N;
S ——压痕表面积,mm;
D ——球压头直径,mm;
h ——压痕深度, mm;
d ——压痕直径,mm
布氏硬度计的特点:
布氏硬度检测的优点是其硬度代表性好,由于通常采用的是10 mm直径球压头,3000kg试验力,其压痕面积较大,能反映较大范围内金属各组成相综合影响的平均值,而不受个别组成相及微小不均匀度的影响,因此特别适用于测定灰铸铁、轴承合金和具有粗大晶粒的金属材料。
它的试验数据稳定,重现性好,精度高于洛氏,低于维氏。
此外布氏硬度值与抗拉强度值之间存在较好的对应关系。
布氏硬度试验的缺点是压痕较大,成品检验有困难,试验过程比洛氏硬度试验复杂,测量操作和压痕测量都比较费时,并且由于压痕边缘的凸起、凹陷或圆滑过渡都会使压痕直径的测量产生较大误差,因此要求操作者具有熟练的试验技术和丰富经验,一般要求由专门的实验员操作。
布氏硬度与抗拉强度的关系
由于布氏硬度试验能够反映出试样较大范围内的综合性能,因此布氏硬度与材料的其他机械性能关系密切,尤其是与抗拉强度存在近似的换算关系:σ
=K·HB ……………… (1-6)
b
式中:σ
b
—抗拉强度值,MN/m2;
K—常数,不同材料有不同的数值。
通过测试布氏硬度可以间接得到材料的抗拉强度。
这一点在生产实际中具有重大意义。
可以通过测量硬度的方法得到近似的强度值,这样既可以提高工作效率,又可以节省材料。
2.洛氏硬度计原理
在规定条件下,将压头(金刚石圆锥、钢球或球)分2个步骤压入试样表面。
卸除主试验力后,在初试验力下测量压痕残余深度h。
以压痕残余深度h代表硬度的高低。
洛氏硬度试验原理如图2-1所示。
硬质合金
1—在初始试验力F
0下的压入深度;2—在总试验力F
+F
1
下的压入深度;3—
去除主试验力F
1
后的弹性回复深度;4—残余压入深度h;5—试样表面;6—测量基准面;7—压头位置
洛氏硬度试验分为2种,一种是普通洛氏硬度试验,一种是表面洛氏硬度试验。
洛氏硬度试验采用1200金刚石圆锥和1.588mm、3.175mm钢球三种压头,采用60kg、100kg、150kg三种试验力,它们共有九种组合,对应于洛氏硬度的九个标尺,即HRA、HRB、HRC、HRD、HRE、HRF、HRG、HRH、HRK。
表面洛氏硬度试验采用1200金刚石圆锥和1.588mm钢球2种压头,采用15kg、30kg、45kg三种试验力,它们共有六种组合,对应于表面洛氏的六个标尺,即HR15N、HR30N、HR45N、HR15T、HR30T、HR45T。