第3课时 由三视图确定几何体的表面积或体积(教案)
- 格式:doc
- 大小:177.50 KB
- 文档页数:4
初中数学人教版九年级下册同步教学设计29-2 第3课时《由三视图确定几何体的表面积或体积》一. 教材分析人教版九年级下册第3课时《由三视图确定几何体的表面积或体积》的内容,是在学生已经掌握了立体图形的概念、性质和相互转化等知识的基础上进行授课的。
本节课主要让学生通过三视图来确定几何体的表面积或体积,培养学生的空间想象能力和几何思维能力。
教材通过具体的例题和练习,使学生掌握由三视图确定几何体的表面积或体积的方法,提高学生解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和几何思维能力,对立体图形有一定的认识。
但是,由于个体差异,学生在掌握知识的基础上还是存在一定的差异。
因此,在教学过程中,要关注全体学生,针对不同层次的学生进行有针对性的教学,激发学生的学习兴趣,提高学生的学习积极性。
三. 教学目标1.知识与技能目标:使学生掌握由三视图确定几何体的表面积或体积的方法,提高学生的空间想象能力和几何思维能力。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的合作意识和创新能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,体验成功的喜悦,培养学生的自信心。
四. 教学重难点1.教学重点:使学生掌握由三视图确定几何体的表面积或体积的方法。
2.教学难点:如何培养学生的空间想象能力和几何思维能力。
五. 教学方法1.情境教学法:通过设置具体的问题情境,引导学生观察、思考、交流,激发学生的学习兴趣。
2.启发式教学法:教师提出问题,引导学生独立思考,培养学生解决问题的能力。
3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。
六. 教学准备1.教具准备:多媒体课件、立体模型、黑板、粉笔等。
2.学具准备:学生每人准备一个立体模型,以便进行观察和操作。
七. 教学过程1.导入(5分钟)教师通过多媒体课件展示不同的立体图形,引导学生观察并思考:如何通过观察一个立体图形的三视图,来确定它的表面积或体积?从而引出本节课的主题。
第二十九章投影与视图29.2 三视图课时3 三视图与展开图【知识与技能】1.学会根据物体的三视图描述出几何体的基本形状或实物原型.2.体会三视图与实物原型之间的关系.【过程与方法】1.经历探索由简单的几何体的三视图还原几何体的过程,进一步发展空间想象能力.2.通过观察探究等活动使学生能根据物体的三视图还原出物体的形状,进一步认识物体与其三视图之间的关系.【情感态度与价值观】1.使学生学会关注生活中有关投影的数学问题,提高数学的应用意识.2.在探究三视图向立体图形转化的过程中,使学生感受数学的和谐美,培养学生动手实践能力,发展空间想象能力.3.通过学生对“三视图”的学习,逐步养成严谨、细致、规范的行为习惯,同时激发学生热爱生活、热爱数学的情感.根据物体的三视图描述出几何体的基本形状或实物原型.根据物体的三视图想象几何体的形状.多媒体课件.导入一:【复习提问】1.画一个立体图形的三视图时要注意什么?2.说一说直三棱柱、圆柱、圆锥、球的三视图.【师生活动】教师提出问题,学生回顾上节课内容并作出回答,教师点评.导入二:【课件展示】动手操作:下图是一根钢管,画出它的三视图.【师生活动】学生独立完成后小组交流答案,小组代表板演,教师点评,最后强调易错点:画图时规定,看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.解:如图是钢管的三视图,其中的虚线表示钢管的内壁.[设计意图]通过有针对性的复习引入新课,让学生初步了解研究三视图是生活的需要,激发学生的学习兴趣,同时为本节课的学习做好铺垫.[过渡语]上节课我们讨论了由立体图形(实物)画出三视图,那么由三视图能否想象出立体图形(实物)呢?这就是我们这节课要探究的内容.一、观察体验欣赏机械制图中三视图与对应的立体图形的图片,说说三视图与对应的立体图形有怎样的关系.【师生活动】教师出示图片,学生观察,探讨二者之间的关系,初步感知由图想物的过程.[设计意图]学生通过观察探讨三视图与立体图形之间的对应关系,培养学生的空间观念,为新课的探索做好铺垫,同时通过认识三视图与其对应的立体图形在工件生产中的作用,使学生感受知识的应用价值,激发学生学习数学的兴趣.二、探究新知如图,分别根据三视图说出立体图形的名称.思路一学生通过自主学习解答.【师生活动】学生独立思考后小组合作交流,尝试画出立体图形,板书答案,教师巡视过程中帮助有困难的学生,点评结果,强调注意事项.解:(1)从三个方向看立体图形,视图都是矩形,可以想象出这个立体图形是长方体,如图(1).(2)从正面、侧面看立体图形,视图都是等腰三角形,从上面看,视图是带圆心的圆,可以想象这个立体图形是圆锥,如图(2).【归纳】由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.思路二教师引导分析解答.【思考】(1)长方体与圆锥的三视图分别是什么形状?(2)如果一个物体的三个视图均是长方形,那么这个物体是什么形状?(3)如果一个物体的主视图和左视图是等腰三角形,俯视图是带圆心的圆,那么这个物体的形状是什么?(4)由三视图想象几何体,分别通过观察哪个视图确定几何体的前面、左面和上面?【师生活动】学生在教师提出的问题下思考回答,然后尝试画出立体图形,教师及时点评,最后归纳总结.解:(同思路一)【归纳】(同思路一)根据物体的三视图(如图),描述物体的形状.教师引导分析:由主视图可知,物体正面是;由俯视图可知,由上向下看物体有两个面的视图是,且有一条棱(中间的实线表示)可见到,两条棱(虚线表示)被遮挡;由左视图知,物体的左侧有两个面的视图是,且有一条棱(中间的实线表示)可见到.综合各视图可知,物体的形状是. 【师生活动】教师引导学生总结由图想物的基本方法,学生结合例题小组讨论交流,师生共同归纳总结.解:物体是正五棱柱形状的,如下图.【追问】仔细观察以上两题的解题思路,由视图还原立体图形时应注意什么? 【师生活动】学生独立思考后小组合作交流,师生共同归纳结论.【结论】主视图反映物体的长和高,主要提供正面的形状;左视图反映物体的高和宽,主要提供左侧面的形状;俯视图反映物体的长和宽,主要提供上面的形状,由俯视图看不出物体的高.某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图).请按照三视图确定制作每个密封罐所需钢板的面积.(图中尺寸单位:mm)教师引导分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立体图形的表面展开成一个平面图形——展开图.在实际生产中,三视图和展开图往往结合在一起使用.解决本题的思路是先由三视图想象出密封罐的形状,再进一步画出展开图,从而计算面积.【思考】(1)根据三视图,该物体的形状是什么?(2)该立体图形的展开图是什么?(3)如何求立体图形展开图的面积?(1)【师生活动】教师引导学生分析解题思路,学生思考问题后独立完成,小组内交流答案,教师巡视过程中帮助有困难的学生,对学生的答案进行点评,规范解题格式.解:由三视图可知,密封罐的形状是正六棱柱(如图(1)).密封罐的高为50mm,底面正六边形的直径为100mm,边长为50mm,如图(2)是它的展开图.(2)由展开图可知,制作一个密封罐所需钢板的面积为:6×50×50+2×6××50×50sin60°=6×502×≈27990(mm2).[设计意图]学生在教师的引导下分析、观察、思考、想象、讨论,由三视图得出对应的实物,进一步掌握由图想物的技能,培养学生的空间想象能力,发展学生的空间观念,同时小组合作交流,提高学生与他人合作的能力.例3是例1、例2的拓展,由图到物,再由物到图,提高学生分析问题、解决问题的能力.[知识拓展](1)由一个视图不能确定物体的空间形状,根据三视图描述几何体形状或实物原型时,必须将各视图对照起来看.(2)一个摆好的几何体的三视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性.例如,正放的正方体的主视图是正方形,但主视图是正方形的几何体还可能是长方体、圆柱等.1.由三视图到立体图形.(1)由一个视图不能确定物体的空间形状,根据三视图描述几何体形状时,必须将各视图对照起来看.(2)一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体或实物时,它有多种可能.(3)对于较复杂的物体,由三视图想象物体的原型时,应搞清三个视图之间的前后、左右、上下的对应关系.2.由三视图还原立体图形时应注意:(1)主视图反映物体的长和高,主要提供正面的形状;(2)左视图反映物体的高和宽,主要提供左侧面的形状;(3)俯视图反映物体的长和宽,主要提供上面的形状,由俯视图看不出物体的高.第2课时1.观察体验2.探究新知例1例2例3一、教材作业二、课后作业【基础巩固】1.如图是某几何体的三视图,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥2.如图是某几何体的三视图,则该几何体的形状是()A.长方体B.圆锥C.圆柱D.三棱柱3.一个几何体的三视图如图,则该几何体可能是()4.已知一个正棱柱的俯视图和左视图如下图,则其主视图是()5.某几何体的三视图如图,则组成该几何体的小正方体的个数是()A.3B.4C.5D.66.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A.8桶B.9桶C.10桶D.11桶7.某几何体的三视图如图,则组成该几何体共用了个小方块.8.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图(单位:mm),按照三视图制作每个密封罐所需钢板的面积至少是.9.下图是由一些小正方体搭成的几何体的俯视图,小正方形上的数字表示在该位置的小正方体的个数,试画出它的主视图和左视图.【能力提升】10.如图是由一些大小相同的小正方体组成的几何体的主视图和左视图,则组成这个几何体的小正方体的个数可能是.11.如图是一个几何体的三视图,其中主视图、左视图都是腰长为13cm,底边长为10cm的等腰三角形,则这个几何体的侧面积是cm2.12.如图是一个几何体的三视图,则这个几何体的表面积是.13.已知某几何体的三视图如图,求该几何体的表面积.【拓展探究】14.如图是一个几何体的三视图.(单位:厘米)(1)写出这个几何体的名称;(2)根据图中数据计算这个几何体的表面积.【答案与解析】1.C解析:∵三视图中有两个视图为矩形,另外一个视图的形状为圆,∴这个几何体为圆柱.故选C.2.D解析:根据主视图和左视图为矩形,俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.3.C解析:主视图和左视图上边是等腰三角形,下边是矩形,俯视图为带圆心的圆,所以该几何体上边是圆锥,下边是圆柱.故选C.4.D解析:根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有两条实线,一条虚线.故选D.5.B解析:首先可以判断该几何体的底层共有3个小正方体,而根据主视图与左视图可知第二层有1个小正方体,故共有4个小正方体.故选B.6.B解析:根据三视图易得第一层有4桶,第二层最少有3桶,第三层有2桶,所以至少共有9桶.故选B.7.7解析:观察该几何体的三视图发现该几何体共有三层,第一层有三个,第二层有两个,第三层也有两个,故该几何体共有3+2+2=7(个)小方块.8.20000πmm2解析:由三视图可知茶叶罐的形状为圆柱,并且茶叶罐的底面直径2R为100mm,高H为150mm,每个密封罐所需钢板的最少面积即为该圆柱体的表面积,S =2πR2+表2πRH=2π×502+2π×50×150=20000π(mm2),故制作每个密封罐所需钢板的面积至少为20000πmm2.9.解:如图.10.3或4或5解析:根据主视图与左视图知,第一行的正方体有1(只有右边有)或2(左右都有)个,第二行的正方体可能有2(左边有)或3(左右都有)个,1+2=3,1+3=4,2+2=4,2+3=5,故可能有3,4,5个.11.65π解析:依题意知母线长l=13,底面半径r=5,则由圆锥的侧面积公式得S=πrl=π·5·13=65π.12.π+3π解析:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是2,高是2,∴圆锥的母线长为=,∴圆锥的侧面积是π×1×=π;下面是一个圆柱,圆柱的底面直径是2,高是1,∴圆柱表现出来的表面积是π×12+2π×1×1=3π,∴空间组合体的表面积是π+3π. 13.解:由三视图可知该几何体的下面是长、宽、高分别为4,4,2的长方体,上面为四棱锥,且高是2,底面为边长是4的正方形,∴S表面积=4×2×4+4×4+4××4×2=48+16.14.解:(1)根据三视图的知识,主视图以及左视图都是等腰三角形,俯视图为带圆心的圆,故可判断该几何体是圆锥.(2)表面积S=S扇形+S圆=πrl+πr2=12π+4π=16π(平方厘米),即该几何体的表面积为16π平方厘米.本节课课前的复习提问,为本节课的学习做好铺垫,以生活实例导入新课,让学生初步了解三视图是生活的需要,激发学生学习兴趣.探究已知三视图和实物之间的关系,学生经过观察、讨论,初步了解三视图与物体之间的对应关系,然后探究新知环节,以课本三个层层递进的例题展开,以学生活动为主,通过观察、思考、讨论、操作、归纳等数学活动,探究出由三视图得到立体图形的一般思路和方法,体现了学生在课堂上的主体作用.学生在课堂上思维活跃,积极发言,经历知识的形成过程,体验成功的快乐,达到提高能力的目的.本节课的重点是由三视图还原立体图形,认识三视图与立体图形之间的关系,教学过程中注重了教师的引导和学生的主体作用在课堂上的展示,重点设计在自主探究、合作交流等活动上,过于追求课堂形式,学生数学能力尤其是空间想象能力,没有得到很好的发挥,课堂形式是为了让学生更好地掌握知识、提高能力,所以在以后的教学中要尽量让两者有机结合,重在通过课堂学习提高学生能力.本节课是上节课由立体图形画三视图的一个延续,主要探究由三视图画对应的立体图形,重点培养学生的空间想象能力,所以在教学设计中,复习上节课知识,为本节课的学习做好铺垫,然后从生活实例的三视图与实物对应到由三视图画出立体图形,再到由三视图求立体图形的表面积,由浅入深,由易到难引导学生观察、分析、讨论、归纳,得出由图到物的一般思路和方法,课堂上注重学生的参与性,多设计数学教学活动,让学生经历知识的形成过程,从而促进数学能力的提升.。
本章小结(2)——三视图与表面积体积的计算课前准备:《必修二》导学案,另带铅笔、圆规、直尺等作图工具,当然还有学习的热情。
【学习目标】1.进一步巩固三视图的相关知识;2.熟练掌握常见的表面积、体积公式.3.利用三视图抽象出直观图;(难点)4. 根据三视图进行表面积和体积的计算.(重点)5.培养空间想象能力、准确计算能力;6.享受探索知识的乐趣.【自主学习案】一、重要知识梳理1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=S圆锥侧=S圆台侧=2.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=锥体(棱锥和圆锥)S表面积=S侧+S底V=台体(棱台和圆台)S表面积=S侧+S上+S下V=球S=V=【合作探究案】二、探究1:三视图的相关知识1.画出该几何体的三视图.探究2:三视图与体积的计算2.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,求该几何体的体积.探究3:三视图与表面积的计算3.若某空间几何体的三视图如图所示,求该几何体的表面积.综合提升:简单几何体的综合问题如图是一个几何体的三视图,若它的体积是3,则a=________.【拓展提升案】1.补全该几何体的三视图:2..如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,求该器皿的表面积.【我的收获】1.知识方面.2.数学思想方法.俯视图侧视图正视图。
29.2 三视图第3课时由三视图确定几何体的面积或体积【教学目标】1.能根据三视图求几何体的侧面积、表面积和体积等;(重点)2.解决实际生活中与面积、体积等方面有关的实际问题.(难点)【教学过程】一、情境导入已知某混凝土管道的三视图,你能根据三视图确定浇灌每段这种管道所需混凝土的体积吗(π=3.14)?二、合作探究探究点:由三视图确定几何体的面积或体积【类型一】由三视图求几何体的侧面积已知如图为一几何体的三视图:(1)写出这个几何体的名称;(2)若从正面看的长为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π).解析:(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱;(2)根据告诉的几何体的尺寸确定该几何体的侧面积即可.解:(1)该几何体是圆柱;(2)∵从正面看的长为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面直径为4cm,高为10cm,∴该几何体的侧面积为2πrh=2π×2×10=40π(cm2).方法总结:解题时要明确侧面积的计算方法,即圆柱侧面积=底面周长×圆柱高.【类型二】由三视图求几何体的表面积如图是两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个几何体的表面积.解析:先由三视图得到两个长方体的长,宽,高,再分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面面积即可.解:根据三视图可得:上面的长方体长6mm,高6mm,宽3mm,下面的长方体长10mm,宽8mm,高3mm,这个几何体的表面积为2×(3×8+3×10+8×10)+2×(3×6+6×6)=268+108=376(mm2).答:这个几何体的表面积是376mm2.方法总结:由三视图求几何体的表面积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律—“长对正,高平齐,宽相等”,确定几何体的长、宽、高等相关数据值,再根据相关公式计算几何体的面积.注意:求解组合体的表面积时重叠部分不应计算在内.【类型三】由三视图求几何体的体积某一空间图形的三视图如图所示,其中主视图是半径为1的半圆以及高为1的矩形;左视图是半径为1的四分之一圆以及高为1的矩形;俯视图是半径为1的圆,求此图形的体积(参考公式:V球=43πR3).解析:由已知中的三视图,我们可以判断出该几何体的形状为下部是底面半径为1,高为1的圆柱,上部是半径为1的14球组成的组成体,代入圆柱体积公式和球的体积公式,即可得到答案.解:由已知可得该几何体是一个下部为圆柱,上部为14球的组合体.由三视图可得,下部圆柱的底面半径为1,高为1,则V圆柱=π,上部14球的半径为1,则V 14球=13π,故此几何体的体积为错误!.方法总结:由三视图求几何体的体积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律“长对正,高平齐,宽相等”确定几何体的长、宽、高等相关数据值.再根据相关公式计算几何体各部分的体积并求和.【类型四】由三视图确定几何体面积或体积的实际应用杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克防锈漆(铁的密度为7.8g/cm3,1kg防锈漆可以涂4m2的铁器面,三视图单位为cm)?解析:从主视图和左视图可以看出这个几何体是由前后两部分组成的,呈一个T字形状.故可以把该几何体看成两个长方体来计算.解:∵工件的体积为(30×10+10×10)×20=8000cm3,∴重量为8000×7.8=62400(g)=62.4(kg),∴铸造5000件工件需生铁5000×62.4=312000(kg)=312(t).∵一件工件的表面积为2×(30×20+20×20+10×30+10×10)=2800cm2=0.28m2.∴涂完全部工件需防锈漆5000×0.28÷4=350(kg).方法总结:本题主要考查了由三视图确定几何体和求几何体的面积;关键是得到几何体的形状,得到所求的等量关系的相对应的值.三、板书设计1.由三视图求几何体的侧面积;2.由三视图求几何体的表面积;3.由三视图求几何体的体积.【教学反思】本节重在引导学生总结解决此类问题的方法和规律,探究其实质.在小组讨论的过程中,学生了解了三视图中相关数据的对应关系,即“长对正,高平齐,宽相等”,找到了解决问题的根本,通过具体的例题,让学生进行练习,巩固学习效果.29.2 三视图第3课时由三视图确定几何体的面积或体积【学习目标】1、学会根据物体的三视图描述出几何体的基本形状或实物原型。
第3课时由三视图确定几何体的表面积或体积【知识与技能】熟练掌握已知空间几何体的三视图求其表面积和体积的方法.【过程与方法】1.通过空间几何体三视图的应用,培养学生的创新精神和探究能力.2.通过研究性学习,培养学生的整体性思维.【情感态度】通过研究三视图,研究我国著名建筑物的三视图研究,培养学生的爱国情结. 【教学重点】观察,实践,猜想和归纳的探究过程.【教学难点】如何引导学生进行合理的探究.一、复习提问1.如何求空间几何体的表面积和体积(例如:球,棱柱,棱台等);2.三视图与其几何体如何转化.二、思考探究,获取新知如图是一个几何体的三视图,已知左视图是一个等边三角形,根据图中尺寸(单位:m),求该几何体的面积和体积.解该几何体是正三棱柱,由正视图知正三棱柱的高为3cm,底面三角形的高为3cm.则底面边长为2cm,故S底面面积=)2=3÷cm(232S侧面面积=2×3×3=18 (cm2)故这个几何体的表面积S = 2S底面面积十S侧面面积=)2+183(2cm三棱柱的体积是V=)3=3⨯cm(333【教学说明】空间几何体的表面积是几何体表面的面积,它表示几何体表面的大小,体积是几何体所占空间的大小;先将直观图的各个要素弄清楚,然后再代公式进行计算.求空间几何体的表面积是将几何体的各个面的面积相加求得;求体积是将几何体各个部分的体积相加求得,那么请同学们动脑筋想一想,假设没有给出几何体的直观图,只是给出一个几何体的三视图,我们怎样解决求该几何体的表面积和体积呢?此时应首先将该三视图转化为几何体的直观图,然后弄清给出直观图的各个要素,再代公式进行计算思考如何求出四棱台的表面积和体积?请大家回想一下,在解答的过程中,容易出错的地方是什么(让学生思考). 【总结归纳】求组合几何体的表面积的时候容易出错.三、典例精析、掌握新知例1 长方体的主视图与俯视图如图所示,则这个长方体的体积是()A.52B.32C.24D.9【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、3、2,因此这个长方体的体积为4×2×3 = 24(平方单位)【答案】C【教学说明】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.例2 将棱长是1cm的小正方体组成如图所示的几何体,那么这个几何体的表面积是()A. 36 cm2B. 33 cm2C. 30 cm2D. 27 cm2【分析】算表面积应该从六个方向去计算,不要忽视了底面.【答案】A四、师生互动,课堂小结通过这节课的探究学习,发现由三视图求几何体的表面积和体积,要先将三视图转化为其几何体的直观图,分清楚直观图中的几何要素,然后再代公式进行计算;特别要分清几何体的侧面积与表面积;平时多动脑筋,挖掘与题目相关联的知识点.1.布置作业:从教材Pm〜1。
⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 ⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 1教学⺫标 1.知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积的求法. 2.能运⽤公式求解柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 2学情分析 通过学习空间⼏何体的结构特征,空间⼏何体的三视图和直观图,了解了空间⼏何体和平⾯图形之间的关系,从中反映出⼀个思想⽅法,即平⾯图形和空间⼏何体的互化,尤其是空间⼏何问题向平⾯问题的转化。
该部分内容中有些是学⽣已经熟悉的,在解决这些问题的过程中,⾸先要对学⽣已有的知识进⾏再认识,提炼出解决问题的⼀般思想——化归的思想,总结出⼀般的求解⽅法,在此基础上通过类⽐获得解决新问题的思路,通过化归解决问题,深化对化归、类⽐等思想⽅法的应⽤。
3重点难点 重点:知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积公式。
难点:会求柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 4教学过程 4.1 第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? 1.3 空间⼏何体的表⾯积与体积 课时设计课堂实录 1.3 空间⼏何体的表⾯积与体积 1第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? ⼩编推荐各科教学设计: 、、、、、、、、、、、、 ⼩编推荐各科教学设计: 、、、、、、、、、、、、。
由三视图确定几何体的体积和面积能量储备先根据三种视图想象物体的形状,再把所想象的物体的三种视图画出来,如果所想象的物体的三种视图与已知的三种视图完全一致,就说明想象出的物体形状是正确的。
通关宝典★ 基础方法点方法点:解决此类问题的方法是先根据三种视图的主要轮廓线推测几何体的具体形状,再根据几何体的相关性质对问题进行求解例1:如图5221所示是一个包装盒的三种视图,则这个包装盒的体积是( ) A .1 000π cm 3 B .1 500π cm 3C .2 000π cm 3D .4 000π cm 3解析:根据三种视图不难判断出包装盒是圆柱,并且圆柱的高为20cm ,底面直径为20cm ,根据圆柱的体积公式求解即可。
圆柱的底面积为π·(202)2=100π(cm 2), 则圆柱的体积为100π×20=2 000π(cm 3)。
答案:C ,例2:一个长方体的三视图如图539所示,则这个长方体的体积为( )A .30B .15C .45D .20解析:观察图形可知,该长方体的长为3,宽为2,高为5,故此长方体的体积为3×2×5=30.答案:A★★易混易误点易混易误点: 确定几何体形状例:在工地上,工人师傅用小推车运送砂浆,已知小推车(如图4215所示)车厢的主视图和左视图如图4216所示,请你算一算,这辆小推车一趟能运多少体积的砂浆?解:梯形面积为(100+50)÷2×40=3 000(cm²),3000×50=150000(cm³)=0.15(m³)答:这辆小推车一趟能运0.15 m³的砂浆.分析:根据题图中的数据及实物图,可以把小车车厢看作是前侧面(注意标注的方向)与后侧面都是梯形(上底长100 cm、下底长50 cm、高40 cm)、高为50 cm的四棱柱.蓄势待发考前攻略三视图的计算常与侧面展开图、面积、体积等内容联系起来,一般是根据视图所提供的数据计算原几何体的体积或面积.完胜关卡。
第3课时由三视图确定几何体的表面积或体积
【知识与技能】
熟练掌握已知空间几何体的三视图求其表面积和体积的方法.
【过程与方法】
1.通过空间几何体三视图的应用,培养学生的创新精神和探究能力.
2.通过研究性学习,培养学生的整体性思维.
【情感态度】
通过研究三视图,研究我国著名建筑物的三视图研究,培养学生的爱国情结. 【教学重点】
观察,实践,猜想和归纳的探究过程.
【教学难点】
如何引导学生进行合理的探究.
一、复习提问
1.如何求空间几何体的表面积和体积(例如:球,棱柱,棱台等);
2.三视图与其几何体如何转化.
二、思考探究,获取新知
如图是一个几何体的三视图,已知左视图是一个等边三角形,根据图中尺寸(单位:m),求该几何体的面积和体积.
解该几何体是正三棱柱,由正视图知正三棱柱的高为3cm,底面三角形的高为3cm.则底面边长为2cm,故S底面面积=)
2=
3
÷
cm
(2
3
2
S侧面面积=2×3×3=18 (cm2)
故这个几何体的表面积S = 2S底面面积十S侧面面积=)
2+
18
3
(2
cm
三棱柱的体积是V=)
3=
3
⨯
cm
(3
3
3
【教学说明】空间几何体的表面积是几何体表面的面积,它表示几何体表面的大小,体积是几何体所占空间的大小;先将直观图的各个要素弄清楚,然后再代公式进行计算.
求空间几何体的表面积是将几何体的各个面的面积相加求得;求体积是将几何体各个部分的体积相加求得,那么请同学们动脑筋想一想,假设没有给出几何体的直观图,只是给出一个几何体的三视图,我们怎样解决求该几何体的表面积和体积呢?此时应首先将该三视图转化为几何体的直观图,然后弄清给出直观图的各个要素,再代公式进行计算
思考
如何求出四棱台的表面积和体积?
请大家回想一下,在解答的过程中,容易出错的地方是什么(让学生思考). 【总结归纳】求组合几何体的表面积的时候容易出错.
三、典例精析、掌握新知
例1 长方体的主视图与俯视图如图所示,则这个长方体的体积是()
A.52
B.32
C.24
D.9
【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、3、2,因此这个长方体的体积为4×2×3 = 24(平方单位)
【答案】C
【教学说明】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.
例2 将棱长是1cm的小正方体组成如图所示的几何体,那么这个几何体的表面积是()
A. 36 cm2
B. 33 cm2
C. 30 cm2
D. 27 cm2
【分析】算表面积应该从六个方向去计算,不要忽视了底面.
【答案】A
四、师生互动,课堂小结
通过这节课的探究学习,发现由三视图求几何体的表面积和体积,要先将三视
图转化为其几何体的直观图,分清楚直观图中的几何要素,然后再代公式进行计算;特别要分清几何体的侧面积与表面积;平时多动脑筋,挖掘与题目相关联的知识点.
1.布置作业:从教材Pm〜1。
3习题29. 2中选取.
2.完成练习册中本课时的练习.
本节课以学生自主动手为主,教师引导学生进行合理的探究,培养学生的空间想象能力和整体性思维.。