金属粉末制取方法概述
- 格式:pdf
- 大小:275.80 KB
- 文档页数:3
制备金属粉末的方法
制备金属粉末的方法主要有以下几种:
1. 机械研磨法:将金属块通过球磨机、环磨机等设备进行研磨,使其破碎成粉末。
2. 化学还原法:通过将金属盐溶液与还原剂反应,使金属离子还原为金属粉末。
3. 电解法:将金属盐溶液用作电解质,通过电解反应将金属离子还原为金属粉末。
4. 车削法:使用机床将金属块切削成细小的金属粉末。
5. 雾化法:将金属块加热至熔点,然后通过高速气流将熔融金属喷雾,使其迅速冷却成粉末。
这些方法根据金属的性质和需求的粉末质量可选择不同的方法进行制备。
镍金属粉末-概述说明以及解释1.引言1.1 概述镍金属粉末是指由纯度高的镍金属材料经过一系列制备工艺加工得到的微米级细粉末。
在近年来,随着先进制造技术的迅速发展和需求的增加,镍金属粉末逐渐成为一种重要的功能材料。
镍金属粉末的制备方法多种多样,常见的有化学还原法、机械研磨法、湿法沉淀法等。
这些制备方法能够控制粉末的颗粒大小和形貌,提高其纯度和活性,从而满足不同应用领域的需求。
镍金属粉末的应用领域广泛。
由于其良好的导电性、耐腐蚀性和热稳定性,镍金属粉末广泛应用于电子工业、储能设备、汽车制造等领域。
同时,在催化剂、电极材料、磁性材料等领域也有重要的应用。
镍金属粉末具有一系列独特的特性和性能。
首先,镍金属粉末具有优异的导电性和热导率,能够有效地传导电流和热量。
其次,镍金属粉末具有良好的耐腐蚀性,能够抵抗各种腐蚀介质的侵蚀。
此外,镍金属粉末还具有优异的磁性能和可塑性,可用于制备磁性材料和复合材料。
总的来说,镍金属粉末是一种多功能的材料,在不同的领域具有广泛的应用前景。
本文将重点介绍镍金属粉末的制备方法、应用领域以及特性和性能,旨在为读者提供一份全面了解和掌握镍金属粉末的文章。
1.2 文章结构文章结构部分:本文主要分为引言、正文和结论三个部分。
引言部分主要从概述、文章结构和目的三个方面介绍了本文的背景和目标。
正文部分包括了镍金属粉末的制备方法、应用领域以及特性和性能三个方面的内容。
其中,制备方法部分介绍了不同的方法和工艺,包括化学法、物理法和机械合金化等;应用领域部分探讨了镍金属粉末在电子、建材、航空等领域的广泛应用;特性和性能部分对镍金属粉末的物理性质、化学性质、热稳定性等进行了详细描述。
结论部分主要对前文进行总结,并对镍金属粉末的未来发展进行展望。
在总结部分,对于镍金属粉末的制备方法、应用领域和特性性能进行了综合评述;在展望部分,对镍金属粉末的进一步研究方向和应用前景进行了分析和展望,并对其未来发展提出了一些建议。
粉末冶金工艺综述一、前述粉末冶金是一种制取金属粉末,以及采用成形和烧结工艺将金属粉末(或金属粉末与非金属粉末的混合物)制成制品的工艺技术。
粉末冶金工艺的基本工序是:⑴原料粉末的制取和准备(粉末可以是纯金属或它的合金、非金属、金属与非金属的化合物以及其它各种化合物),即混粉;⑵将金属粉末制成所需形状的坯块,社内称成形;⑶将坯块在物料主要组元熔点以下的温度进行烧结,使制品具有最终的物理、化学和力学性能。
除此以外,根据制品的结构、精度与性能要求,后续工艺还有精整、机加工、热处理及表面处理等。
粉末冶金技术的历史很长久,早在公元前3000年,埃及人就已经使用了铁粉,而近代粉末冶金技术是从库利奇为爱迪生研制钨灯丝开始。
近代粉末冶金技术的发展中有三个重要标志:一是克服了难熔金属(如钨、钼等)熔铸过程中产生的困难,如电灯钨丝和硬质合金的出现;二是多孔含油轴承的研制成功,继之是机械零件的发展,发挥了粉末冶金少、无切屑的特点;三是向新材料、新工艺发展。
粉末冶金技术已得到愈来愈广泛的应用,这是基于粉末冶金本身的特点所决定的。
首先,粉末冶金在生产零部件时成本低。
汽车制造业是粉末冶金的一个大的应用领域,它涉及到零部件的生产率、公差和自动化等方面。
粉末冶金方法与铸造方法相对照,精密度和成本这两方面是非常有竞争力的。
铸造中的一些问题,如偏析、机加工量大等用粉末冶金方法则可能被避免,或者减少。
其次,有些独特的性能或者显微组织无可非议的只能由粉末冶金方法来实现。
例如,多孔材料、氧化物弥散强化合金、陶瓷和硬质合金等。
最后,有一些材料用其它工艺来制取是十分困难的,例如,活性金属、高熔点金属等。
一般来说,粉末冶金方法的经济效果只有在大规模生产时才能表现出来。
因为粉末成形所需的模具制作加工比较困难,而且较为昂贵。
粉末冶金工艺的不足之处是粉末成本较高,制品的大小和形状受到一定的限制,烧结件的韧性较差等等。
二、粉末的制取2.1粉末制取方法概述粉末冶金的生产工艺是从制取原材料——粉末开始的。
第一章粉末的制取一.粉末制取的方法:机械粉碎法、雾化法、还原法、气相沉积法、液相沉积法、电解法、水热法、纳米及超细粉末的制备技术二.机械粉碎法●固态金属的机械粉碎既可以是一种独立的制粉方法,又可以是其他方法的补充。
●机械粉碎是靠压碎、击碎和磨削等作用,将块状金属、合金或化合物机械地粉碎为粉末的。
●物料最终的粉碎程度:粗碎、细碎✓压碎:碾碎、辊轧、鄂式破碎✓击碎:锤磨✓击碎和磨削多方面作用:球磨、棒磨等机械研磨比较适用于脆性材料,涡旋研磨、冷气流粉碎多用于制取塑性金属或合金的粉末。
1.机械研磨法●研磨的任务(作用)包括:减小或增大粉末粒度;合金化;固态混料;改善、转变或改变材料的性能等。
●研磨后的金属粉末会有加工硬化、形状不规则以及出现流动性变坏和团块等特征。
(1)研磨规律●研磨是粉末冶金工艺中耗时最长、生产效率最低的一个工序。
研磨过程中作用在颗粒材料上的力:冲击、磨耗、剪切以及压缩✓冲击:是一个颗粒体被另一个颗粒体瞬时撞击,这时,两个颗粒体可能都在运动,或者一个颗粒体是静止的。
✓磨耗:由于两物体间的摩擦作用产生磨损碎屑或颗粒。
(较脆弱材料和耐磨性极低的材料)✓剪切:用切断法将颗粒断裂成单个颗粒,而同时产生很少的细屑。
压缩:缓慢施加压力于颗粒体上,压碎或挤压颗粒材料。
(2)影响球磨的因素●决定因素:装料比、球磨筒尺寸、球磨机转速、研磨时间、球磨体与被研磨物料的比例、研磨介质、球体直径等。
●球磨筒尺寸的影响:球筒直径D与长度L之比D/L:D/L>3 硬而脆的材料D/L<3 塑性材料2.介质的影响:物料除可以在空气介质中干磨外,还可以在液体介质中进行湿磨。
✓液体介质:水、酒精、汽油、丙酮等。
✓湿磨的特点:①可减少金属的氧化;②防止金属颗粒的再聚集长大;③减少物料的成分偏析;④防止粉末飞扬,改善劳动环境;⑤湿磨会增加辅助工序,如过滤、干燥等。
3.球体大小对物料的粉碎有很大的影响。
一般是把大小不同的球配合使用。
粉末冶金的方法粉末冶金听起来就很有趣呢!它是一种制造金属制品的特别方法哦。
粉末冶金的第一步就是制取粉末啦。
这就像做菜要先准备食材一样。
制取粉末的方法有好多。
比如说机械法,就像是把大块的金属用强力给它弄成小粉末,有点像把大石头敲成小石子的感觉。
还有物理化学法,这个就比较高大上啦,通过一些化学或者物理的变化,让金属变成粉末。
有了粉末之后呀,就要进行混料啦。
把不同的金属粉末或者金属粉末和一些添加剂的粉末混合在一起。
这就好比我们做蛋糕,要把面粉、糖、鸡蛋这些东西混在一起一样。
要混得均匀呢,这样做出来的东西才好。
接下来就是成型啦。
这一步可关键啦。
把混合好的粉末放到模具里,给它施加压力,让粉末变成我们想要的形状。
就像把软软的泥巴放进模具里,压成小鸭子或者小花朵的形状。
不过这里压的是金属粉末啦。
这个压力的大小很有讲究哦,太大了可能会把模具弄坏,太小了又不能让粉末很好地成型。
最后就是烧结啦。
这是让粉末冶金制品真正变得结实的一步。
把成型后的东西放到高温的炉子里去烧。
就像把陶泥做的小物件放到窑里烧制一样。
在高温下,粉末之间的空隙会变小,粉末会黏在一起,变得更加致密。
烧结的温度、时间这些都要控制好,就像烤蛋糕要控制好烤箱的温度和时间一样。
粉末冶金这种方法可以做出很多特别的东西呢。
比如说一些形状很复杂的小零件,用传统的铸造方法可能很难做出来,但是粉末冶金就可以轻松搞定。
而且粉末冶金做出来的东西精度还比较高哦。
它在汽车制造、航空航天这些领域都有很重要的应用。
就像一个隐藏在幕后的小能手,默默地为很多高科技的东西做贡献呢。
粉末冶金材料概述引言粉末冶金材料是一类通过粉末冶金工艺制备的新型材料。
粉末冶金是指通过粉末冶金工艺将金属或非金属粉末压制成型,经过烧结或其他处理方法得到所需材料的一种制备方法。
粉末冶金材料因其独特的结构和性能,在许多工业和科研领域受到广泛关注。
本文将对粉末冶金材料进行概述,包括其制备方法、特点和应用领域等方面。
粉末冶金材料的制备方法粉末冶金材料的制备方法主要包括粉末制备、成型和烧结等步骤。
粉末制备粉末制备是粉末冶金材料制备的第一步。
粉末制备方法有很多种,包括物理方法和化学方法两大类。
物理方法主要包括气雾法、机械法、电解法和溅射法等。
其中,气雾法是指通过气体或喷雾器产生粉末颗粒,例如高温气雾法和超声气雾法。
机械法是指通过机械力使原料产生破碎、研磨或合金化的方法,常见的机械法有球磨法和挤压法等。
电解法是指通过电解原理将金属溶液电解析出粉末。
溅射法是将金属或合金靶材置于真空或较低压力下,在被轰击时产生粉末颗粒。
化学方法主要包括沉积法和还原法等。
沉积法是将金属盐溶液注入电化学池中,通过电解原理在电极上析出粉末。
还原法是指通过还原反应将金属离子还原成金属粉末。
成型是将粉末加工成所需形状的步骤。
常见的成型方法有压制、注射成型和挤压等。
压制是将粉末放入模具中,在一定压力下使其成型。
注射成型是将粉末与有机绑定剂混合,通过注射机将混合物喷射到模具中,经过固化后得到成型件。
挤压是将粉末放入带有孔的金属筒子中,在压力下挤出形状。
烧结是粉末冶金材料制备的最后一步,通过加热使粉末颗粒之间的结合力增强,形成致密的材料。
烧结温度和时间根据材料的要求进行选择,一般在金属的熔点以下,同时需要保证烧结后的材料具有所需的物理和化学性质。
粉末冶金材料的特点粉末冶金材料具有许多独特的特点,使其在许多领域具有广泛的应用前景。
高纯度由于粉末冶金材料可以通过粉末制备方法获得,因此可以获得高纯度的材料。
在制备过程中,可以通过选择合适的原料和控制工艺参数,减少杂质的含量,从而获得高纯度的材料。
粉末冶金粉体常见的制备方法及综述1粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。
由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。
二、粉体的制备及综述粉末冶金的生产工艺是从制取原材料――粉末开始的。
这些粉末可以纯金属,也可以是非金属,还可以是化合物。
制取粉末的方法有很多,他的选择主要取决于该材料的特殊性能及制取方法的成本。
粉体的的制备方法如下:(一)物理法(机械粉碎法)机械粉碎法是一种常见的固相制粉工艺。
尤其是制备粒度在微米级以上的陶瓷粉体时,用机械粉碎法方便快捷,成本也比较低廉。
1、常用的粉碎法有:(1)辊碾式将单根或多根研棒或环等装入磨腔内,借助某种特殊力使磨腔内的棒或环作旋转运动,棒与棒之间或环与环之间以及它们与磨腔内壁之间产生的碰撞、挤压、研磨、剪切等作用,使它们之间的物料被破碎。
(2)高速旋转式主要是利用高速旋转的部件产生的强冲击力、剪切力摩擦而使物料被粉碎。
高速旋转粉碎机由于结构及作用力的方式不同又分为:销棒粉碎机(针状磨)、摆式粉碎机、轴流式粉碎机(笼式磨)、筛分磨、离心分级磨等。
(3)球磨式近期在球磨机的基础上,开发出了多种形式的广义球磨机,如振动球磨、离心球磨、行星磨、离心滚动磨等。
(4)介质搅拌式是依靠磨腔中机械搅拌棒、齿或片带动研磨介质运动,利用研磨介质之间的挤压力和剪切力使物料粉碎。
它实际上是一种内部有动件的球磨机,靠内部动件带动磨介运动来对物料进行粉碎。
搅拌磨早期主要用于染料、油漆、涂料行业浆料分散与混合。
后来经多次改进,逐步发展成为一种新型的高效超细粉碎机。
有时称之为介质磨,也有人称之为“剥片机”。
(5)气流式粉碎机是在高速气流作用下,物料通过本身颗粒之间的撞击,气流对物料的剪切作用以及物料与其它部件的冲击、摩擦、剪切而使物料粉碎。
先后有:扁平式(圆盘式)气流磨、循环式气流磨、对撞式气流磨、流化床气流磨、靶式气流磨、超音速气流磨等。
金属粉末的制备方法及基本原理1 引言金属粉末尺寸小,比表面积大,用其制得的金属零部件具有许多不同于常规材料的性质, 如优良的力学性能、特殊的磁性能、高的电导率和扩散率、高的反应活性和催化活性等。
这些特殊性质使得金属粉末材料在航空航天、舰船、汽车、冶金、化工等领域得到越来越广泛的应用。
2 金属粉末的制备方法2.1 机械法机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。
按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。
目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的纳米粉末。
2.1.1 球磨法球磨法主要分为滚动球法和振动球磨法。
该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。
其优点是对物料的选择性不强,可连续操作,生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。
缺点是在粉末制备过程中分级比较困难[3]。
2.1.2 气流磨粉碎法气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。
具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区, 从而带动研磨区内的物料互相碰撞,使粉末粉碎变细; 气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到粒度的物料,其余粗粉返回研磨区继续研磨, 直至达到要求的粒度被分出为止。
整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小( 平均粒度在3~8 μm)。
气流磨粉碎法适于大批量工业化生产,工艺成熟。
缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源, 耗气量较大;只适合脆性金属及合金的破碎制粉。
2.2 物理法物理法一般是通过高温、高压将块状金属材料熔化,并破碎成细小的液滴,并在收集器内冷凝而得到金属粉末,该过程不发生化学变化。
目前研究和使用最多的物理法主要有等离子旋转电极法和气体雾化法。
金属粉末处理方法
金属粉末处理是一种将金属原料转化为具有特定形状和尺寸的金属粉末的加工方法。
它可以应用于许多不同的行业,例如制造业、医疗行业和化工行业等。
金属粉末处理的目的是增加材料的表面积,提高材料的反应性、可压性和流动性,以及提高材料的机械强度和耐磨性等。
金属粉末处理方法通常包括以下几个步骤:
1.原料制备:金属粉末可以通过物理和化学方法制备,例如机械碾磨、电解法、化学还原法等。
2.粉末混合:在粉末处理过程中,通常需要将不同的金属粉末混合在一起,以制备出具有特定化学成分和物理性质的粉末混合物。
3.成型:金属粉末可以通过压制、注射成型、挤压成型等方法制备出具有特定形状的零件或产品。
4.烧结:烧结是将金属粉末成型件置于高温下进行加热和压缩,以将粉末颗粒熔合在一起,形成具有一定机械强度和耐磨性的固体零件。
5.后处理:经过烧结后,金属粉末成型件还需要进行表面处理,例如喷漆、电镀、氧化等,以增加其表面硬度、耐腐蚀性和美观度。
总之,金属粉末处理是一种高效、可控制的金属加工方法,可以制备出具有特定化学成分和物理性质的金属零件和产品,广泛应
用于各个行业中。
金属粉末制备方法分类及其基本原理摘要简要介绍了金属粉末的制备方法。
由机械法和物理化学法两大类方向具体介绍。
同时简述了各种金属粉末制备方法的基本原理。
关键词金属粉末;制备;分类;原理1 引言:金属及其化合物的粉末制备目前已发展了很多方法,对于这些方法的分类也有若干种。
根据原料的状态可分为固体法、液体法和气体法;根据反应物的状态可分为湿法和干法;根据生产原理可分为物理化学法和机械法。
一般来说在物理化学方法中最重要的方法为还原法、还原-化合法和电解法;在机械法中最主要的方法则是雾化法和机械粉碎法。
金属粉末的生产方法的选择取决于原材料、粉末类型、粉末材料的性能要求和粉末的生产效率等。
随着粉末冶金产品的应用越来越广泛,对粉末颗粒的尺寸形状和性能的要求越来越高,因此粉末制备技术也在不断地发展和创新,以适应颗粒尺寸和性能的要求。
2 金属粉末的制备方法:2.1 物理化学法:2.1.1 还原法:金属氧化物及盐类的还原法是一种应用最广泛的粉末制备方法。
可以采用固体碳还原铁粉和钨粉,用氢或分解氨制取钨、钼、铁、铜、钴、镍等粉末;用转化天然气和煤气可以制取铁粉等,用纳、钙、镁等金属作还原剂可以制取钽、铌、钛、锆、钍、铀等稀有金属粉末。
金属氧化物及盐类的还原法基本原理为,所使用的还原剂对氧的亲和力比氧化物和所用盐类中相应金属对氧的亲和力大,因而能够夺取金属氧化物或盐类中的氧而使金属被还原出来。
由于不同的金属元素对氧的作用情况不同,因此生成氧化物的稳定性也不大一样。
可以用氧化反应过程中的△G的大小来表征氧化物的稳定程度。
如反应过程中的△G值越小,则表示其氧化物的稳定性就越高,即其对氧的亲和力越大。
其优点是操作简单,工艺参数易于控制,生产效率高,成本较低,适合工业化生产;缺点是只适用于易与氢气反应、吸氢后变脆易破碎的金属材料。
2.1.2 金属热还原和还原化合法:金属热还原是,被还原的原料可以是固态的、气态的,也可以是熔盐。
后二者相应的又具有气相还原和液相沉淀的特点。
3d 打印金属粉末的制备方法1. 引言1.1 概述本文旨在探讨3D打印金属粉末的制备方法。
随着现代制造技术的不断发展,传统的金属加工方式已经无法完全满足人们对于复杂、精密和高强度金属产品的需求。
因此,3D打印技术应运而生,成为一种具有巨大潜力和广泛应用前景的先进加工方式。
1.2 文章结构本文主要分为五个部分:引言、金属粉末的制备方法、方法一: 粉末合金化法、方法二: 激光熔化法以及方法三: 电子束熔化法。
接下来将详细介绍这些内容。
1.3 目的本文旨在探究目前主流的3D打印金属粉末制备方法,并详细介绍每种方法的原理、实验步骤以及结果与讨论。
通过了解这些制备方法,读者可以深入了解3D 打印金属粉末领域的最新发展,并在实际应用中有所借鉴和启发。
同时,本文也希望促进该领域更深入的研究和创新,推动3D打印金属粉末技术的进一步发展。
2. 金属粉末的制备方法:2.1 传统方法介绍:传统的金属粉末制备方法主要包括物理方法和化学方法。
物理方法包括研磨、球磨和喷雾干燥等,这些方法主要通过机械力或热力作用使金属材料在固体状态下生成粉末。
化学方法则是利用化学反应使金属离子还原生成金属粉末,在这些方法中,溶液固化、沉淀分离和还原制备工艺被广泛采用。
2.2 3D打印金属粉末的意义:与传统的金属加工技术相比,3D打印技术具有更大的灵活性和自由度。
它可以根据设计要求直接将CAD模型转化为实际零部件,无需使用传统的减材成形过程。
因此,利用3D打印技术制备金属粉末具有更高的效率、更低的浪费和更好的成本控制能力。
2.3 目前主流的3D打印金属粉末制备方法:目前主流的3D打印金属粉末制备方法包括粉末合金化法、激光熔化法和电子束熔化法。
粉末合金化法是通过将两种或多种金属粉末混合,并在高温下进行合金反应,从而制备均匀的金属粉末。
该方法可以调整不同金属粉末的比例以获得不同性质的合金粉末,具有较高的生产效率和适用于多种材料的优点。
激光熔化法使用激光束对金属粉末进行扫描和熔化,通过控制激光参数和扫描路径,使得粉末颗粒彼此黏结并形成所需形状的零部件。
金属粉末制取方法概述
来源:粉体圈日期:2016年06月01日
金属粉末制取方法(粉体技术),通常按转变的作用原理分为机械法和物理化学法两类,既可从固、液、气态金属直接细化获得,又可从其不同状态下的金属化合物经还原、热解、电解而转变制取。
难熔金属的碳化物、氮化物、硼化物、硅化物一般可直接用化合或还原-化合方法制取。
因制取方法不同,同一种粉末的形状、结构和粒度等特性常常差别很大。
粉末的制取方法列表如下,其中应用最广的是还原法、雾化法、电解法。
金属粉末制取方法还原法:
利用还原剂夺取金属氧化物粉末中的氧,而使金属被还原成粉状。
气体还原剂有氢、氨、煤气、转化天然气等。
固体还原剂有碳和钠、钙、镁等金属。
氢或氨还原,常用来生产钨、钼、铁、铜、镍、钴等金属粉末。
碳还原常用来生产铁粉。
用金属强还原剂钠、镁、钙等,可以生产钽、铌、钛、锆、钒、铍、钍、铀等金属粉末(见金属热还原)。
用高压氢气还原金属盐类水溶液,可制得镍、铜、钴及其合金或包覆粉末(见湿法冶金)。
还原法制成的粉末颗粒大多为海绵结构的不规则形状。
粉末粒度主要取决于还原温度、时间和原料的粒度等因素。
还原法可制取大多数金属的粉末,是一种广泛应用的方法。
雾化法:
雾化法将熔融金属雾化成细小液滴,在冷却介质中凝固成粉末。
雾化法是用高压空气、氮气、氩气等(气体雾化)和高压水(水雾化)作喷射介质来击碎金属液体流。
也有利用旋转盘粉碎和熔体自身(自耗电极和坩埚)旋转的离心雾化法,以及其他雾化方法如溶氢真空雾化、超声波雾化等。
由于液滴细小和热交换条件好,液滴的冷凝速度一般可达到100~10000K/s,比铸锭时高几个数量级。
因此合金的成分均匀,组织细小,用它制成的合金材料无宏观偏析,性能优异。
气雾化粉末一般近球形,水雾化可制得不规则形状。
粉末的特性如粒度、形状和结晶组织等主要取决于熔体的性能(粘度、表面张力、过热度)和雾化工艺参数(如熔体流直径、喷嘴结构、喷射介质的压力、流速等)。
几乎所有可被熔化的金属都可用雾化法生产,尤其适宜生产合金粉末。
此法生产效率高,并易于扩大工业规模。
目前不仅用于大量生产工业用铁、铜、铝粉和各种合金粉末,还用来生产高纯净度(O2<100ppm)的高温合金、高速钢、不锈钢和钛合金粉末。
此外,用激冷技术制取快速冷凝粉末(冷凝速度>100,000K/s)日益受到重视。
用它可以制出高性能的微晶材料。
电解法:
在金属盐水溶液中通以直流电、金属离子即在阴极上放电析出,形成易于破碎成粉末的沉积层。
金属离子一般来源于同种金属阳极的溶解,并在电流作用下自阳极向阴极迁移。
影响粉末粒度的因素主要是电解液的组成和电解条件。
一般电解粉末多呈树枝状,纯度较高,但此法耗电大,成本较高。
电解法的应用也很广泛,常用来生产铜、镍、铁、银、锡、铅、铬、锰等多种金属粉末;在一定条件下也可制取合金粉末。
对于钽、铌、钛、锆、铍、钍、铀等稀有难熔金属,常采用复合熔盐作为电解质以制取粉末。
机械粉碎法:
主要是通过压碎、击碎和磨削等作用将固态金属碎化成粉末。
设备分粗碎和细碎两类。
主要起压碎作用的有碾碎机、辊轧机、颚式破碎机等粗碎设备。
主要起击碎和磨削作用的有锤碎机、棒磨机、球磨机、振动球磨机、搅动球磨机等粉碎设备。
机械粉碎法主要适用于粉碎脆性的和易加工硬化的金属和合金,如锡、锰、铬、高碳铁、铁合金等,也用来破碎还原法制得的海绵状金属、电解法制取的阴极沉积物;还用于破碎氢化后发脆的钛,然后再脱氢制取细钛粉。
机械粉碎法效率低,能耗大,多作为其他制粉法的补充手段,或用于混合不同性质的粉末。
此外,机械粉碎法还包括旋涡研磨机,它靠两个叶轮造成涡流,使被气流所夹裹的颗粒相互高速碰撞而粉碎,可用于塑性金属的碎化。
冷流破碎法是用高速高压
惰性气体流载带粗粉喷射到一金属靶上。
由于在喷嘴出口处气流产生绝热膨胀,温度骤降至0℃以下,使具有低温脆性的金属和合金粗粉粉碎成细粉。
机械合金化法是用高能球磨机将不同的金属和高熔点化合物研磨成为固溶或精细弥散的合金状态。
羰基法:
将某些金属(铁、镍等)与一氧化碳合成为金属羰基化合物,再热分解为金属粉末和一氧化碳。
这样制得的粉末很细(粒度为几百埃至几个微米),纯度很高,但成本也高。
工业上主要用来生产镍和铁的细粉和超细粉,以及Fe-Ni、F e-Co、Ni-Co等合金粉末。
直接化合法:
在高温下使碳、氮、硼、硅直接与难熔金属化合。
还原-化合法则是用碳、氮、碳化硼、硅与难熔金属氧化物作用。
这两种方法都是常用的生产碳化物、氮化物、硼化物和硅化物粉末的方法。
其他方法:
小于10μm 的微细粉末和超细粉末由于成分均匀、晶粒细小、活性大,在制造材料(如弥散强化合金、超微孔金属、金属磁带)和直接应用(如火箭的固体燃料和磁流体密封、磁性墨水等)方面有着特殊的地位。
制造这类粉末除应用羰基法、电解法外,还应用真空蒸发冷凝法和电弧喷雾、共沉淀复盐分解、气相还原等方法。
包覆粉末在热喷涂、原子能工程材料等特殊用途方面日益显示出优异性。
采用气相和液相沉积两类化学制粉方法,如氢还原热离解、高压氢还原、置换、电沉积等方法,可以制取金属和金属、金属和非金属混合的各种包覆粉末。