定理1.5.5 条件期望的基本性质
• 9.设X、及XY 的期望存在,且Y为G可测的 则: E XY G YE X G a.s.
• 10.若X,与G相互独立,则
E X G E X a.s
定理1.5.5 条件期望的基本性质
11.若G1,G2是两个子σ代数,使得G1 G2 F 则 EE X G2 G1 E X G1 a.s. 12.若X,Y是两个独立的随机变量,函数 G(x,y)使得 E g x, y ,则有:
§1.4 收敛性
• 定义1.4.1 • (1)设 X n , n 1 是随机变量序列,若存 在随机变量X使得:
p : X lim X n 1
n
则称随机变量 X n , n 1 几乎必然收敛于X 记为 a.s X n X , a.s 或 Xn X
几乎必然收敛 依概率收敛 依分布收敛 p次均方收敛 依概率收敛 依分布收敛
例1.4.1 1 Yki 0 n Z n 0
1 r
1, i i k k 1, i i k k
0, 1 n 0, 1 n
f1dp
则f的积分存在,且有:
f n d P fd P
定理1.4.3 Fatou引理
• 设随机变量 X n , n 1 的期望存在,则:
E lim inf X n lim inf E X n n n lim sup E X n E lim sup X n n n
随机变量的独立性
(4)设 X i , i I 是Ω上的一族随机变量,如 果σ代数族 X i , i I 是独立事件类,则称