热油管道的工艺计算
- 格式:ppt
- 大小:848.00 KB
- 文档页数:49
1管道总传热系数管道总传热系数是热油管道设计和运行管理中的重要参数。
在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。
1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。
当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式:1112ln 111ln 22i i ne n w i L L D D D KD D D D a a l l -+轾骣犏琪桫犏=+++犏犏犏臌å (1-1)式中:K ——总传热系数,W /(m 2·℃);e D ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于无保温埋地管路可取沥青层外径);n D ——管道内直径,m ;w D ——管道最外层直径,m ;1α——油流与管内壁放热系数,W/(m 2·℃);2α——管外壁与周围介质的放热系数,W/(m 2·℃);i λ——第i 层相应的导热系数,W/(m·℃);i D ,1i D +——管道第i 层的内外直径,m ,其中1,2,3...i n =;L D ——结蜡后的管内径,m 。
为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径的导热热阻、管道外壁或最大外围至周围环境的放热系数2α。
(1)内部放热系数1α的确定放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。
在层流状态(Re<2000),当Pr 500Gr <时:1 3.65y d Nu a l== (1-2) 在层流状态(Re<2000),当Pr 500Gr >时: 0.250.330.430.11Pr 0.15Re Pr Pr y y y y y b d Nu Gr a l 骣琪==鬃琪桫(1-3) 在激烈的紊流状态(Re>104),Pr<2500时: 0.250.80.441Pr 0.021Re Pr Pr y y y b d l a 骣琪=鬃琪桫 (1-4)在过渡区(2000<Re<104)(1-5)式中:u N ——放热准数,无因次;——流体物理性质准数,无因次;——自然对流准数,无因次;——雷诺数;0(Re )f K f =——系数;d ——管道内径,m ;g ——重力加速度,g =9.81m/s 2;υ——定性温度下的流体运动粘度,m 2/s ;C ——定性温度下的流体比热容,J/(kg·K); v q ——流体体积流量,m 3/s ;ρ——定性温度下的流体密度,kg/m 3;β——定性温度下的流体体积膨胀系数,可查得,亦可按下式计算:(1-6)f λ——定性温度下的流体导热系数,原油的导热系数f λ约在0.1~0.16W/(m ·K)间,随温度变化的关系可用下式表示:(1-7)15f ρ——l5℃时的原油密度,kg/m 3;f t ——油(液)的平均温度,℃;b t ——管内壁平均温度,℃;204d ——20℃时原油的相对密度。
输油管道工艺设计管道输送工艺设计目录1 总论............................................................................. 错误!未定义书签。
1.1 设计依据及原则................................................ 错误!未定义书签。
1.1.1 设计依据 .................................................. 错误!未定义书签。
1.1.2 设计原则 .................................................. 错误!未定义书签。
1.2 总体技术水平.................................................... 错误!未定义书签。
2 输油工艺..................................................................... 错误!未定义书签。
2.1 主要工艺参数.................................................... 错误!未定义书签。
2.1.1 设计输量 .................................................. 错误!未定义书签。
2.1.2 其它有关基础数据 .................................. 错误!未定义书签。
2.2 主要工艺技术.................................................... 错误!未定义书签。
3 工程概况..................................................................... 错误!未定义书签。
热油输送管路的温降计算热油在埋地管路输送过程中因无法做到完全绝热,它会沿管线向四周传热,下面仅以纵向温降进行研究计算。
1·设热油输送管道,管外径为D ,周围介质温度为T 0,总传热系数为K ,输量为G ,油品的比热为C ,出站油温为T Q ,油流流到距加热站出口X 米处时,温度降为T ℃。
注:(1)在稳定工况下:温度不随时间而变化,输量不随时间而变化;(2)油流至周围介质的总传热系数K 沿线为常数; (3)沿线地温和油品的比热C 为常数; (4)油品沿管轴线温度不变。
2·在距输油站为X 处取一微元段dx ,设X 处断面油温为T ,油流经过dx 段的温度变化为dt ,由能量方程推导温降公式,稳定流动的能量方程;dx dQ g dx dv v dxdP P h dx dT T h T p -=++⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂θsin 忽略高差和速度变化的影响,则: dx dQ dx dPP h dx dT T h Tp -=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂ 另外由热力学知识可知:h p T P T T h P h ⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂因此:dx dQ dxdPP T T h dx dT T h h p p -=⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂ 由于: P p C T h =⎪⎭⎫⎝⎛∂∂ i hD P T =⎪⎭⎫⎝⎛∂∂ 则:dQ dp D C dT C i P P -=-故在L+dL 断面上油温为T+dT ,稳定传热时,dL 上的热平衡方程为:单位时间内管线向周围介质的散热量 = 油流温降放出的热量dQ 表示单位质量液体在单位管长上的热量损失,由传热学关系可知: ()dx MT T D K dQ 0-=π因此: ()dT C dp D C dx MT T D K P i P -=-0π令 PMC DK a π=, 则:()()dxdpD T T a dx T T d i=-+-00 非齐次线性微分方程的通解为:dx e dxdp D e Ce T T axi ax ax ---⎰+=-0由于: 0=x 时,Q T T =,所以:()dx e dxdp e D e T T T T axax i ax Q ---⎰+-+=00 在热油液流中不考虑节流效应,则得到苏霍夫公式:()ax Q e T T T T --+=00单位质量下取:PGC DK a π=适用于流速低、温降大、摩阻热影响较小的情况下。
1管道总传热系数管道总传热系数就是热油管道设计与运行管理中得重要参数。
在热油管道稳态运行方案得工艺计算中,温降与压降得计算至关重要,而管道总传热系数就是影响温降计算得关键因素,同时它也通过温降影响压降得计算结果。
1、1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递得热量,它表示油流至周围介质散热得强弱。
当考虑结蜡层得热阻对管道散热得影响时,根据热量平衡方程可得如下计算表达式: 1112ln 111ln 22i i n e n w i L L D D D KD D D D a a l l -+轾骣犏琪桫犏=+++犏犏犏臌å (1-1)式中:K ——总传热系数,W /(m 2·℃);e D ——计算直径,m ;(对于保温管路取保温层内外径得平均值,对于无保温埋地管路可取沥青层外径);n D ——管道内直径,m ;w D ——管道最外层直径,m ;1α——油流与管内壁放热系数,W/(m 2·℃);2α——管外壁与周围介质得放热系数,W/(m 2·℃);i λ——第i 层相应得导热系数,W/(m·℃);i D ,1i D +——管道第i 层得内外直径,m ,其中1,2,3...i n =;L D ——结蜡后得管内径,m 。
为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径得导热热阻、管道外壁或最大外围至周围环境得放热系数2α。
(1)内部放热系数1α得确定放热强度决定于原油得物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 与流体物理性质准数r P 间得数学关系式来表示[47]。
在层流状态(Re<2000),当Pr 500Gr <g 时:1 3.65y d Nu a l== (1-2) 在层流状态(Re<2000),当Pr 500Gr >g 时: 0.250.330.430.11Pr 0.15Re Pr Pr y y y y y b d Nu Gr a l 骣琪==鬃琪桫(1-3) 在激烈得紊流状态(Re>104),Pr<2500时: 0.250.80.441Pr 0.021Re Pr Pr y y y b d l a 骣琪=鬃琪桫 (1-4)在过渡区(2000<Re<104)(1-5)式中:u N ——放热准数,无因次;——流体物理性质准数,无因次; ——自然对流准数,无因次;——雷诺数;0(Re )f K f =——系数;d ——管道内径,m ;g ——重力加速度,g =9、81m/s 2;υ——定性温度下得流体运动粘度,m 2/s ;C ——定性温度下得流体比热容,J/(kg·K); v q ——流体体积流量,m 3/s ;ρ——定性温度下得流体密度,kg/m 3;β——定性温度下得流体体积膨胀系数,可查得,亦可按下式计算:(1-6)f λ——定性温度下得流体导热系数,原油得导热系数f λ约在0、1~0、16 W/(m ·K)间,随温度变化得关系可用下式表示:(1-7)15f ρ——l5℃时得原油密度,kg/m 3;f t ——油(液)得平均温度,℃;b t ——管内壁平均温度,℃;204d ——20℃时原油得相对密度。
管道总传热系数算————————————————————————————————作者:————————————————————————————————日期:1管道总传热系数管道总传热系数是热油管道设计和运行管理中的重要参数。
在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。
1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。
当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式:1112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+⎡⎤⎛⎫ ⎪⎢⎥⎝⎭=+++⎢⎥⎢⎥⎢⎥⎣⎦∑ (1-1) 式中:K ——总传热系数,W /(m 2·℃);e D ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于无保温埋地管路可取沥青层外径);n D ——管道内直径,m ;w D ——管道最外层直径,m ;1α——油流与管内壁放热系数,W/(m 2·℃);2α——管外壁与周围介质的放热系数,W/(m 2·℃);i λ——第i 层相应的导热系数,W/(m·℃);i D ,1i D +——管道第i 层的内外直径,m ,其中1,2,3...i n =;L D ——结蜡后的管内径,m 。
为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径的导热热阻、管道外壁或最大外围至周围环境的放热系数2α。
(1)内部放热系数1α的确定放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。
在层流状态(Re<2000),当500Pr <⋅Gr 时:1 3.65y d Nu αλ== (1-2) 在层流状态(Re<2000),当500Pr >⋅Gr 时: 0.250.330.430.11Pr 0.15Re Pr Pr y y y y y b d Nu Gr αλ⎛⎫==⋅⋅ ⎪⎝⎭ (1-3)在激烈的紊流状态(Re>104),Pr<2500时:0.250.80.441Pr 0.021Re Pr Pr y y y b d λα⎛⎫=⋅⋅ ⎪⎝⎭ (1-4)在过渡区(2000<Re<104)25.043.001)Pr Pr (Pr b ff f d K ⋅λα= (1-5)式中:u N ——放热准数,无因次;λρυC =Pr ——流体物理性质准数,无因次; ()υβw f t t g d Gr -=3——自然对流准数,无因次; υπρd q vd v 4Re ==——雷诺数; )(Re 0f f K =——系数;d ——管道内径,m ;g ——重力加速度,g =9.81m/s 2;υ——定性温度下的流体运动粘度,m 2/s ;C ——定性温度下的流体比热容,J/(kg·K); v q ——流体体积流量,m 3/s ;ρ——定性温度下的流体密度,kg/m 3;β——定性温度下的流体体积膨胀系数,可查得,亦可按下式计算: t d d -+-=2042045965634023101β (1-6)f λ——定性温度下的流体导热系数,原油的导热系数f λ约在0.1~0.16 W/(m ·K)间,随温度变化的关系可用下式表示:153/)1054.01(137.0f t f t ρλ-⨯-= (1-7)15f ρ——l5℃时的原油密度,kg/m 3;f t ——油(液)的平均温度,℃;b t ——管内壁平均温度,℃;204d ——20℃时原油的相对密度。
第三章热油输送管道的工艺计算(Hot-oil Pipelines)随着世界能源需求的增长,易凝和高粘原油的产量不断地增加。
目前我国所产原油大多为这两种原油。
生产含蜡原油(waxy crude)(即易凝原油)的油田主要有:大庆油田、胜利油田、中原油田、华北油田、河南油田、长庆油田、克拉玛依油田。
生产稠油(thick oil ,heavey oil)的油田有:辽河油田、胜利的单家寺油田和孤岛油田等。
含蜡原油的特点是含蜡量高、凝固点高、低温下粘度高、高温下粘度低。
如大庆原油,凝固点为28~32℃,6,胜利原油凝固点为23~32℃,50℃运动粘度约为50℃运动粘度约为20~25×s102m/6。
稠油的特点是凝固点很低,通常低于0℃,但粘度很大,如孤岛原油凝80~90×sm/1026。
固点为-2.3~4.9℃,50℃运动粘度约为490×s102m/凝固点(Freezing point):是指在规定条件下(热力和剪切条件)所测得的油样不流动的最高温度。
我国常把它作为评价原油流动性的指标之一。
西方国家常用的是倾点(Pour point),它与凝固点有所不同。
倾点是指在规定条件下测得的油样刚开始流动的最低温度。
由于测量方法的不同,因而两者在数值上亦有差别。
对于同一种原油,倾点一般比凝固点低2~3℃。
原油的高含蜡、高凝固点和高粘度给储运工作带来以下几个方面的问题:1.由于原油的凝固点比较高,一般在环境温度下就失去流动性或流动性很差,因而不能直接常温输送。
2.在环境温度下,含蜡原油既使能够流动其表观粘度(Apparent Viscosity)也很高。
对于稠油,虽然在环境温度下并不凝固,但其粘度很大。
因此无论是高含蜡原油还是稠油,常温输送时摩阻损失都很大,是很不经济的。
3.高凝高粘原油给储运系统的运行管理也带来了某些特殊问题,主要有:①储罐和管道系统的结蜡问题②管道停输后的再启动问题。
对于易凝高粘问题,不能直接采用前面讲到的等温输送方法,必须在输入管道前采用降凝降粘措施。
加热原油管道停输热力计算
随着能源需求的增加,原油管道作为一种重要的输油方式,承载
着越来越多的原油运输任务。
但同时,原油管道在运输过程中也面临
着热量损失、管道老化等问题,从而影响管道的输油效率和安全。
为
保障原油管道的安全运输,需要对管道停输时的加热问题进行热力计
算和分析。
原油管道的主要构成部分包括输油管道和加热设备。
输油管道通
常是由钢管和绝热层组成,而加热设备则一般包括热交换器、燃气加
热炉、电阻式加热器等。
加热系统不仅可以增加管道的输油率,还可
以保护管道的安全运行,防止管道结冰、产生水锈等问题。
针对管道停输时的加热问题,需要对加热设备的功率、加热时间、加热介质等因素进行计算和分析。
其中,功率是指加热设备每单位时
间所需要消耗的能量,其计算公式为:
功率=(管道最低使用温度-室温)×管道导热系数×管道外径
×π×管道长度÷传热面系数
其中,管道最低使用温度是指管道运行过程中需要满足的最低温度,一般需要根据具体的管道材质、运行状态以及环境温度等因素进行综合考虑。
管道导热系数是指管道材质的热传导能力,可以根据管道的材质和温度计算得到。
管道外径、长度以及传热面系数也是影响功率计算的重要因素,需要在实际运行中进行结合计算。
在计算功率的同时,还需要考虑加热介质的选择和温度控制等问题。
一般来说,加热介质可以选择蒸汽、高温液体等,其中蒸汽的使用比较广泛,因为其在传热效率和加热速度方面都有一定优势。
而温度控制则需要根据管道的实际情况进行合理设计,确保加热温度不会过高或者过低,从而保证管道的安全运行。
1管道总传热系数管道总传热系数是热油管道设计和运行管理中的重要参数。
在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。
1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。
当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式:1112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+⎡⎤⎛⎫ ⎪⎢⎥⎝⎭=+++⎢⎥⎢⎥⎢⎥⎣⎦∑ (1-1) 式中:K ——总传热系数,W /(m 2·℃);e D ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于无保温埋地管路可取沥青层外径);n D ——管道内直径,m ;w D ——管道最外层直径,m ;1α——油流与管内壁放热系数,W/(m 2·℃);2α——管外壁与周围介质的放热系数,W/(m 2·℃);i λ——第i 层相应的导热系数,W/(m·℃);i D ,1i D +——管道第i 层的内外直径,m ,其中1,2,3...i n =;L D ——结蜡后的管内径,m 。
为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径的导热热阻、管道外壁或最大外围至周围环境的放热系数2α。
(1)内部放热系数1α的确定放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。
在层流状态(Re<2000),当500Pr <⋅Gr 时:1 3.65y d Nu αλ== (1-2) 在层流状态(Re<2000),当500Pr >⋅Gr 时: 0.250.330.430.11Pr 0.15Re Pr Pr y y y y y b d Nu Gr αλ⎛⎫==⋅⋅ ⎪⎝⎭ (1-3)在激烈的紊流状态(Re>104),Pr<2500时:0.250.80.441Pr 0.021Re Pr Pr y y y b d λα⎛⎫=⋅⋅ ⎪⎝⎭ (1-4)在过渡区(2000<Re<104)25.043.001)Pr Pr (Pr b ff f d K ⋅λα= (1-5)式中:u N ——放热准数,无因次;λρυC =Pr ——流体物理性质准数,无因次; ()υβw f t t g d Gr -=3——自然对流准数,无因次; υπρd q vd v 4Re ==——雷诺数; )(Re 0f f K =——系数;d ——管道内径,m ;g ——重力加速度,g =9.81m/s 2;υ——定性温度下的流体运动粘度,m 2/s ;C ——定性温度下的流体比热容,J/(kg·K); v q ——流体体积流量,m 3/s ;ρ——定性温度下的流体密度,kg/m 3;β——定性温度下的流体体积膨胀系数,可查得,亦可按下式计算:t d d -+-=2042045965634023101β (1-6)f λ——定性温度下的流体导热系数,原油的导热系数f λ约在0.1~0.16W/(m ·K)间,随温度变化的关系可用下式表示:153/)1054.01(137.0f t f t ρλ-⨯-= (1-7)15f ρ——l5℃时的原油密度,kg/m 3;f t ——油(液)的平均温度,℃;b t ——管内壁平均温度,℃;204d ——20℃时原油的相对密度。
原油输送管道工艺计算及校核计算方法的研究【摘要】本文介绍了原油输送管道在设计过程中工艺计算的具体方法,以及校核计算的具体步骤。
【关键词】原油管道工艺计算校核计算柴塘管线工程全长437km,年设计最大输量为600万吨,最小输量为354万吨。
管线沿程地形起伏较大,最大高差为422m,经校核全线无翻越点;在较大输量时可热力越站,较小输量时可压力越站。
1 最优管径的选择在设计输量下,若选用较大的管径,可以降低输送时的压头损失,减少泵站数,从而减少泵站的建设费用,降低了输油的动力消耗,但同时也增加了管路的建设费用[1]。
本设计中根据国内热油输送管道的实际经验,热油管道的经济流速在1.5-2.0m/s范围内,在此基础上选择1.8m/s的流速进行初步的管径计算,然后对附近管径系列进行计算,分别算出不同系列的费用现值,根据费用现值的大小选择出最优管径。
最终选定了外径φ457,壁厚6.4mm的管径。
2 工艺计算说明2.1 概述对于易凝、高粘、高含蜡油品的管道输送,如果直接在环境温度下输送,则油品粘度大,阻力大,管道沿途摩阻损失大,导致了管道压降大,动力费用高,运行不经济,且在冬季极易凝管,发生事故。
所以为了安全输送,在油品进入管道前必须采用降凝降粘措施。
目前,国内外很多采用加入降凝剂或给油品加热的方法,使油品的粘度降低。
本设计采用加热的方法,提高油品温度以降低其粘度,减少摩阻损失,降低管输压力,使输油总能耗小于不加热输送,并使管内最低油温维持在凝点以上,确保安全输送。
2.2 确定加热站及泵站2.2.1?热力计算埋地不保温管道的散热传递过程由三部分组成的,即油流至管壁的放热,沥青防腐层的热传导和管外壁至周围土壤的传热,由于本设计中所输介质的要求不高,而且管径和输量较大,油流到管壁的温降比较小,流态为紊流,故油流到管内壁的对流换热和管壁自身的热传导可以忽略不计。
而总的传热系数主要取决于管外壁至土壤的放热系数。
计算中周围介质的温度取最冷月土壤的平均温度,以首、末站平均温度作为油品的物性计算温度。