当前位置:文档之家› 植物表型组学研究技术(一)FluorCam 叶绿素荧光成像技术

植物表型组学研究技术(一)FluorCam 叶绿素荧光成像技术

植物表型组学研究技术(一)FluorCam 叶绿素荧光成像技术
植物表型组学研究技术(一)FluorCam 叶绿素荧光成像技术

植物表型组学研究技术(一) ——FluorCam叶绿素荧光成像技术

FluorCam叶绿素荧光成像技术

Rousseau等(High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis.Plant Methods, 2013, 9:17),利用FluorCam开放式叶绿素荧光成像系统作为高通量表型分析平台,采用图像阈值分割等分析方法,对植物病原体感染进行了定量分析检测,根据Fv/Fm将感染分为不同阶段/等级,特别是可以将用其它方法难以分辨出来的感染前期加以分辨,并对5个品种的菜豆对普通细菌性疫病的抗性进行了定量分析评价。

PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM叶绿素荧光技术(Pulse Amplitude Modulated technique——

脉冲调制技术)与CCD技术结合在一起,于1996

年在世界上成功研制生产出FluorCam叶绿素荧

光成像系统(Heck等,1999;Nedbal等,2000;

Govindjee and Nedbal, 2000)。FluorCam叶

绿素荧光成像技术成为上世纪90年代叶绿素荧

光技术的重要突破,使科学家对光合作用与叶

绿素荧光的研究一下子进入二维世界和显微世

界,广泛应用于植物生理生态、植物胁迫与抗

性监测、作物育种、植物表型分析等。不同于

其它成像分析技术,FluorCam叶绿素荧光成像

只对叶绿素荧光波段敏感,可以有效避免环境

光的干扰,特异性、高灵敏度反映植物生理生

态状况。

主要功能特点如下:

1)高灵敏度CCD,时间分辨率可达50帧/秒,有效抓取叶绿素荧光瞬变;可选配高分

辨率CCD,分辨率1392x1040像素,用于气孔功能成像分析、稳态荧光如GFP荧光测量等

2)具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑:

a)Fv/Fm:测量参数包括

Fo,Fm,Fv,QY等

b)Kautsky诱导效应:

Fo,Fp,Fv,Ft_Lss,QY,

Rfd等荧光参数

c)荧光淬灭分析:Fo,

Fm,Fp,Fs,Fv,QY,Φ

II

NPQ,Qp,Rfd,qL等50

多个参数

d)光响应曲线LC:Fo,

Fm,QY,QY_Ln等荧光参

e)PAR吸收

f)GFP等静态荧光测量

g)OJIP与JIP-test

(FKM与封闭式荧光成像

系统):Fo,Fj,Fi,P 或Fm,Mo(OJIP曲线初始斜率)、OJIP固定面积、Sm(对关闭所有光反应中心所需能量的量度)、QY、PI等26个参数

3)自动重复实验功能,可无人值守自动循环完成选定的实验程序,重复次数及间隔时

间客户自定义,成像测量数据自动按时间日期存入计算机

4)FluorCam成像分析软件:具在线功能(Live)、实验程序选配功能(Protocols)、

成像预处理功能(Pre-processing)及成像分析结果展示报告功能(Result)四大功能模块

a)在线功能(live):可对仪器和样品进行在线测试调试、快照、显示实验进度、

在线显示荧光瞬变动态视频等

b)实验程序选配功能(protocols):可选配不同的实验程序,并可对实验程序进

行编辑、设置、储存(以备以后使用同样的实验程序)等

c)成像预处理功能:可浏览整个测量视频及任何点、任何区域的荧光动态变化曲

线,可进行“选区操作”或“分级操作”(图像阈值分割功能);选区操作可

对成像进行自动或手动选区(ROI),还可使用“模具”包括多孔板模具、培养

皿模具、桌面模具进行模具选区;分级操作具备荧光强度刻度标尺和四个“游

标”,通过移动4个游标可以将成像按不同强度划分成不同的荧光范围组进行

分析处理,可设置不同的阈值进行图像阈值分割

d)结果展示报告功能:可展示所有选区(ROI)的叶绿素荧光参数值及其图像、每

个参数的频率直方图及每个ROI的荧光动态图等,可对原数据(kinetic)、叶

绿素荧光参数等导出到excel表,还可对每个参数成像图存储成位图

5)数据分析具备“信号计算再平均”模式(算数平均值)和“信号平均再计算模式”

两种功能模式,在高信噪比的情况下选用“信号计算再平均”模式,在低信噪比的情况下选择“信号平均再计算”模式以过滤掉噪音带来的误差

FluorCam叶绿素荧光参数:

参数符号概念描述

Size 面积(像素值),经校准可测量实际面积

Fo 暗适应后的最小荧光

Fo_Dn 暗松弛最小荧光,红外光诱导PSI

Fo_Ln 光适应后的最小荧光,红外光诱导PSI

Fo_Lss 光适应后稳态最小荧光,红外光诱导PSI

Fm 暗适应后最大荧光

Fm_Dn 暗松弛最大荧光

Fm_Ln 光适应最大荧光

Fm_Lss 光适应稳态最大荧光

Fp Kautsky诱导效应最大荧光

Ft_Dn 暗松弛即时荧光

Ft_Ln 光适应即时荧光

Ft_Lss 光适应稳态荧光

Fv Fm-Fo

NPQ_Dn 暗松弛非光化荧光淬灭,=(Fm-Fm_Dn)/Fm_Dn

NPQ_Ln 光适应非光化荧光淬灭,=(Fm-Fm_Ln)/Fm_Ln

NPQ_Lss 稳态非光化荧光淬灭,=(Fm-Fm_Lss)/Fm_Lss

qP_Dn 暗松弛光化学荧光淬灭,=(Fm_Dn?Ft_Dn)/Fm_Dn?Fo_Dn

qP_Ln 光适应光化学淬灭,=(Fm_Ln?Ft_Ln)/(Fm_Ln?Fo_Ln)

qP_Lss 稳态光适应光化学淬灭,=(Fm_Lss?Ft_Lss)/(Fm_Lss?Fo_Lss)

qL_Ln 基于“Lake”模型的光适应光化学淬灭

qL_Lss 基于“Lake”模型的稳态光适应光化学淬灭

QY_Dn 暗松弛光量子效率,=(Fm_Dn?Ft_Dn)/Fm_Dn

QY_Ln或ΔF/Fm 光适应光量子效率,=(Fm_Ln?Ft_Ln)/Fm_Ln

QY_Lss 稳态光量子效率,=(Fm_Lss?Ft_Lss)/Fm_Lss

Fv/Fm或QY_max 最大光量子效率

Fv/Fm_Ln 光适应光量子效率,=(Fm_Ln?Fo_Lss)/Fm_Ln

Fv/Fm_Lss 稳态光量子效率,=(Fm_Lss?Fo_Lss)/Fm_Lss

Rfd_Ln 光适应荧光衰减率,用于评估植物活力,=(Fp?Ft_Ln)/Ft_Ln

Rfd_Lss 稳态荧光衰减率,用于评估植物活力,=(Fp?Ft_Lss)/Ft_Lss

除上述叶绿素荧光参数外,还可以成像测量PAR吸收、植物光谱反射指数NDVI等,叶片大小(或植物大小)可以反映植物的生长等。

FluorCam叶绿素荧光成像技术仪器系统:

1.FluorCam便携式光合联用叶绿素荧光成像系

统:可与LCProSD光合仪、Licor6400光合仪

等联用

2.FluorCam便携式叶绿素荧光成像系统:成像

面积3.5x3.5cm,具暗适应叶夹及多功能轻便

三脚架,主机重量不足2kg,高度集成、高度

便携、高性价比,可用于实验室或野外测量和监测,是便携性植物表型分析的最佳选择。可同时选配FluorPen手持式叶绿素荧光仪用于测量OJIP等

3.FluorCam便携式Chl/GFP荧光成像系统:为便携式荧光成像系统的扩展版,可同

时进行叶绿素荧光成像分析和GFP绿色荧光蛋白成像分析,不仅可用于2D叶绿素荧光成像分析,还可以用于作物育种转基因绿色荧光蛋白标记检测等

4.FluorCam封闭式叶绿素荧光成像系统:LED光源、CCD荧光监测镜头、控制单元

等集成于暗适应操

作箱内形成一个完

整的主机系统,是世

界上唯一可进行QA

再氧化动力学和

OJIP测量分析的叶

绿素荧光成像系统,

封闭式操作箱还可

用于植物光培养(光

强、光质可调)成像

面积13x13cm。下

图为OJIP成像分析

结果

5.FluorCam封闭式Chl/GFP荧光成像系统:为封闭式叶绿素荧光成像系统的扩展版,

可同时进行叶绿素荧光成像分析和GFP绿色荧光蛋白成像分析,成像面积为

13x13cm

6.FluorCam开放式叶绿素荧光成像系统:模块式,具备高度可扩展性,可自由选配

不同的激发光源及相应滤波器以对叶绿素荧光动态及稳态荧光(如GFP等)等进行成像分析,镜头高度可调,标准配置成像面积13x13cm,大型版成像面积可达20x20cm

7.FKM多光谱荧光动态显微成像与光谱分析系统:多激发光、多光谱荧光成像与光

谱分析,可对叶绿素荧光动态、QA再氧化、OJIP快速荧光动力学进行显微成像分析和光谱分析,还可对GFP荧光、细胞荧光染色等进行显微成像分析,是植物细胞和亚细胞水平上最强有力的表型分析平台

8.Fluorcam移动式大型叶绿素荧光成像系统:大型叶绿素荧光成像平台安装在具轮

子的支架上,方便移动,成像平台可上下移动以适于不同高度的植物,成像面积达35x35cm,可选配RGB真彩成像分析和GFP绿色荧光蛋白成像检测

9.FluorCam样带扫瞄式叶绿素荧光成像系统:大型成像平台可在100-500cm的

支架上对样带进行扫瞄成像,标配扫瞄区域长度为400cm,成像平台可沿样带精确定位自动扫瞄,可选配RGB真彩扫瞄成像,从而实现叶绿素荧光成像和真彩成像分析

10.FluorCam多光谱荧光成像系统:属多激发光、多光谱荧光成像系统,不仅可对叶

绿素荧光进行成像分析,还可对UV紫外光激发F440(蓝色荧光)、F520(绿色荧光)、F690(红色荧光)和F740(红外荧光)进行成像分析用于全方位研究检测植物胁迫与抗性,有标准配置、扩展配置和大型配置3种型号

案例1: 北京市土壤种子库萌发23天后的叶绿素荧光成像分析。左图为Rfd,右图为采用FluorCam图像阈值分割方法特异性选择土壤表面的藻类(彩色部分)叶绿素荧光成像(数据来源为Ecolab实验室)

案例2: 芦荟干旱胁迫叶绿素荧光成像分析,其中蓝色为干旱胁迫状态,红色为浇水后24小时(数据来源为

Ecolab 实验室)

案例3: 菜豆对敌草隆(Diuron)吸收过程叶绿素荧光成像(图片来源:Hartmut等,Uptake of diuron and concomitant loss of photosynthetic activity in leaves as visualized by imaging the red chlorophyll fluorescence.

Photosynth Res. (2013) 116:355-361)

0 0.2

0.4

0.6

0.8 1 QY_max

Fv/Fm_L1

Fv/Fm_L2 Fv/Fm_L3 Fv/Fm_L4

Fv/Fm_Lss

Fv/Fm_D1 Fv/Fm_D2 Fv/Fm_D3

QY_L1

QY_L2

QY_L3

QY_L4

QY_Lss QY_D1 QY_D2 QY_D3 0

0.1 0.2

0.3 0.4 NPQ_L1 NPQ_L2 NPQ_L3 NPQ_L4

NPQ_Lss NPQ_D1

NPQ_D2 NPQ_D3

qN_L1

qN_L2

qN_L3

qN_L4 qN_Lss qN_D1 qN_D2 qN_D3

案例4: 紫露草叶绿素荧光参数成像(左)及其实验叶片部分频率直方图(中)和在正常空气中的叶尖部分频率直方图(右):A为为干燥脱水、低氧(2%)、正常CO2(350ppm),D为干燥脱水2小时、低氧、正常CO2,G为干燥脱水2小时、低氧、高浓度CO2(5%)

代谢组学技术及在毒理学研究中的应用

代谢组学技术及在毒理学研究中的应用 摘要:代谢组学是定性和定量分析某一生物或细胞所有低分子量代谢产物,从而监测机体或活细胞中化学变化的一门科学,是系统生物学的重要组成部分。作为系统生物学重要组成部分的“代谢组学”,通过考察机体受毒物刺激后体液或组织中代谢物的整体动态变化轨迹,结合模式识别的多元分析方法,快速筛选毒性相关的分子标志物,进而更系统、更全面的揭示毒物作用于机体的典型特征,为相关毒性作用模型建立、环境或药物中毒性化学物的快速高通量筛选以及相关疾病的预防与治疗提供重要的科学依据。本文将从代谢组学的概况、代谢组学在毒理学中的应用进行综述。 关键词:代谢组学;毒理学;应用 “代谢组学”(metabonomics)是指对机体因环境因素刺激、病理生理扰动或遗传修饰等引起的多种代谢指标动态变化的系统性定量检测新方法,该技术广泛用于植物学、药理学、毒理学、遗传学等学科领域。“代谢组学”最早是在1999年由英国的Jeremy Nicholson提出的,是在利用核磁共振技术检测生物体液组成成分的基础上结合模式识别的分析方法发展而来,主要是通过考察生物体系受环境刺激或病理生理扰动后的代谢产物动态变化,分析代谢产物整体的变化轨迹,以此阐述某种病理(生理)过程中所发生的一系列生物学事件及机制。 毒理学是研究毒物与机体交互作用的一门学科,一方面探讨毒物对机体各种组织细胞、分子、特别是生物大分子作用及损害的机制,阐明毒物分子结构与其毒作用之间的关系;另一方面,也研究毒物的体内过程(吸收、分布、代谢转化、排泄)及机体防御体系对毒物作用的影响。“代谢组学”一经提出,其崭新的研究思路和无损伤的整体研究方法在包括药物开发、毒性评价及预测、营养和食物安全性评价等在内的众多领域得到日益广泛的重视和应用。 1. 代谢组学的概况 1.1代谢组学的定义及发展[1] 代谢组学是以组群指标分析为基础,以高通量检测和数据处理为手段,以信息建模与系统整合为目标的系统生物学的一个分支,是继基因组学、转录组学、

植物代谢组学的研究方法及其应用

植物代谢组学的研究方法及其应用 ★★★ BlueGuy(金币+3)不错,谢谢! 近年来,随着生命科学研究的发展,尤其是在完成拟南芥(Arabidopsis thaliana) 和水稻(Oryza sativa) 等植物的基因组测序后,植物生物学发生了翻天覆地的变化。人们已经把目光从基因的测序转移到了基因的功能研究。在研究DNA 的基因组学、mRNA 的转录组学及蛋白质的蛋白组学后,接踵而来的是研究代谢物的代谢组学(Hall et al.,2002)。代谢组学的概念来源于代谢组,代谢组是指某一生物或细胞在一特定生理时期内所有的低分子量代谢产物,代谢组学则是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科(Goodacre,2004)。它是以组群指标分析为基础,以高通量检测和数据处理为手段,以信息建模与系统整合为目标的系统生物学的一个分支。 代谢物是细胞调控过程的终产物,它们的种类和数量变化被视为生物系统对基因或环境变化的最终响应(Fiehn,2002)。植物内源代谢物对植物的生长发育有重要作用(Pichersky and Gang,2000)。植物中代谢物超过20万种,有维持植物生命活动和生长发育所必需的初生代谢物;还有利用初生代谢物生成的与植物抗病和抗逆关系密切的次生代谢物,所以对植物代谢物进行分析是十分必要的。 但是,由于植物代谢物在时间和空间都具有高度的动态性(stitt and Fernie,2003)。尤其是次生代谢物种类繁多、结构迥异,且产生和分布通常有种属、器官、组织以及生长发育时期的特异性,难于进行分离分析,所以人们一直在寻找更为强大的检测分析工具。在代谢物分析领域,人们已经提出了目标分析、代谢产物指纹分析、代谢产物轮廓分析和代谢表型分析、代谢组学分析等概念。20世纪90年代初,Sauter 等(1991)首先将代谢组分析引入植物系统诊断,此后关于植物代谢组学的研究逐年增多。随着拟南芥等植物的基因组测序完成以及代谢物分析手段的改进和提高,今后几年进入此研究领域的科学家和研究机构将越来越多。 1研究方法 代谢组学分析流程包括样品制备、代谢物成分分析鉴定和数据分析与解释。由于植物中代谢物的种类繁多,而目前可用的成分检测和数据分析方法又多种多样,所以根据研究对象不同,采用的样品制备、分离鉴定手段及数据分析方法各不相同。 1.1样品制备 植物代谢物样品制备分为组织取样、匀浆、抽提、保存和样品预处理等步骤(Weckwerth and Fiehn,2002)。代谢产物通常用水或有机溶剂(如甲醇和己烷等)分别提取,获得水提取物和有机溶剂提取物,从而把非极性的亲脂相和极性相分开。分析之前,通常先用固相微萃取、固相萃取和亲和色谱等方法进行预处理(邱德有和黄璐琦,2004)。然而植物代谢物千差万别,其中很多物质稍受干扰结构就会发生改变,且对其分析鉴定所采用的设备也不同。目前还没有适合所有代谢物的抽提方法,通常只能根据所要分析的代谢物特性及使用的鉴定手段选择合适的提取方法。而抽提时间、温度、溶剂成分和质量及实验者的技巧等诸多因素也将影响样品制备的水平。

叶绿素荧光参数及意义

第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最 广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合 作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起 叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量 方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的 应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来 的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少, 叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析 吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定 存在几纳秒(ns ,1 ns=10-9 s )。 波长吸收荧光红 B 蓝 荧光 热耗散 最低激发态较高激发态基态吸收蓝光吸收红光能量A 图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化 学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞 争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化 学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用 于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到 叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶 绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系 统II 的叶绿素a 发出的荧光。

Fluorcam多光谱荧光成像技术及其应用

FluorCam多光谱荧光成像技术(Multi-color FluorCam) 自上世纪90s年代PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM脉冲调制叶绿素荧光技术与CCD技术结合在一起,成功研制生产FluorCam叶绿素荧光成像系统(Nedbal等,2000)以来,FluorCam叶绿素荧光成像技术得到长足发展和广泛应用,先后有封闭式、开放式(包括标准版和大型版)、便携式叶绿素荧光成像系统,及显微叶绿素荧光成像系统、大型叶绿素荧光成像平台(包括移动式、样带式、XYZ三维扫描式等)等,近些年还进一步发展了PlantScreen植物表型成像分析平台(Phenotyping)(有传送带版、XYZ三维扫描版及野外版等)及多光谱荧光成像技术。 Multi-color FluorCam多光谱荧光成像技术包括多激发光-多光谱荧光成像技术和UV 紫外光激发多光谱荧光成像技术: 1.多激发光-多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光) 到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、绿波轮及相应滤波器,对不同波长荧光(多光谱荧光)进行成像分析。如FluorCam便携式GFP/Chl.荧光成像仪及FluorCam封闭式GFP/Chl.荧光成像系统具备红光和兰光及相应滤波器,可以对GFP和叶绿素荧光成像分析;FluorCam开放式多光谱荧光成像系统可以进一步选配不同颜色的激发光,如除红光、蓝光外,还可选配绿色光源及相应滤波器,以对YFP进行荧光成像分析等; 2.UV紫外光激发多光谱荧光成像技术:长波段UV紫外光(320nm-400nm)对植物叶片 激发,可以产生具有4个特征 性波峰的荧光光谱,4个波峰 的波长为兰光440nm(F440)、 绿光520nm(F520)、红光690nm (F690)和远红外740nm (F740),其中F440和F520 统称为BGF,由表皮及叶肉细 胞壁和叶脉发出,F690和F740 为叶绿素荧光Chl-F。紫外光 激发多光谱荧光(UV-MCF)可 以用来灵敏、特异性地评估植 物生理状态包括受胁迫状态, 包括干旱、病虫害、环境污染、 氮胁迫等 本文就FluorCam多光谱荧光成像技术产品及最新应用案例做一简单介绍,其中FluorCam便携式GFP/Chl荧光成像仪(Handy GFPCam)和FluorCam封闭式GFP/Chl荧光成像系统(Closed GFPCam)已有较为详细的资料介绍,在此不再专门介绍。

代谢组学在植物研究领域中的应用

Botanical Research 植物学研究, 2016, 5(1), 26-33 Published Online January 2016 in Hans. https://www.doczj.com/doc/1711681962.html,/journal/br https://www.doczj.com/doc/1711681962.html,/10.12677/br.2016.51005 Application of Metabolomics in Plant Research Guixiao La1, Xi Hao1, Xiangyang Li1, Mingyi Ou2, Tiegang Yang1* 1Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou Henan 2China Tobacco Guizhou Industrial Co. Ltd., Guiyang Guizhou Received: Dec. 10th, 2015; accepted: Dec. 25th, 2015; published: Dec. 30th, 2015 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/1711681962.html,/licenses/by/4.0/ Abstract Metabolomics is an emerging omics technology after genomics and proteomics, which can qualify and quantify all small molecular weight metabolites in an organism or cells in a short time. With the technology development of gas chromatography-mass spectrometer (GC-MS), liquid chroma-tography-mass spectrometer (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS), and the improvement of data process method and presented huge advantages, plant metabolomics has been used in multiple research fields such as functional genomics, metabolism pathway, crop improvement... In this paper, we reviewed the recent progress in plant metabolomics and the put-ative problem in this research field. Moreover, the application prospects of the plant metabolom-ics were also forecasted. Keywords Metabolomics, Plant, Advance, Prospect 代谢组学在植物研究领域中的应用 腊贵晓1,郝西1,理向阳1,欧明毅2,杨铁钢1? 1河南省农业科学院经济作物研究所,河南郑州 2贵州中烟工业有限责任公司,贵州贵阳 *通讯作者。

叶绿素荧光研究背景知识介绍

叶绿素荧光研究背景知识介绍 前言 近些年来,叶绿素荧光技术已经逐渐成为植物生理生态研究的热门方向。荧光数据是植物光合性能方面的必要研究内容。目前这种趋势由于叶绿素荧光检测仪的改进而得到发展。然而荧光理论和数据解释仍然比较复杂。就我们所了解的情况来看,目前许多研究者对荧光理论不是很清楚,仪器应用仅仅限于简单的数据说明的基础上,本文在此基础上,目的在于简单明晰地介绍相关理论和研究要点,以求简单明确地使用叶绿素荧光检测设备,充分分析实验数据,重点在于植物生理生态学技术的应用和限制。 荧光测量基础 植物叶片所吸收的光的能量有三个走向:光合驱动、热能、叶绿素荧光。三个过程之间存在竞争,其中任何一个效率的增加都将造成另外两个产量的下降。因此,测量叶绿素荧光产量,我们可以获得光化学过程与热耗散的效率的变化信息。尽管叶绿素荧光的总量很小(一般仅占叶片吸收光能总量的1-2%),测量却非常简单。荧光光谱不同于吸收光谱,其波长更长,因此荧光测量可以通过把叶片经过给定波长的光线的照射,同时测量发射光中波长较长的部分光线的量来实现。有一点需要注意的是,这种测量永远是相对的,因为光线不可避免会有损失。因此,所有分析必须把数据进行标准化处理,包括其进一步计算的许多参数也是如此。 调制荧光仪的出现是荧光研究技术的革命性的创新。在这类仪器中,测量光源是调制(高频率开关)的,其检测器也被调谐来仅仅检测被测量光激发的荧光。因此,相对的荧光产量可以在背景光线(主要是指野外全光照的条件下)存在的条件下进行测量。目前绝大多数的荧光仪采用了调制系统,同时也强烈建议选择调制荧光仪(Kate Maxwell,2000)。 为什么荧光产量会发生改变?Kautsky效应和Beyond 叶绿素荧光产量的变化最早在1960年被Kautsky和其合作者发现。他们发现,当把植物叶片从黑暗中转入光下,荧光产量瞬间上升(大约在1秒左右)这种上升可以解释为光合途径中电子受体的还原(可接受电子的受体的减少)。一旦PSII吸收光能,初级电子受体Q A(质体醌)接受了电子,它将不能再接受电子,直到它把电子传递给下一级电子载体Q B。此期间,反应中心是关闭的,反应中心关闭的比

药用植物代谢组学的研究进展

药用植物代谢组学的研究进展 【摘要】从技术步骤、分析方法以及实际应用三个方面对当前药用植物代谢组学研究领域的一些理论问题和实践中面临的挑战进行综述。 【关键词】药用植物;代谢组学;功能基因组学 代谢组学是对生物体内代谢物进行大规模分析的一项技术[1],它是系统生物学的重要组成部分(如图1所示),药用植物代谢组学主要研究外界因素变化对植物所造成的影响,如气候变化、营养胁迫、生物胁迫,以及基因的突变和重组等引起的微小变化,是物种表型分析最强有力的工具之一。在现代中药研究中,代谢组学在药物有效性和安全性、中药资源和质量控制研究等方面具有重要理论意义和应用价值。另外,在对模式植物突变体文库或转基因文库进行分析之前,代谢组学往往是首先考虑采用的研究方法之一。目前,国外已有成功利用代谢组学技术对拟南芥突变株进行大规模基因筛选的例子,这为与重要性状相关基因功能的阐明和选育可供商业化利用的转基因作物奠定了基础 目前,还有许多经济作物的全基因组测序计划尚未完成,由于代谢组学研究并不要求对基因组信息的了解,所以在与这些作物有关的研究领域具有更大的利用价值,这也是其与转录组学和蛋白组学研究相比的优势之一。代谢组学研究涉及与生物技术、分析化学、有机化学、化学计量学和信息学相关的大量知识,Fiehn[2]对代谢组学有关的研究方向进行了分类(见表1)。 1代谢组学研究的技术步骤 代谢组学研究涉及的技术步骤主要包括植物栽培、样本制备、衍生化、分离纯化和数据分析5个方面(见图2)。 1.1植物栽培 对研究对象进行培育的目的是为了对样本的稳定性进行控制,相对于微生物和动物而言,植物的人工栽培需要考 表1代谢组学的分类及定义略 虑更多的问题,如中药材在不同年龄、不同发育阶段、不同部位以及光照、水肥、耕作等环境因素的微小差异都可引起生理状态的变化,而这些非可控及可控双重因素的影响很难进行精确的控制,从而影响药用植物代谢组研究的重复性。为了解决以上问题,推荐使用大容量的培养箱[3],定时更换培养箱中栽培对象的位置,以及使用无土栽培技术等,Fukusaki E[4]利用无土栽培系统将水和养分直接引入植物根部,并且对供给量进行精确地控制,大大提高了实验的重复性。 1.2样本制备 为了获得稳定的实验结果,样本制备需要考虑样本的生长、取样的时间和地点、取样量以及样本的处理方法等问题,并根据分析对象的分子结构、溶解性、极性等理化性质及其相对含量大小对提取和分离的方法进行选择,逐一优化试验方案。Maharjan RP等[5]用6种方法分别对大肠杆菌中代谢产物进行提取,发现用-40℃甲醇进行提取的效果最好。现阶段代谢组学的分析对象主要集中在亲水性小分子,尤其是初级代谢产物,气相色谱 质谱联用(GC MS)和毛细管电泳 质谱(CE MS)联用都是分析亲水小分子的重要技术。Fiehn O等[6]使用GC MS 对拟南芥叶片中的亲水小分子进行了分析,发现酒石酸半缩醛、柠苹酸、别苏氨酸、羟基乙酸等15种植物代谢物。 1.3衍生化处理 对目标代谢产物的衍生化处理取决于所使用的分析设备,GC MS系统只适

代谢组学技术在烟草研究中的应用进展_王小莉

2016-02,37(1)中国烟草科学 Chinese Tobacco Science 89 代谢组学技术在烟草研究中的应用进展 王小莉,付博,赵铭钦*,贺凡,王鹏泽,刘鹏飞 (河南农业大学烟草学院,国家烟草栽培生理生化研究基地,郑州 450002) 摘要:简述了作为研究植物生理生化和基因功能新方法的代谢组学在烟草研究中的主要技术流程及其应用现状,归纳了不同生态环境和不同组织中烟草代谢物差异及产生原因,总结了生物和非生物胁迫及化学诱导处理等条件下的烟草生理生化变化及相关基因功能。最后提出了目前烟草代谢组学研究所面临的问题,并指出与其他组学整合应用是代谢组学在烟草研究领域的发展趋势。 关键词:烟草;代谢组学;胁迫;化学诱导;基因功能 中图分类号:S572.01 文章编号:1007-5119(2016)01-0089-08 DOI:10.13496/j.issn.1007-5119.2016.01.016 Research of Metabolomics in Tobacco WANG Xiaoli, FU Bo, ZHAO Mingqin*, HE Fan, WANG Pengze, LIU Pengfei (College of Tobacco Science, Henan Agricultural University, National Tobacco Physiology and Biochemistry Research Center, Zhengzhou 450002, China) Abstract: Metabolomics has been considered one of the most effective means of investigating physiological and biochemical processes and gene function of plants. Here we review the main process of metabolomics and its application status in tobacco research, the regulation mechanisms of physiological and biochemical reactions when tobacco responds to different environmental, biotic and abiotic stresses, chemically induced processes and genetic modifications. Finally, issues of critical significance to current tobacco metabolomics research are discussed and it is noted that integration with other omics is the trend of metabolomics research in tobacco. Keywords: tobacco; metabolomics; stress; chemical induction; gene function 代谢组学与基因组学、转录组学和蛋白质组学分别从不同层面研究生物体对环境或基因改变的响应,它们都是系统生物学的重要组成部分。植物代谢组学是21世纪初产生的一门新学科,主要通过研究植物的次生代谢物受环境或基因扰动前后差异来研究植物代谢网络和基因功能[1-2]。与微生物和动物相比,植物的独特性在于它拥有复杂的代谢途径,目前发现的次生代谢产物达20万种以上[3]。代谢物差异是植物对基因或环境改变的最终响应[4],因此,对代谢物进行全面解析,探索相关代谢网络和基因调控机制,是从分子层面深入认识植物生命活动规律的一个重要环节[5-7]。 烟草不仅是重要的经济作物,同时还是一种重要的模式植物,作为生物反应器在研究植物遗传、发育、防御反应和转基因等领域中具有重要意义[8-10]。烟草代谢物非常丰富,目前从烟叶中已鉴定出3000多种[11],且代谢物理化性质和含量差异较大,给烟草化学及代谢规律研究带来挑战。传统的烟草化学主要集中于研究某一类化学成分或某几种重要物质,如萜类[12]、生物碱类[13]、多酚类等[14],这很难全面地系统地阐述烟草代谢网络。随着系统生物学的发展,烟草越来越广泛地被用于基因组学、转录组学、蛋白质组学和代谢组学的研究中,例如采用系统生物学的方法找出 基金项目:中国烟草总公司浓香型特色优质烟叶开发(110201101001 TS-01);上海烟草集团责任有限公司“浓香型特色优质烟叶风格定位研究及样品检测”(szbcw201201150) 作者简介:王小莉(1983-),女,博士研究生,主要从事烟草生理生化研究。E-mail:xiaoliwang325@https://www.doczj.com/doc/1711681962.html, *通信作者,E-mail:zhaomingqin@https://www.doczj.com/doc/1711681962.html, 收稿日期:2015-09-09 修回日期:2015-11-19

植物表型组学研究技术(一)FluorCam 叶绿素荧光成像技术

植物表型组学研究技术(一) ——FluorCam叶绿素荧光成像技术

FluorCam叶绿素荧光成像技术 Rousseau等(High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis.Plant Methods, 2013, 9:17),利用FluorCam开放式叶绿素荧光成像系统作为高通量表型分析平台,采用图像阈值分割等分析方法,对植物病原体感染进行了定量分析检测,根据Fv/Fm将感染分为不同阶段/等级,特别是可以将用其它方法难以分辨出来的感染前期加以分辨,并对5个品种的菜豆对普通细菌性疫病的抗性进行了定量分析评价。 PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM叶绿素荧光技术(Pulse Amplitude Modulated technique—— 脉冲调制技术)与CCD技术结合在一起,于1996 年在世界上成功研制生产出FluorCam叶绿素荧 光成像系统(Heck等,1999;Nedbal等,2000; Govindjee and Nedbal, 2000)。FluorCam叶 绿素荧光成像技术成为上世纪90年代叶绿素荧 光技术的重要突破,使科学家对光合作用与叶 绿素荧光的研究一下子进入二维世界和显微世 界,广泛应用于植物生理生态、植物胁迫与抗 性监测、作物育种、植物表型分析等。不同于 其它成像分析技术,FluorCam叶绿素荧光成像 只对叶绿素荧光波段敏感,可以有效避免环境 光的干扰,特异性、高灵敏度反映植物生理生 态状况。 主要功能特点如下: 1)高灵敏度CCD,时间分辨率可达50帧/秒,有效抓取叶绿素荧光瞬变;可选配高分 辨率CCD,分辨率1392x1040像素,用于气孔功能成像分析、稳态荧光如GFP荧光测量等

藻类叶绿素荧光仪快讯

藻类研究监测快讯 藻类是水体生态系统中的生产者,在生态系统中起着不可或缺的作用。随着能源与环境方面研究的深入,藻类已经越来越多的被利用到实验当中。叶绿素荧光是藻细胞中的叶绿素吸收光能后受激发而释放出的能量,通过检测荧光的强弱, 可初步判断藻类的光合作用强度及生理状况。该项技术使藻 类的生理生化研究变得更加简单、方便、精确。 重要参数如下: Ft瞬时荧光,与藻细胞浓度、叶绿素浓度有 关。在暗适应状态下测得的Ft值即为Fo最小荧 光值,在给予饱和光照时,即为Fm最大荧光值; QY反映藻类的光合效率,对胁迫非常敏感;暗适应条件下测得的QY值为最大光合效率值即(Fm-Fo)/Fm,反映藻类的潜在光合效率,光照下测得的QY值为有效光量子产量即(Fm’-Ft)/Fm’,反映藻类的实际光合效率。 OJIP曲线快速荧光诱导曲线,可测定藻类在由暗适应转到光照下的瞬间荧光变化,其中 FixArea与藻类叶绿素浓度 呈正相关,可作为藻类浓度 指标;PI为功能指数,对 胁迫非常敏感。有些胁迫不 会影响PSⅡ,也不会导致 QY降低,但可通过PI体 现出来,PI可以反映三个方面:反应中心密度、用于电荷分离过程的光子吸收率、电子传递效率。 NPQ 非光化学荧光淬灭,多余辐射能的散失,反映的藻类的光保护能力。 1、AquaPen探头式藻类荧光仪 AquaPen探头式藻类荧光仪用于水体微藻类的荧光测量,其高灵敏度和便携性可以对水 体较低浓度的浮游植物进行快速测量。检测极限可达0.5 μg Chl/L,测量计算参数:Fo, Ft, Fm, Fm‘, QY, OJIP, NPQ等。 光化学光和饱和光的强度在0 - 3,000 μmol·m-2·s-1可调,光 化光的持续时间可调,界面简单,易于操作,内存可达4Mb, 4节AAA电池供电,数据可通过USB数据线传至计算机或 掌上电脑。检测器前带有暗适应罩子,适合野外测量。

代谢组学的定义(1)

代谢组学的定义 代谢组学(metabolomics/metabonomics)[1, 2]是上世纪90 年代中期发展起来的一门新学科,它是研究生物体系受外部刺激所产生的所有代谢产物变化的科学,所关注的是代谢循环中分子量小于1000 的小分子代谢物的变化,反映的是外界刺激或遗传修饰的细胞或组织的代谢应答变化。代谢组学的概念来源于最初人们提出的“代谢物组”(metabolome),即指某一生物或细胞所有代谢产物,后来发展为代谢组学的概念。其最主要的特征是通过高通量的实验和大规模的计算,从系统生物学的角度出发,全面地综合地考察机体的代谢变化。作为一种崭新的方法学,代谢组学已成为国际上疾病与健康研究的一个重要热点。 Nicholson 研究小组于1999 年提出了metabonomics 的概念[1],并在疾病诊断、药物筛选等方面做了大量的卓有成效的工作[3, 4]。Fiehn 等[5]提出了metabolomics 的概念,第一次把代谢产物和生物基因的功能联系起来。之后很多植物化学家开展植物代谢组学的研究,使代谢组学得到了极大的发展,形成了当前代谢组学的两大主流领域:metabolomics 和metabonomics。前者是对生物系统整体的、动态的认识(不仅关心代谢物质的整体也关注其动态变化规律),而后者强调分析且是个静态的认识概念,因此可以认为metabolomics 是metabonomics 的一个组成部分。代谢组学经过不断的发展,一些相关层次的定义已被学术界广泛接受。第一个层次为靶标分析,目标是定量分析一个靶蛋白的底物和/或产物;第二个层次为代谢轮廓分析,采用针对性的分析技术,对特定代谢过程中的结构或性质相关的预设代谢物系列进行定量测定;第三个层次为代谢指纹,定性或半定量分析细胞内外全部代谢物;第四个层次为代谢组分析,定量分析一个生物系统全部代谢物,其目前还难以实现。 目前,代谢组学已在药物毒性和机理研究[6-7]、微生物和植物研究[8,9]、疾病诊断和动物模型[10, 11]、基因功能的阐明[12]等领域获得了较广泛的应用,在中药成分的安全性评估[13]、药物代谢分析[14]、毒性基因组学[15]、营养基因组[16]、药理代谢组学[17-19]、整合药物代谢和系统毒理学[20, 21]等方面也取得了新的突破和进展代谢组学的具体研究方法是:运用核磁共振(NMR)、质谱(MS)、气质联用(GC-MS)、高效液相色谱(HPLC)等高通量、高灵敏度与高精确度的现代分析技术,通过对细胞提取物、组织提取物、生物体液(血浆、血清、尿液、胆汁、脑脊液等)和完整的脏器组织等随时间变化的代谢物浓度进行检测,结合有效的模式识别方法进行定性、定量和分类,并将这些代谢信息与生理病理过程中的生物学事件关联起来,从而了解机体生命活动的代谢过程[22]。 基于核磁共振的代谢组学 作为众多化学分析方法中的一种,NMR 在代谢组学的研究中起着非常重要的作用。首先,NMR 分析生物体液或活体组织等复杂样品时,预处理过程简单,测试手段丰富,包括液体高分辨NMR、高分辨魔角旋转(HRMAS) NMR 和活体磁共振定域谱(MRS),因此能够在最接近生理状态的条件下对不同类型的样品进行检测。其次,NMR 是一种无创性的多参数动态分析技术,同时具有定性分析和定量分析的能力;NMR 谱本身携带有丰富的分子结构和动力学信息,通过扫描生物样品可以得到其所有含NMR 可观测核的、且含量在NMR 检测限上的代谢物的特征NMR 谱。再次,NMR 检测可以在很短的时间内完成(一般5 ~ 10 分钟),这对于实现高通量样品检测,并保证样品在检测期内维持原有生化性质至关重要。此外,低温探头、自动进样技术的出现和日趋完善,也使检测灵敏度和速度不断提高。最

叶绿素荧光成像技术及其在光合作用研究中的应用

Fluorcam荧光成像技术及其在光合作用研究 中的应用 Eco‐lab生态实验室 北京易科泰生态技术有限公司 info@eco‐https://www.doczj.com/doc/1711681962.html,

目录 1、叶绿素荧光成像技术发展过程 2、荧光参数及其生理意义 3、PSI介绍(荧光成像的发明者) 4、PSI产品介绍 5、应用案例

叶绿素荧光技术发展历程 ?Kautsky effect: Kautsky and Hirsch(1931)首次用肉眼发现叶绿素荧光现象并发表论文“CO2同化新实验”,后被称作“Kautsky effect” ?PAM(Pulse Amplitude Modulated Fluorometer): Schreiber(1986)等发明了PAM脉冲调制技术测量叶绿素荧光。?FluorCam:KineKc imaging of chlorophyll fluorescence: Ladislav Nedbal(2000)等于上世纪90年代末期发明了与 PAM技术相结合的叶绿素荧光成像技术

成像测量局部放大

荧光参数及其意义 ?Fo、Fm与QY,此外还有PAR_Abs及ETR ?Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd ?荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,NPQ,Qp,Rfd 等50多个参数 ?OJIP曲线:快速荧光诱导曲线。Fo,Fj,Fi,P或Fm,Mo(OJIP曲线初始斜率)、FixArea固定面积、Sm(对关闭所有光反应中心所需能量的量度)、QY、PI等 ?LC光响应曲线:Fo,Fm,QY,QY_Ln

叶绿素荧光仪著名厂商 ?PSI:捷克布尔诺Brno(孟德尔在此发现著名的孟德尔遗传定律),Ladislav Nedbal为首席科学家和主要股东(另一股东为David Kramer,美国密执根州立大学教授),1997年为美国华盛顿大学H.Pakrasi教授研制成了第一台FluorCam荧光成像系统。主要产品有: –FluorCam叶绿素荧光成像系列产品 –FL3500/FL5000双调制荧光仪系列产品 –FluorPen及AquaPen等手持式荧光仪产品 –光养生物反应器等藻类培养与在线监测产品 –光源与植物培养室 ?Optics:美国,主要产品为OS5p‐PAM叶绿素荧光仪等?Walz:德国,主要产品为PAM2500叶绿素荧光仪等

食品科学里的代谢组学分析综述

食品科学里的代谢组学分析综述 学号:2011201373 姓名:杨海源 摘要 代谢组学在许多学科已成为重要的分析工具,比如人类疾病学、营养学、药物研发、植物生理学等其他学科。在食品科学学科中代谢组学已成为热门的分析原材料和产品质量、加工处理、安全性评价的方法。这篇文章从代谢物识别、数据预测、信息处理方法讨论了代谢组学的最新进展及代谢组学分析在每个阶段的特殊方法。 引言 代谢组学使一个体系中许多小分子代谢物研究成为可能。在许多研究领域已成为重要的研究工具,最近验证并发现代谢组学在人类疾病研究、药物研发、植物分析、人类营养及其他领域发展迅速、影响广泛。代谢组学分析大体上分为代谢物靶标分析和代谢物非靶标分析。靶标分析针对目标代谢组中某一个特组的组分分析、大多情况下要求识别和量化组中的代谢物。靶标分析在未确定条件下对于混合代谢组中反应评估很重要。靶标代谢组学分析特殊要求样品高纯度和单一选择性提取。相反,非靶标代谢组学分析主要探测代谢分子群组,尽可能获取代谢模式及代谢物指纹,对特殊代谢物无识别和定量分析要求。非靶标分析已被用于生物学的可识别指纹分析,如植物病。基于特殊目标物的分析和数据处理,多数代谢物组学研究也被分为代谢物识别、信息获取、可预测性研究(见图.1)。

图1: 代谢组学一般分类 标记物识别分析主要在于发现样品数量的不同,没有必要创建统计模型或评估可能的路径来说明这些差异。葡萄酒的分类常通过葡萄品种和生产区及发酵代谢技术来区分。通常用多元数据分析技术获得代谢物的识别与最大化的分类,此方法在主成分分析中成为应用最多。主成分分析与其他多元数据分析在其他领域也广泛谈到。相反,信息代谢组学分析主要对目标物的定性、定量分析,或对非靶标代谢物分子获取内在信息。代谢物数据库应用不断发展和更新,如人类代谢物数据库。通过信息代谢组学可以进行对可能的代谢路径分析、新生物活性物的发现、生物标记物的发现、特殊代谢数据库的创建、代谢物的功能研究。一些代谢组学报告提出,基于代谢物轮廓的统计模型大

大白菜叶色突变体的HRM鉴定及其叶绿素荧光参数分析

园艺学报,():– 2014411122152224 http: // www. ahs. ac. cn Acta Horticulturae Sinica E-mail: yuanyixuebao@https://www.doczj.com/doc/1711681962.html, 收稿日期:2014–08–22;修回日期:2014–10–24 基金项目:河北省海外高层次人才百人计划项目(E2013100011);河北省杰出青年科学基金项目(C2013204118);‘十二五’农村领域国家科技计划课题(2012AA100202-5);农业部农业科研杰出人才培养计划项目(2130106);高等学校博士学科点专项基金项目(20121302110006) 大白菜叶色突变体的HRM 鉴定及其叶绿素荧光参数分析 刘梦洋,卢 银,赵建军,王彦华,申书兴* (河北农业大学园艺学院,河北省蔬菜种质创新与利用重点实验室,河北保定 071000) 摘 要:将大白菜经甲基磺酸乙酯(EMS )诱变种子获得的42株叶色突变体按照生殖时期叶片颜色和叶绿素含量分为9种类型:深绿色、灰绿色、绿色、浅绿色、白绿色、白浅绿色、黄绿色、黄浅绿色、黄色;利用高分辨率熔解曲线(high resolution melting ,HRM )技术对叶绿素荧光基因HCF164突变进行了筛选并结合叶绿素荧光参数测定,获得了1株黄绿色高光合效率突变体A29,1株黄绿色光合结构损伤突变体A35和1株浅绿色光合电子传递受阻突变体A21;对另外7个叶色相关基因的突变进行了HRM 鉴定,表明叶绿素相关基因ATRCCR 、CLH2、PORA 突变可能是造成18个突变体叶色变化的主要原因,黄叶特异基因家族YLS 突变与叶色变化也有关系。 关键词:大白菜;诱变;突变体叶色;HRM ;叶绿素荧光 中图分类号:S 634.1 文献标志码:A 文章编号:0513-353X (2014)11-2215-10 HRM Identification and Chlorophyll Fluorescence Characteristics on Leaf Color Mutants in Chinese Cabbage LIU Meng-yang ,LU Yin ,ZHAO Jian-jun ,WANG Yan-hua ,and SHEN Shu-xing * (College of Horticulture ,Agricultural University of Hebei ,Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei ,Baoding ,Heibei 071001,China ) Abstract :Forty-two leaf color mutants of Chinese cabbage obtained through EMS seeds mutagenesis were used as materials in this study. According to leaf color and leaf chlorophyll content at generative growth mutations were suggested to be divided into 9 types :Dark green ,gray-green ,green ,light green ,white-green ,light white-green ,yellow-green ,light yellow-green and yellow. By detecting the nucleotide variation of the gene HCF164 related to chlorophyll fluorescence using HRM technology and by measuring chlorophyll fluorescence characteristics ,we identified one yellow-green leaf color mutant A29 with high photosynthesis efficiency ,one yellow-green leaf color mutant A35 with photosynthetic structure damages ,one light green mutant A21 with photosynthetic electron transport obstruction. Through identifying other 7 leaf-color-related genes by HRM ,mutation of chlorophyll-related genes ATRCCR ,CLH2 and PORA could be the main reason resulted in 18 leaf color mutants ,mutation of yellow-leaf- specific genes was also affected the variation of leaf color. * 通信作者 Author for correspondence (E-mail :shensx@https://www.doczj.com/doc/1711681962.html, )

植物代谢组学技术在山西道地药材研究中的应用_李震宇

·专论· 植物代谢组学技术在山西道地药材研究中的应用 李震宇*,李爱平,张福生,秦雪梅* 山西大学中医药现代研究中心,山西太原 030006 摘要:以柴胡、款冬花、远志等山西道地中药材为例,总结植物代谢组学技术在中药材质量评价中的应用。在中药材质量评价中,代谢组学侧重于对样本的客观分组聚类,同时可确定差异代谢物,与指纹图谱技术具有明显的互补性,可使中药质量标准更体现中药特色,提高其可控性。分析该技术的优势与应用前景,指出尚存在的问题和改进建议,为扩大其应用提供参考。 关键词:代谢组学;中药材;道地药材;聚类;质量评价 中图分类号:R282 文献标志码:A 文章编号:0253 - 2670(2013)07 - 0785 - 05 DOI: 10.7501/j.issn.0253-2670.2013.07.001 Application of plant metabolomic technology in study on several Shanxi genuine medicinal materials LI Zhen-yu, LI Ai-ping, ZHANG Fu-sheng, QIN Xue-mei Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China Abstract: The application of plant metabolomic technology in the quality evaluation of traditional Chinese medicinal materials (TCMM) was reviewed, using Buplerui Radix, Farfarae Flos, Polygale Radix, and Astragali Radix as genuine medicinal materials. In quality evaluation of TCMM, not only the cluster, but also the differential metabolites between different groups could be revealed simultaneously by metabolomic technology. Thus, plant metabolomic technology is complimentary with fingerprint technology, the characteristics of TCMM could be reflected in quality standards, and the controllability could be also improved. The advantage as well as the prospect is discussed. In addition, the limitations of this technique are pointed and the improvement methods are also suggested. Key words: metabolomics; traditional Chinese medicinal materials; genuine medicinal materials; cluster; quality evaluation 代谢组学技术是近10年来发展的新型组学技术,可对生物或细胞内所有小分子代谢产物同时进行定性和定量分析,是系统生物学的重要组成部分。植物代谢产物种类繁多、结构迥异,传统的分析手段难以满足高通量分析要求。代谢组学技术的出现为这一问题的解决提供了新的方法。指纹图谱和代谢组学技术均能够从整体上对中药所含的化学成分进行全面分析,获得药材的代谢物指纹,指纹图谱技术通过相似度计算确定样本之间的相似度,而代谢组学技术不仅能通过多元统计分析明确不同样本的分组聚类情况,而且能确定不同组间的差异代谢产物。代谢组学技术已用于不同生长年限的人参[1],不同种属的厚朴[2]、麻黄[3],不同产地的灵芝[4]等比较研究;采用相关性分析方法与生物活性相结合,还可进一步确定活性相关成分,如雄蕊状鸡脚参Orthosiphon stamineus Benth. 中的腺苷A1受体拮抗剂[5],金英Galphimia glauca Cav.(Thryallis gracilis Kuntze)中的镇静和抗抑郁活性成分[6]。本课题组近年来对植物代谢组学技术在中药材中的应用进行了探索研究,并应用于柴胡[7]、款冬花[8-13]、远志[14]、黄芪[15]等山西优势中药材中,本文对这些工作进行简要概述,并对其应用前景和存在问题进行展望。 收稿日期:2012-12-10 基金项目:国家自然科学基金资助项目(31270008,30570174,30900118,31070295,31100244,30710103092);山西省国际科技合作(2010081070,2008081043) 作者简介:李震宇(1980—),男,副教授,研究方向为中药活性成分与质量控制。 *通信作者 秦雪梅,女,教授,博士生导师,主要从事中药质量标准及代谢组学研究。E-mail: Qinxm@https://www.doczj.com/doc/1711681962.html, 李震宇 Tel: (0351)7011202

相关主题
文本预览
相关文档 最新文档