时间响应分析9自动控制原理
- 格式:ppt
- 大小:1.13 MB
- 文档页数:3
实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。
本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。
用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。
由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。
1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。
考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。
则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式 den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线 xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名 则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text 命令在图上的任何位置加标注。
自动控制原理课程自动控制原理是控制工程中的基础课程之一,涵盖控制系统的基本原理和方法。
本课程主要涉及控制系统中的数学模型、系统稳定性、控制器设计以及控制系统的性能分析等内容。
下面将结合自己的学习经验,从几个方面来阐述自动控制原理的重要性以及对于未来工作生活的帮助。
一、数学模型自动控制原理的核心内容之一是数学模型。
控制系统的转移函数、状态空间模型等数学模型是研究控制系统的重要工具。
通过建立数学模型,可以对控制系统的特性进行分析和设计,为控制系统的稳定性、抗干扰性等性能的优化提供基础。
在实际工程中,数学模型的有效建立是设计控制系统的关键。
充分掌握数学模型的建立方法和应用技巧,能够提高控制系统的设计效率和成功率。
二、系统稳定性自动控制原理关注的另一个重要问题是系统稳定性。
控制系统的稳定性是指系统输入输出满足一定条件时,系统始终保持稳态或者在有限时间内进入稳态的能力。
稳定的控制系统可以保持系统输出的准确性和稳定性,从而提高产品质量和生产效率。
在实际工程中,系统稳定性是设计控制系统时必须重视的问题。
三、控制器设计在自动控制系统中,控制器是控制系统中的关键组成部分,对于控制系统的性能和稳定性有着重要的影响。
自动控制原理涉及到控制器的设计和优化,学习此课程可以掌握各种控制器的设计方法和性能指标,包括比例控制器、积分控制器、比例积分控制器、比例微分控制器等。
通过控制器的设计和优化,可以提高控制系统的稳定性和响应速度,从而满足不同领域控制系统的要求。
四、控制系统的性能分析控制系统的性能是控制系统的关键指标之一,反映了控制系统的优劣程度。
自动控制原理中涉及到控制系统的性能分析,如阶跃响应、频率响应等性能指标的分析。
通过对控制系统的性能分析,可以了解和评估控制系统的性能,为控制系统的优化和性能提高提供依据。
总之,自动控制原理这门课程对工程师、科研人员以及有志于从事控制领域的人员来说都具有重要的意义。
通过学习这门课程,我们可以了解控制系统中的基本原理、数学模型、稳定性分析、控制器设计、性能分析等方面的知识。
自动控制原理时间响应知识点总结一、定义自动控制原理中的时间响应,指的是系统在输入发生变化时,输出随时间的变化规律。
它反映了系统对输入信号的响应速度和稳定性。
二、常见的时间响应指标1. 峰值时间(Tp):系统响应达到峰值的时间。
2. 上升时间(Tr):系统响应从初始值到上升到峰值的时间。
3. 调整时间(Ts):系统从初始值到稳定值的时间。
4. 延迟时间(Td):输入信号变化后,系统响应出现延迟的时间。
5. 响应超调量(Mp):系统响应超过稳定值的最大幅度。
6. 响应时间(Tt):系统响应达到稳定值的时间。
7. 衰减时间(Td):系统响应过程中,衰减到稳定值的时间。
三、常见的时间响应类型1. 零阶系统:输出信号与输入信号没有时间延迟,即响应时间为0。
峰值时间、上升时间和调整时间均为0。
常见的零阶系统包括恒温控制系统和恒压控制系统。
2. 一阶系统:系统的输出信号具有惯性,存在一定的时间延迟。
常见的一阶系统包括RC电路和RL电路。
3. 二阶系统:系统的输出信号具有振荡过程,常见的二阶系统包括机械振动系统和RLC电路。
四、时间响应的稳定性分析1. 稳定性判据:稳定性是评价系统时间响应的重要指标,常用的稳定性判据包括极点位置、系统阻尼比和频率响应。
2. 极点位置:极点的位置与系统的稳定性密切相关。
当系统的极点都位于左半平面时,系统是稳定的;当系统的极点有一部分位于右半平面时,系统是不稳定的。
3. 系统阻尼比:阻尼比是描述系统阻尼程度的量化指标,可用于判断系统的稳定性。
当阻尼比小于1时,系统为欠阻尼系统,可能出现振荡;当阻尼比等于1时,系统为临界阻尼系统,系统快速收敛到稳态值;当阻尼比大于1时,系统为过阻尼系统,不会出现振荡。
4. 频率响应:频率响应描述了系统对不同频率输入信号的响应情况。
通过分析频率响应曲线,可以判断系统是否具有稳定性。
常见的频率响应包括低通、高通、带通和带阻等。
五、影响时间响应的因素1. 控制器类型:不同类型的控制器对系统的时间响应产生不同的影响。
自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。
以下是对自动控制原理中一些关键知识点的总结。
一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。
控制的目的是使系统的输出按照期望的方式变化。
开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。
二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。
微分方程是最直接的描述方式,但求解较为复杂。
传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。
状态空间表达式则能更全面地反映系统内部状态的变化。
三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。
重要的性能指标包括上升时间、峰值时间、调节时间和超调量。
一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。
二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。
四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。
通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。
根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。
根据根轨迹,可以确定使系统稳定的开环增益范围。
五、频域分析频域分析使用频率特性来描述系统的性能。
波特图是常用的工具,包括幅频特性和相频特性。
通过波特图,可以评估系统的稳定性、带宽和相位裕度等。
奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。
六、控制系统的校正为了改善系统的性能,需要进行校正。
校正装置可以是串联校正、反馈校正或前馈校正。
常见的校正方法有超前校正、滞后校正和滞后超前校正。
校正装置的设计需要根据系统的性能要求和原系统的特性来确定。
七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自动控制原理知识点汇总自动控制原理是研究和设计自动控制系统的基础学科。
它研究的是用来实现自动化控制的基本概念、理论、方法和技术,以及这些概念、理论、方法和技术在工程实践中的应用。
下面是自动控制原理的一些重要知识点的汇总。
一、控制系统的基本概念1.控制系统的定义:控制系统是用来使被控对象按照一定要求或期望输出的规律进行运动或改变的系统。
2.控制系统的要素:输入、输出、被控对象、控制器、传感器、执行器等。
3.控制系统的分类:开环控制和闭环控制。
4.控制系统的性能评价指标:稳定性、快速性、准确性、抗干扰性、鲁棒性等。
二、数学建模1.控制对象的数学建模方法:微分方程模型、离散时间模型、差分方程模型等。
2.控制信号的形式化表示:开环信号和闭环信号。
三、传递函数和频率响应1.传递函数:描述了控制系统输入和输出之间的关系。
2.传递函数的性质:稳定性、正定性、因果性等。
3.频率响应:描述了控制系统对不同频率输入信号的响应。
四、稳定性分析和设计1.稳定性的定义:当外部扰动或干扰没有足够大时,系统的输出仍能在一定误差范围内稳定在期望值附近。
2.稳定性分析的方法:根轨迹法、频域方法等。
3.稳定性设计的方法:规定根轨迹范围、引入正反馈等。
五、PID控制器1.PID控制器的定义:是一种用于连续控制的比例-积分-微分控制器,通过调节比例、积分和微分系数来实现对系统的控制。
2.PID控制器的工作原理和特点:比例控制、积分控制、微分控制、参数调节等。
六、根轨迹设计方法1.根轨迹的定义:描述了系统极点随控制输入变化时轨迹的变化规律。
2.根轨迹的特点:实轴特征点、虚轴特征点、极点数量等。
3.根轨迹的设计方法:增益裕量法、相位裕量法等。
七、频域分析与设计1.频率响应的定义:描述了系统对不同频率输入信号的响应。
2.频率响应的评价指标:增益裕量、相位裕量、带宽等。
3.频域设计方法:根据频率响应曲线来调整系统参数。
八、状态空间分析与设计1.状态空间模型:描述了系统状态和输入之间的关系。
第9章 习题参考答案9-1 设一阶非线性系统的微分方程为3x x x =-+试确定系统有几个平衡状态,分析各平衡状态的稳定性,并作出系统的相轨迹。
解 3x x x =-+由30x x -+=解得1230, 1, 1e e e x x x ===-。
作出系统的相轨迹图如下:平衡状态(0, 0)稳定,平衡状态(1, 0), (1, 0)-不稳定。
9-2 已知非线性系统的微分方程为(1) 320x x x ++= (2) 0x xx x ++= (3) 0x x x ++= (4) 2(1)0x x x x --+= 试确定系统的奇点及其类型,并概略绘制系统的相轨迹图。
解 (1) 奇点(0, 0)。
特征方程为2320λλ++=两个特征根为1,21, 2λ=--平衡点(0, 0)为稳定节点。
在奇点附近的概略相轨迹图:x(2) 奇点(0, 0)。
在平衡点(0, 0)的邻域内线性化,得到的线性化模型为0x x +=其特征方程为210λ+=两个特征根为1,2j λ=±平衡点(0, 0)为中心点。
在奇点附近的概略相轨迹图:x(3) 奇点(0, 0)。
原方程可改写为0000x x x x x x x x ++=≥⎧⎨+-=<⎩其特征方程、特征根和类型为21,221,2100.50.866 10 1.618, 0.618 j λλλλλλ⎧++==-±⎪⎨+-==-⎪⎩稳定焦点鞍点 在奇点附近的概略相轨迹图:(4) 奇点(0, 0)。
在平衡点(0, 0)的邻域内线性化,得到的线性化模型为x x x-+=其特征方程为210λλ-+=两个特征根为1,20.50.866jλ=±平衡点(0, 0)为不稳定焦点。
在奇点附近的概略相轨迹图:xx9-3 非线性系统的结构图如图9-48所示。
系统开始是静止的,输入信号r(t)=4·1(t),试写出开关线方程,确定奇点的位置和类型,在e-e平面上画出该系统的相平面图,并分析系统的运动特点。
实验名称:典型环节的时域响应一、目的要求1、熟悉并掌握TD-ACC+(或TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。
2、熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
对比差异分析原因。
3了解参数变化对典型环节动态特性的影响。
二、原理简述1、比例环节传递函数:Uo(s)/Ui(s)=K.2、积分环节传递函数:Uo(s)/Ui(s)=1/TS3、比例微分环节传递函数:Uo(s)/Ui(s)=K+1/TS4、惯性环节传递函数: Uo(s)/Ui(s)=K/(TS+1)5、比例微分环节传递函数:Uo(s)/Ui(s)=K[(1+TS)/(1+τS)]6、比例积分微分环节传递函数:Uo(s)/Ui(s)=Kp+1/TiS+TdS三、仪器设备PC机一台,TD-ACC(或TD-ACS)实验系统一套四、线路视图1、比例环节2、积分环节3、比例积分环节4、惯性环节5、比例微分环节6、比例积分微分环节五、内容步骤1、按所列举的比例环节的模拟电路图将线连接好,检查无误后开启设备电源。
2、将信号源单元的“ST”端插针与“S”端插针用短路块短接,。
将开关设在方波档,分别调节调幅和调频电位器,使得“out”端输出的方波幅值为1V,周期为10S左右。
3、将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”和“CH2”表笔分别检测模拟电路的输入Ui端和输出端Uo端,观测输出端的实际响应曲线Uo(t),记录实验波形及结果。
4、改变几组参数,重新观测结果。
5、用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节、比例积分微分环节的模拟电路图。
观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。
六、数据处理1、比例环节①R0=200K,R1=100K;②R0=200K,R1=200K;2、积分环节①R0=200K,C=1uF;②R0=200K,C=2uF;3、比例积分环节①R0=R1=200K,C=1uF;②R0=R1=200K,C=2uF;4、惯性环节①R0=R1=200K,C=1uF;②R0=R1=200K,C=2uF;5、比例微分环节①R0=R2=100K,R3=10K,C=1uF,R1=100K;②R0=R2=100K,R3=10K,C=1uF,R1=200K;6、比例积分微分环节①R2=R3=10K,R0=100K,C1=C2=1uF,R1=100K;②R2=R3=10K,R0=100K,C1=C2=1uF,R1=200K;七、分析讨论在误差允许的情况下,输出的结果与理论值相符。