神经凋亡的主要原因并不是这些神经元自身有缺陷,死亡的主要原因是神经 元和靶细胞群体数目必须匹配。它们之间存在着调节这种比例的机制。发育 过程中,过量神经元的产生,可能是进化上选择新通路的条件。实验证明, 特定神经元群的靶组织存在其神经元迁移到达之前被移走,则85%-90%神经元 将会死亡,在正常时则仅50%左右神经元会死亡。 细胞凋亡和死亡基因有关:主要死亡的基因为ced-3和ced-4,存活的基因为 ced-9,它能抑制ced-4,保护神经元及其它细胞的存活。它们可在个体发育 过程中自动调控细胞的存活。 细胞死亡受体和死亡配基:细胞死亡的受体主要是肿瘤坏死因子TNF/NGF受体 家族成员,如TNFR1,Apo-1/P75(NTR),DR-3/Apo-3,DR-4和DR-5等。它们通 过其脑外结构域产生相应的死亡配基因子结合,触发死亡受体胞内结构域产 生死亡信号,传给胞质信号分子导致细胞死亡。P75与NGF结合后,可诱导细 胞凋亡产生,但NGF抗体预先处理后,便可阻止细胞凋亡出现。这说明神经系 统在内源性的NGF与死亡受体结合后,能导致神经细胞凋亡。
第 二 阶 段:细胞水平及分子水平时期
从80年代来,在神经系统发现多种与神经生长、发育有关的因子,称之 为神经营养因子(neurotroplic factor, NTFS),指能支持神经元存活,促 进其生长,分化,维持功能,受损时可保护存活促进再生的化学因子,包括 NGF,CNTF,BDNF,NT3,NT4,NT5/6,GDNF等家族。 从52年,Lem Monfalcini 发现NGF,开创了神经因子发现先例,它仍对神经 元的保护作用引起了人们极大兴趣。如GDNF可挽救发育中中枢神经元的自然 “编程死亡”,促进神经元存活。挽救损伤后运动神经元的大量丧失。NGF 促进神经断端轴突的再生,局部用BDNF可防止大鼠坐骨神经元的死亡;NT3可 诱导损伤的皮质脊髓束侧枝生长出芽,挽救损伤的clarke神经元存活,阻止 断离的脊髓神经元萎缩等。我们的研究亦证实了中枢脊髓受损后,内源性的 NGF,BDNF,NT3和NT4均有不同程度的增加,提示中枢神经的受损修复与上述 NTFS因子密切相关。 可以预期随着NTFS的深入广泛研究,NTFS的获取和给药途径的改进,中枢神 经损伤修复将会得到极大的改善。