数学史上的三大危机
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
数学史上三大危机和三大猜想数学史上的三大危机分别为无理数理论,微积分理论,罗素悖论,数学史上的三大猜想分别为费马大定理,四色定理,哥德巴赫猜想,这三大危机和三大猜想都间接地推动了整个数学理论的进步,许许多多的数学家也因此付出了巨大的贡献,才有了今天数学的伟大辉煌。
一、无理数理论众所周知,世界上所有的实数都可以分为有理数和无理数。
然而,在最初的时候并没有发现无理数的存在,所以很多数学家认为所有数都是有限小数,而希帕苏斯首先提出了二的算术平方根概念,发现了世界上有一类数,他们是无限不循环小数,然而遭受了当时科学界的否定。
二、微积分理论微积分是世界数学史上璀璨的辉煌,微积分使用微元的概念,解决了很多不能够解决的问题。
特别对于复杂的图形,有很厉害的求解作用,但是由于微积分刚提出来的时候,理论非常复杂,没有在当时的数学界广为接受。
三、罗素悖论罗素悖论是对于集合理论的悖论,世界上所有的物体都能够通过集合来表达,但是罗素指出,如果一个集合中所有的元素都不是他本来的元素,那么这样的一个集合是否还能表现为原有的集合,这理论被称为罗素悖论,后来根据数学家修改集合的.定义规则,才避免了这样的悖论。
四、费马大定理费马大定理有这样一个猜想当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n无正整数解。
这样的一个看似简单的地理,后来经过后世许多人的证明,终于确定费马大定理成立,是数学史上的一个伟大猜想。
五、四色定理四色定理表明,如果许多国家围绕着一个点拥有很多的边界,那么只要用四种颜色就能够将所有的国家全部区分开来,四色定理是对二维空间的终极解释,也表明了两个直线,只要相交一定有四个区的出现。
六、哥德巴赫猜想哥德巴赫猜想,如果把1算做一个质数,那么世界上任何大于二的数都可以由三个质数通过相加的方式得成,后来科学家们经过艰难的计算,终于算出了哥德巴赫猜想。
数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如, ,22,8,6,2等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态一直保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
数学史上三次危机对于数学仅限于学校里学的那点东西,薄如蝉翼,谈不上什么深刻理解,但也听说过数学史上有三次危机。
限于老郭水平不高,能力有限无法深入,蜻蜓点水的说一下。
第一次数学危机-无理数的发现勾股定理是咱们小伙伴们都熟悉的,a^2+b^2=c^2。
这个公式出来之后就用到了已知两条边长求解直角三角形第三条边的边长问题上。
很明显,开平方之后会出现根号2、根号3这种情况,这种不能完全开平方的数是无限不循环的小数,我们现在叫做无理数。
我们现在理解这些数当然是没问题的,不过在当时,这种数的出现,打破了毕达哥拉斯学派认为的世界的和谐性质。
他们认为宇宙万物都可以归结为整数或者是整数之比。
这就导致了一种认识上的“危机”,这个危机被称为第一次数学危机。
其实,这次“危机”(我并不认为这是什么危机)给几何的发展带来了一次推动。
因为,出现了无理数意味着,人类依靠直觉和经验建立的科学不一定是可靠的,而严格的推理证明才是靠得住的。
从那以后,希腊人开始重视演绎推理,并且建立了几何公理体系。
这就是危难之中的机遇,古希腊人抓住了这个机遇,创造了平面几何的第一次辉煌。
第二次数学危机-阿基里斯追不上乌龟“阿基里斯追不上乌龟”:阿基里斯总是首先必须到达乌龟的出发点,因而乌龟必定总是跑在前头。
这个数学悖论故事是很有名的,其实我们现在的小伙伴都能知道,这是不可能发生的事,只要求一个极限,这个事就搞定了,跟本不存在追不上乌龟的事情。
然而在17世纪,微积分刚刚诞生那个时代,这个事还真是个大事。
当时包括牛顿、莱布尼茨等等大佬都没有找到解决这个问题的办法。
当时微积分刚刚初创,逻辑基础非常的不牢固。
很多基础问题,无穷小概念,从而导数、微分、积分等概念不清楚;无穷大概念不清楚;发散级数求和的任意性等等;符号的不严格使用;不考虑连续性就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。
那时候,这个问题争论的焦点就在于无穷小量究竞是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论,造成了第二次数学危机。
数学史上的三次危机及如何化解一、希伯斯(Hippasu,米太旁登地方人,公元前5世纪)发现了一个腰为1的等腰直角三角形的斜边(即根号2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希伯斯抛入大海。
解决:1、伯内特解释了芝诺的“二分法”:即不可能在有限的时间内通过无限多个点,在你走完全程之前必须先走过给定距离的一半,为此又必须走过一半的一半,等等,直至无穷。
亚里士多德批评芝诺在这里犯了错误:“他主张一个事物不可能在有限的时间里通过无限的事物,或者分别地和无限的事物相接触,须知长度和时间被说成是“无限的”有两种涵义。
一般地说,一切连续事物被说成是“无限的”都有两种涵义:或分起来的无限,或延伸上的无限。
因此,一方面,事物在有限的时间里不能和数量上无限的事物相接触。
另一方面,却能和分起来无限的事物相接触,因为时间本身分起来也是无限的。
因此,通过一个无限的事物是在无限的时间里而不是在有限的时间里进行的,和无限的事物接触是在无限数的而不是在有限数的范围上进行的。
2、亚里士多德指出这个论证和前面的二分法是一回事,这个论证得到的结论是:跑得慢的人不可能被赶上。
因此,对这个论证的解决方法也必然是同一个方法,认为在运动中领先的东西不能被追上这个想法是错误的,因为在它领先的时间内是不能被赶上的,但是,如果芝诺允许它能越过所规定的有限的距离的话,那么它也是可以被赶上的。
3、亚里士多德认为芝诺的这个说法是错误的,因为时间不是由不可分的‘现在’组成的,正如别的任何量都不是由不可分的部分组合成的那样。
亚里士多德认为,这个结论是因为把时间当作是由‘现在’组成的而引起的,如果不肯定这个前提,这个结论是不会出现的。
4、亚里士多德认为,这里错误在于他把一个运动物体经过另一运动物体所花的时间,看做等同于以相同速度经过相同大小的静止物体所花的时间,事实上这两者是不相等的。
数学史三次危机简介
数学史上的三次危机,简要概括如下:
1. 第一次数学危机:公元前5世纪,毕达哥拉斯学派发现无理数,挑战了当时“万物皆数”(指整数或整数之比)的信念。
这次危机通过实数理论的建立得到解决。
2. 第二次数学危机:17至18世纪,围绕无穷小量的问题,主要与微积分的发展有关。
微积分学在理论不完善的情况下被广泛应用,但其基础—无穷小的概念受到质疑。
最终,通过实数理论和极限理论的建立,这次危机得到了缓解。
3. 第三次数学危机:19世纪末,集合论悖论的出现,如著名的罗素悖论,暴露了自洽性问题。
这些悖论挑战了集合论作为数学基础的地位。
至今,尽管哥德尔的不完备定理对形式系统的局限性做了阐述,但第三次数学危机并没有完全解决。
数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。
第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。
但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。
毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。
即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。
第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。
直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。
第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。
正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。
数学的三次危机三次动摇数学根基的危机在数学几千年的发展历程上,曾发生过三次动摇数学根基的危机,其中每一次都曾使得人们尤其是数学家怀疑数学的合理性,然而经过无数数学家的力挽狂澜,这三次危机不仅没有让数学失去其合理性,反而使其变得更加强大。
第一次数学危机“万物皆数”是古希腊毕达哥拉斯学派坚不可摧的信仰。
所谓“万物皆数”就是指任何的实数都可以表示为两个整数的比值。
然而学派引以为傲的毕达哥拉斯定理(也就是我国俗称的勾股定理)却恰恰成了其信仰的终结者。
毕达哥拉斯学派中的一个“好事之徒希伯斯(Hippasu)对学派坚守的“万物皆数”首先表示了怀疑。
他思考了一个问题:边长为1的正方形其对角线有多长呢?一番思索演算之后,他发现这一长度既不是整数,也不是分数,“万物皆数”的信仰就此崩塌。
相传恼羞成怒的学派成员将希伯斯淹死在了海里,真理不仅没有给他荣誉反而招致杀身之祸,可悲亦可叹!自被希伯斯发现之后,√2这个数学史上的第一个无理数便登上了舞台。
然而这一发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念都是巨大的冲击。
更为恼火的是,面对这一打击,人们手足无措,于是便直接导致了人们认识上史无前例的危机,从而导致了西方数学史上一场浩大的风波,史称“第一次数学危机”。
第二次数学危机自微积分被发明之后,质疑之声就从未消停过。
相当长的时间内,数学界对“无穷小”这一概念的理解和使用都是非常混乱的,但微积分理论的基础却恰恰就是“无穷小分析”。
这一理论上的缺陷招致了巨大的抨击,英国大主教更是直接称“无穷小”为盘旋的幽灵。
如果这一危机无法解除,那无数由微积分理论所获得的成果都将遭受无情的质疑。
这也就是数学史上的第二次危机。
转机出现在柯西,魏尔斯特拉斯等人用极限的方法定义无穷小量之后,这时微积分理论经过发展和完善才真正具有了严格的理论基础,从而使得数学大厦变得更加坚实牢固可靠,危机便也解除。
第三次数学危机“数学狂人”康托一手所发展的集合论作为现代数学的基础早已是数学界的共识。
数学三大危机数学三大危机简述:第一,希帕索斯(Hippasus,米太旁登地方人,公元前5世纪)发现了一个腰为1的等腰直角三角形的斜边(即根号2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S由一切不是自身元素的集合所组成,那S包含S吗?罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。
对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。
---------------------------------------------------------------最新资料推荐------------------------------------------------------史上数学三大危机简介数学三大危机数学三大危机简述:第一,希帕索斯(Hippasu,米太旁登地方人,公元前 5 世纪)发现了一个腰为 1 的等腰直角三角形的斜边(即根号 2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S 由一切不是自身元素的集合所组成,那 S 包含 S 吗?用通俗一点的话来说,小明有一天说:我正在撒谎!问小明到底撒谎还是说实话。
罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题万物皆数是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而一切数均可表成整数或整数之比则是这一学派的数学信仰。
1 / 6然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的掘墓人。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
数学发展史上的三次危机无理数的发现---第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不无穷小是零吗?---第二次数学危机 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可 1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指 18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。
其中特别是:没有 直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。
从波尔查诺、阿贝尔、柯西、狄悖论的产生---第三次数学危机 数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令 1897年,福尔蒂揭示了集合论中的第一个悖论。
两年后,康托发现了很相似的悖论。
1902年,罗素 罗素悖论使整个数学大厦动摇了。
无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基 承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。
尽管悖派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。
欧多克斯和狄德金于1872年给出的无数学家对这一理论的可靠性是毫不怀疑的。
学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。
他指出:"牛顿在求xn的导数时,靠。
其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪来看,还没有解决到令人满意的程度。
史上的三次数学危机第一次数学危机历史背景毕达哥拉斯(约公元前572年——公元前492年)是一位古希腊的数学家及哲学家,他曾有一句名言「凡物皆数」,意思是万物的本原是数,数的规律统治万物。
不过要注意的是,在那个年代,他们相信一切数字皆可以表达为整数或整数之比——分数,简单而言,他们所认识的只是「有理数」。
有趣的有理数当时的人只有「有理数」的观念是绝不奇怪的。
对于整数,在数在线我们可以知道是一点点分散的,而且点与点之间的距离是一,那就是说,整数不能完全填满整条数线,但有理数则不同了,我们发现任何两个有理数之间,必定有另一个有理数存在,例如:1与2之间有1/2,1与1/2之间有1/4等,因此令人很容易以为「有理数」可以完全填满整条数线,「有理数」就是等于一切数,可惜这个想法是错的,因为……勾股定理、毕氏铁拳伟大的时刻来临了,毕达哥拉斯发现了现时众所周知的勾股定理(其实中国于公元前一千一百年已有此定理),从这个定理中,毕达哥拉斯发现了一件不可思议的事,就是腰长为1的等腰直角三角形的斜边长度,竟然是一个无法写成为有理数的数。
亦即是说有理数并非一切数,存在有理数以外的数,有理数不可以完全填满整条数线,他们心中的信念完完全全被破坏了,他们所恃和所自豪的信念完全被粉碎。
在当时的数学界来说,是一个极大的震撼,也是历史上的「第一次数学危机」。
新的一页原来「第一次数学危机」是「无理数」的发现,不过它还说出了「有理数」的不完备性,亦即有理数不可以完全填满整条数线,在有理数之间还有「罅隙」,无疑这些都是可被证明的事实,是不能否定的。
面对着事实,数学家展开广阔的胸襟,把「无理数」引入数学的大家庭,令数学更丰富更完备,加添了无理数,数线终于被填满了。
第二次数学危机「飞矢不动」的吊诡古代的希腊是研究哲学的人聚集的地方,在云云的哲学学派之中,其中一派主张「存在是静止的,不变的,永恒的,变化与运动只是幻觉。
」至于这个主张的理念,不是我们的讨论范围,不过,这个学派的学者之一——芝诺,为了论证运动是幻象,提出了「飞矢不动」的「理论」:箭在每一瞬间都要占据一定的空间位置,即箭在每一瞬间存在,即箭在每一瞬间都是静止的,又怎可能动呢?数学——打破吊诡的武器当然我们完全明白「飞矢不动」是一个歪论,但数学是一个讲究严谨的学科,数学家们要从问题的核心「动」作为开始,要证明「飞矢必动」。
数学发展史上三次数学危机第一次数学危机“无理数的产生”第一次危机发生在公元前580~568 年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
毕达哥拉斯学派认为“万物皆数” ,这个数就是整数,他们确定数学的目的是企图通过数的奥秘来探索宇宙的永恒真理,并且认为宇宙间的一切现象都能归结为整数或整数之比。
后来这个学派发现了毕达哥拉斯学定理(勾股定理),他们认为这是一件很了不起的事,然而了不起的事后面还有更了不起的事。
毕达哥拉斯学派的希帕索斯从毕达哥拉斯定理出发,发现边长为 1 的正方形对角线不能用整数来表示,这就产生了这个无理数。
这无疑对“万物皆数” 产生了巨大的冲击,由此引发了第一次数学危机。
第二次数学危机“微积分工具”18 世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
但是不管是牛顿,还是莱布尼茨所创立的微积分理论都是不严格的。
危机的起源因为牛顿和莱布尼茨的微积分理论是建立在无穷小分析之上的,但他们对作为基本概念的无穷小量的理解与应用是混乱的。
1734 年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础——无穷小的问题,提出了所谓贝克莱悖论。
笼统的说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题。
这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。
第三次数学危机“罗素悖论”到 19 世纪末,康托尔的集合论已经得到数学家的承认,集合论也成功地应用到其他的数学分支。
集合论是数学的基础,由于集合论的使用,数学似乎已经达到了无懈可击的地步。
但是,正当数学家们熟练地应用集合论时,数学帝国又爆发了一次危机。
康托尔集合论的创造性成果为数学提供了广泛的理论基础,所以在 1900 年巴黎国际数学会议上,法国大数学家庞加莱宣称:“数学的严格性,看来直到今天才可以说实现了。
数学历史上三大危机数学作为一门研究数量、结构、变化和空间等概念的学科,自诞生以来就不断面临着各种挑战和危机。
其中,数学历史上最为著名的三大危机,分别是无理数的发现、无穷小量的悖论以及集合论中的罗素悖论。
这三大危机不仅推动了数学的发展,也深刻地影响了数学哲学和科学哲学的演变。
一、无理数的发现无理数的发现是数学史上的一次重大突破,也是数学历史上第一次危机。
自古以来,人们一直认为所有的数都可以表示为分数,即两个整数的比例。
然而,公元前5世纪,古希腊数学家毕达哥拉斯学派发现了一个重要的几何事实:边长为1的正方形的对角线长度无法用两个整数的比例来表示。
这个发现不仅颠覆了毕达哥拉斯学派关于数的理论,也引发了一场关于无理数存在性的哲学争论。
无理数的发现揭示了数学中存在着一类无法用分数精确表示的数,这对当时的数学观念产生了巨大的冲击。
为了解决这个问题,古希腊数学家们发展了无理数的理论,并提出了诸如平方根、立方根等概念。
无理数的发现不仅推动了数学的发展,也促使人们重新审视数学的基础和本质。
二、无穷小量的悖论无穷小量的悖论是数学史上第二次重大危机。
在17世纪,随着微积分的诞生,无穷小量的概念逐渐被引入数学研究。
然而,无穷小量的性质和应用却引发了诸多悖论和争论。
例如,无穷小量是0还是非0?无穷小量乘以无穷大是什么?这些问题困扰着当时的数学家,也对微积分的发展产生了阻碍。
为了解决无穷小量的悖论,数学家们进行了深入的研究和探索。
19世纪,柯西、黎曼等数学家提出了极限的概念,建立了微积分的严格基础。
极限概念的引入不仅解决了无穷小量的悖论,也推动了数学分析的进一步发展。
三、集合论中的罗素悖论集合论中的罗素悖论是数学史上第三次重大危机。
19世纪末,德国数学家康托尔创立了集合论,为数学提供了一个全新的研究对象。
然而,1901年,英国哲学家罗素发现了一个关于集合论的基本悖论:一个集合如果包含所有不包含自身的集合,那么这个集合是否包含自身?罗素悖论揭示了集合论中存在的基本矛盾,对数学的基础产生了严重的挑战。
数学的三次危机从哲学上来看,矛盾是无处不存在的,即便以确定无疑著称的数学也不例外。
数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。
在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。
在数学史上,贯穿着矛盾的斗争与解决。
当矛盾激化到涉及整个数学的基础时,就会产生数学危机。
而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。
数学的发展就经历过三次关于基础理论的危机。
一、第一次数学危机从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。
它是一个唯心主义学派,兴旺的时期为公元前500年左右。
他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。
整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。
日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。
为了满足这些简单的度量需要,就要用到分数。
于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。
有理数有一种简单的几何解释。
在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。
以q为分母的分数,可以用每一单位间隔分为q等分的点表示。
于是,每一个有理数都对应着直线上的一个点。
古代数学家认为,这样能把直线上所有的点用完。
但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。
特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。
于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。
数学三大危机•中文名•数学三大危机•外文名•Three crises in Mathematics•第一次•发现了2的2次方根,推翻“万物皆数”•第二次•微积分概念的合理性遭到严重质疑•第三次•集合论中的罗素悖论目录第一次数学危机创立了一个合政治、学毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。
更糟糕的是,面对这一荒谬人们竟然毫无办法。
这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。
第二次数学危机编辑出现第二次数学危机导源于微积分工具的使用。
伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹共同发现。
这一工具一问世,就显示出它的非凡威力。
许许多多疑难问题运用这一工具后变得易如反掌。
但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。
两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。
因而,从微积分诞生时就遭到了一些人的反对与攻击。
其中攻击最猛烈的是英国大主教贝克莱。
数学史上的三大危机
无理数危机、无穷小是零危机和悖论危机
无理数的发现-第一次数学危机
大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯的悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称"四艺",在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可总结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这个悖论直接触犯了毕氏学派的根本信条,导致了当时理解上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。
欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
第一次数学危机对古希腊的数学观点有极大的冲击。
这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却能够由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。
危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!
无穷小是零吗?-第二次数学危机
18世纪,微分法和积分法在生产和实践上都有了广泛而成功的实验过,绝大部分数学家对这个理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,茅头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。
他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。
这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。
"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。
无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。
导致了数学史上的第二次数学危机。
18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。
其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续性就实行微分,不考虑导数及积分的存有性以及函数可否展成幂级数等等。
直到19世纪20年代,一些数学家才比较注重于微积分的严格基础。
从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到韦尔斯特拉斯、戴德金和康托的工作结束,中间经历了
半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。
悖论的产生-第三次数学危机
数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的水准。
这次危机是因为在康托的一般集合理论的边缘发现悖论造成的。
因为集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,所以集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
1897年,福尔地揭示了集合论中的第一个悖论。
两年后,康托发现了很相似的悖论。
1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。
罗素悖论曾被以多种形式通俗化。
其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。
理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。
当人们试图回答下列疑问时,就理解到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。
罗素悖论使整个数学大楼动摇了。
无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。
于是终结了近12年的刻苦钻研。
承认无穷集合,承认无穷基数,就好像一切杂难都出来了,这就是第三次数学危机的实质。
即使悖论能够消除,矛盾能够解决,不过数学的确定性却在一步一步地丧失。
现代公理集合论的大堆公理,简直难说熟真熟假,不过又不能把它们都消除掉,它们跟整个数学是血肉相连的。
所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。
数学史根号二惨案
人们发现的第一个无理数是√2 。
据说,它的发现还曾掀起一场巨大的风波。
古希腊毕达哥拉斯学派是一个研究数学、科学、哲学的团体,他们推崇比例论,即认为一切数都是整数或者是整数之比。
有一个名叫希帕蒂斯的学生,在研究1和2的比例中项时,左思右想都想不出这个中项值。
后来他画一边长为1的正方形,设对角线为χ,于是根据毕达哥拉斯定理:χ×χ=1×1+1×1=2。
他想:χ代表正方形对角线长,而χ×χ=2,那么χ必定是确定的数。
但它是整数还是分数呢? 他证明χ不能是整数,因1×1=1, 2×2=4, χ×χ=2,χ必定大于1而小于2,1与2之间却没有别的整数。
那么χ会不会是分数呢? 毕达哥拉斯和他的学生们绞尽脑汁也找不到这个分数。
这样,如果χ既不是整数又不是分数,就与毕达哥拉斯学派的信条有了矛盾。
于是很多人都否定这个数的存有。
而希帕索斯等人却认为这必定是一个新数。
这个发现,使得毕达哥拉斯学派的“比例论”动摇了,从而导致了西方数学史上的第一次“数学危机”。
而希帕索斯本人因违背了“比例论”的信条而受到处罚,被扔到大海里淹死了。
无理数的发现,使数的概念又扩展了一步。