展开与折叠练习题经典练习
- 格式:docx
- 大小:101.26 KB
- 文档页数:2
一、选择题1.下面物体的运动属于旋转的是()。
A. B. C. D.C解析: C【解析】【解答】选项A,,算珠的运动是平移现象;选项B,,滑滑梯是平移现象;选项C,,摩天轮的转动是旋转现象;选项D,,伸缩门的运动是平移现象。
故答案为:C。
【分析】旋转和平移都是物体运动现象,都是沿某个方向作运动,运动中都没有改变本身的形状、大小与自身性质特征;区别:平移是物体或图形在同一平面内沿直线运动,朝某个方向移动一定的距离;旋转是绕一个定点沿某个方向旋转了一定的角度,旋转改变了图形的位置和方向。
2.下面不是轴对称图形的是()。
A. B. C. D.B解析: B【解析】【解答】解:根据轴对称图形的特征可知,A、C、D中的图形都是轴对称图形,B 中的图形不是轴对称图形。
故答案为:B。
【分析】一个图形沿着一条直线对折后两边能够完全重合,这个图形就是轴对称图形,折痕所在的直线就是对称轴。
3.下列日常生活现象中,不属于平移的是()A. 升国旗时,国旗的运动B. 在计数器上拨珠子的运动C. 荡起来的秋千D. 淘气在光滑的冰面上滑动C解析: C【解析】【解答】选项A,升国旗时,国旗的运动是平移现象;选项B,在计数器上拨珠子的运动是平移现象;选项C,荡起来的秋千是旋转现象;选项D,淘气在光滑的冰面上滑动是平移现象。
故答案为:C。
【分析】旋转和平移都是物体运动现象,都是沿某个方向作运动,运动中都没有改变本身的形状、大小与自身性质特征;区别:平移是物体或图形在同一平面内沿直线运动,朝某个方向移动一定的距离;旋转是绕一个定点沿某个方向旋转了一定的角度,旋转改变了图形的位置和方向,据此判断。
4.如图是用纸折叠成的图案,其中是轴对称图形的有()A. 1个B. 2个C. 3个D. 4个C 解析: C【解析】【解答】如图是用纸折叠成的图案,其中是轴对称图形的有3个:故答案为:C。
【分析】如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫对称轴;判断一个图形是否是轴对称图形,关键是找它的对称轴,要想象沿着这条线翻折能不能重叠,据此解答。
解决问题练习一1.妈妈发了99元的红包,是奶奶发的红包的3倍,爸爸发的红包是奶奶的2倍。
爸爸发了多少钱红包?2.在“看名著赏名篇”活动中,龙一鸣选择的名著有959页,他已经看了639页,剩下的如果按照3天看120页的速度,还要多少天才能看完?(列综合算式计算)3.星光小学体育社团的同学去公园骑自行车,其中男同学有18人,女同学有8人,租车的价格如下,怎样租车最省钱?4.龙门电影院推出两种购票方案壮壮和依依两家一起去看电影,一共6个成人,4个儿童,选哪种方案合算?5. 有7名家长带着7个孩子到某旅游景点游玩,售票口贴着的“购票须知”如下,怎样购票最省钱?最少需付多少钱?6. 欣欣小区昨天共清理其他垃圾32kg,可回收物是其他垃圾的2倍,厨余垃圾比其他垃圾和可回收物的总和多94kg,欣欣小区昨天共清理厨余垃圾多少千克?7. 劳动老师为同学们购买软陶制作“多肉植物”,大盒软陶每盒20元,可以做8盆“多肉植物”,小盒软陶每盒15元,可以做5盆“多肉植物”,想制作90盆“多肉植物”,怎样购买软陶最省钱?8.12位家长带16个小朋友去动物园游玩。
怎样购票最省钱?最少需要多少钱?9.杨辉三角是中国数学家杨辉所著的《九章算法》中出现的一种集合排列,你能计算出下图中杨辉三角中一共有多少个数吗?10.王教授带领他的团队从A 地去往412km 远的D 地调研,具体路线如下图,C 地与D 地的路线长多少千米?11.水果店运来一批苹果和梨,苹果有112kg,梨有97kg,买了一段时间后,苹果剩下12kg.梨剩下7kg.两种水果一共卖出了多少千克?12.黄菲菲家在第43层,楼梯每层3米,她每天上学要乘电梯上下两个来回,她一个星期(5天)乘电梯上下多少米?13.龙门小学健身操表演摆成6个方队,每个方队有4排,每排站25人,每人手拿2个啦啦球。
该小学准备1000个啦啦球够吗?14.中国传统书画擅长将书法和绘画结合,且自古就有“书画同源”的说法,图中涂灰色区域为绘画作品,剩余部分为书法作品,书法作品的面积是多少?15.一部电视剧6月8日开始播放,12月1日结束,这部电视剧从播放到结束,一共经过了多少天?16.壮壮和淘淘沿着湖边散步,同时从两地出发,相向而行,壮壮的速度是65米/分,淘淘的速度是75米/分,经过5分钟后两人相遇,他俩最开始相距多少米?17.王大伯家有一块长方形土地如下图,他留出一部分做菜地,剩下的用篱笆围起来做花圃,需要篱笆多少米?花圃的面积是多少平方米?18.依依买了一套诗歌集,共6本,每本8元5角,她买这套诗歌集一共花了多少钱?19. 小红书房里有个书柜,一共有4层,每层有5个抽屉,每个抽屉可以放25本书,这个书柜一共可以放多少本书?20. 从学校到家前15分钟平均每分钟走42m ,照这个速度,还要5分钟就可以到家,从学校到家有多远?21. 海马和树懒都是行动非常缓慢的动物,海马100秒游5米,树懒的速度能达到0.2米/秒,海马和树懒谁的速度更慢?22. 一辆小汽车10分钟可以行使12.5km,照这样计算,这辆小汽车1小时40分钟能行驶多少千米?23.游泳比赛的标准泳池是一个长方形,把标准泳池的长和宽分别缩小到原来的1001后,如图所示,请算出标准泳池的占地面积是多少平方米。
一、选择题1.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A . B .C .D .2.下列计算正确的是( )A .()3473=a b a bB .()232482--=--b a b ab b C .32242⋅+⋅=a a a a a D .22(5)25-=-a a3.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)4.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.55.如图,是一个几何体的表面展开图,则该几何体是( )A .三棱柱B .四棱锥C .长方体D .正方体 6.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A .12B .24C .123D .1637.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55° 8.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .9.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣510.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°11.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A.19B.16C.13D.2312.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×10613.在数轴上,与表示6的点距离最近的整数点所表示的数是()A.1B.2C.3D.414.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°15.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯16.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+917.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°18.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.419.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.720.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A.7710⨯﹣B.80.710⨯﹣C.8710⨯﹣D.9710⨯﹣21.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个22.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24B.18C.12D.923.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元A.8B.16C.24D.3224.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间25.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3) 26.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα27.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22D .4 28.估6√3−√27的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间29.下列各式化简后的结果为2 的是( )A 6B 12C 18D 3630.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.D4.B5.A6.D7.C8.D9.A10.B11.C12.C13.B14.A15.C16.D17.C18.B19.C20.D21.C22.A23.D24.B25.D26.B27.A28.C29.C30.C2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D2.C解析:C【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.3.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A ,B 答案,而3的个数应为3个,由此可排除C ,进而得到答案.【详解】解:由已知中序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,A 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故A 不满足条件;B 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故B 不满足条件;C 、3有一个,即序列S 0:该位置的数出现了三次,按照变换规则,应为三个3,故C 不满足条件;D 、2有两个,即序列S 0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D .【点睛】本题考查规律型:数字的变化类.4.B解析:B【解析】【分析】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=12∠ABC=30°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=3.故选B.5.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.6.D解析:D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt △ABE 中,AB=AE•tan ∠AEB=2tan60°=23.∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD 的面积=AB•AD=23×8=163.故选D .考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.7.C解析:C【解析】【分析】依据∠1=25°,∠BAC =90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC =90°,∴∠3=180°-90°-25°=65°,∵l 1∥l 2,∴∠2=∠3=65°,故选C .【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.8.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0,∵对称轴为直线02b x a =->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.9.A解析:A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.10.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a ∥b ,∴∠2=∠3=110°,故选B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.11.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.12.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.13.B解析:B【解析】【分析】6的大小,即可得到结果.【详解】46 6.25<<,26 2.5∴<<,6的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.14.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.15.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D、x2﹣6x+9=(x﹣3)2,故选项正确.故选D.17.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.18.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 19.C解析:C【解析】【分析】设这个多边形的边数为n ,根据多边形的内角和定理得到(n ﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.20.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.21.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C .22.A解析:A【解析】【分析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解.【详解】∵E 是AC 中点,∵EF ∥BC ,交AB 于点F ,∴EF 是△ABC 的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.23.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.【详解】解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.24.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B.【点睛】是解题关键.25.D解析:D如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。
北师大版七年级上册 第一章 丰富的图形世界一、几何体的分类:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⇒⎪⎩⎪⎨⎧⇒⎩⎨⎧椭球圆球球体锥三棱锥、四棱锥、五棱棱锥圆锥椎体柱三棱柱、四棱柱、五棱斜棱柱直棱柱棱柱圆柱柱体几何体 1.n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点,底面是n 边形且大小形状完全相同.2.n 棱椎有一个底面,n 个侧面,共(n+1)个面;2n 条棱,n 条侧棱;( n+1)个顶点,底面是n 边形.3.棱柱的侧棱长均相等,直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形,棱锥的侧面是三角形.4. 点、线、面的关系:点动成线、线动成面、面动成体。
面与面相交得到线,线与线相交得到点.二、展开与折叠1、正方体的展开图形 1-4-1型 共6种2-3-1型 共3种2-2型 1种 3-3型 1种注意:常见的易错图形一线超四型:田凹型:2、圆柱的平面展开图3、三棱锥柱的平面展开图4、圆锥的平面展开图5、三棱柱锥的平面展开图6、长方体的平面展开图7、五棱柱的平面展开图8、四棱锥的平面展开图三、图形的切割1、正方体的切割注意:可能出现的:锐角三角型、等边三角形、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形.不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形2、圆柱的切割3、圆锥的切割四、三视图1、三视图主视图:从正面看到的图形.左视图:从左面看到的图形.俯视图:从上面看到的图形.原则:1.位置:主视图左视图俯视图2.大小:长对正,高平齐,宽相等.3.虚实:在画图时,看得见部分的轮廓通常画成实现,看不见部分的轮廓线通常画成虚线.2、常见几何体的三视图:圆柱主视图左视图俯视图圆锥主视图左视图俯视图正方体主视图左视图俯视图三棱柱主视图左视图俯视图四棱柱主视图左视图俯视图球体主视图左视图俯视图3、小立方块搭成几何体的三视图第一章丰富的图形世界经典练习一、选择题1.下列说法中,正确的个数是().①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.(A)2个(B)3个(C)4个(D)5个2. 下面几何体截面一定是圆的是()( A)圆柱 (B) 圆锥(C)球 (D) 圆台3.如图绕虚线旋转得到的几何体是().4. 某物体的三视图是如图所示的三个图形,那么该物体的形状是()(A)长方体( B)圆锥体(C)立方体(D)圆柱体(D)(B)(C)(A)5.如图,其主视图是( )6.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是()7. ( )(A ) (B ) (C ) (D ) 8.如图是由一些相同的小正方体构成的立体图形的三种视图:构成这个立体图形的小正方体的个数是( ). A .5 B . 6 C .7 D .89.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是( )A B C D10.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是( )(A )235、、π-- (B)235、、π-(C )π、、235- (D)235-、、π二、填空题11.正方体与长方体的相同点是_________________,不同点是_______________。
第一讲:立体图形的展开与折叠【知识要点】1.点线面三者之间的关系:面与面相交得到线, 线与线相交得到点, 即:点动成线, 线动成面, 面动成体.2.简单几何体的分类:柱、锥、台、球。
棱柱:有两个面互相平行而其余每相邻两个面的交线都互相平行的多面体。
柱体圆柱:矩形绕其一边所在直线旋转形成的曲面围成的几何体。
棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形的多面体。
锥体圆锥:直角三角形绕直角边所在直线旋转形成的曲面围成的几何体。
棱台:用一个平行于棱锥底面的平面去截棱锥底面和截面之间的部分。
台体圆台:直角梯形绕垂直于底边的腰所在直线旋转形成的曲面围成的几何体。
球体:半圆绕它的直径所在的直线旋转所得的几何体。
3.柱分直棱柱和斜棱柱,侧棱与底面垂直的棱柱称为直棱柱;侧棱与底面不垂直的棱柱则称为斜棱柱。
长方体和正方体都属于直棱柱。
4.棱柱的有关概念:(1)棱:是棱柱中任何相邻的两个面的交线。
(2)侧棱:是棱柱中相邻的两个侧面的交线。
5.棱柱的有关特性:(1)棱柱上、下底面是相同的多边形,侧面是长方形。
(2)棱柱的所有侧棱长都相等。
(3)侧面数与底面多边形的边数相等。
【经典例题】例1 圆柱, 圆锥, 正方体, 长方体, 各类棱柱, 各类棱锥和球体. 这些几何体中, (1表面都是平面的有___________________ (2表面没有平面_________________(3表面只有一个面的有_________________ (4表面有两个面_________________(5表面有三个面的有___________________ (6表面有四个面________________(7表面有五个面的有____________________ (8表面有六个面________________例2 填空侧面可以展开成一个长方体的几何体有________________的有的有的有的有各个面都是长方形的几何体是________________________ 圆锥的侧面展开图一个____________________________ 棱柱的两个底面, 形状__________,大小__________例3 观察图1-1中平面展开图的折叠过程,并回答1号面、2号面、3号面的对面分别是几号面。
北师大版四年级数学下册重叠问题全文共四篇示例,供读者参考第一篇示例:北师大版四年级数学下册中,有一个非常有趣的问题叫做重叠问题。
这个问题在学生们所学的面积和周长知识的基础上,让他们锻炼观察、逻辑和推理能力。
通过这个问题,学生们能够更好地理解几何图形的特点和性质,培养他们的数学思维和解决问题的能力。
在课堂上,老师可以通过举一些实际的例子,引导学生思考和解决问题。
让学生通过用纸板制作一些几何图形,然后放在一起,观察它们之间的关系,让学生通过比较面积、周长等来判断它们是否重叠。
老师还可以让学生尝试利用数学工具如尺子、圆规等,来测量和计算这些图形的面积和周长,从而加深他们对问题的理解。
第二篇示例:北师大版四年级数学下册中,重叠问题是一个非常有趣且具有挑战性的问题。
通过这些问题,学生不仅能够锻炼自己的思维能力和逻辑推理能力,还能够培养他们的数学思维和创新能力。
重叠问题涉及到平面图形的重叠、覆盖和叠加,要求学生通过观察、分析和推理,找到正确的解决方法。
下面我们将通过几个具体的例子来详细介绍北师大版四年级数学下册中的重叠问题。
第一个例子是一个经典的重叠问题:有一块长方形纸张,上面画有一些正方形图案,一些图案正好落在其他图案上。
现在要求将这些图案全部展开,不能有任何部分重叠,也不能有任何部分超出纸张的范围。
学生必须通过观察图案的相对位置和大小关系,巧妙地将它们展开,使每个图案都能够完整显示在纸张上。
这需要学生不仅仔细观察,还需要运用空间想象力和逻辑推理能力,找到合适的解决方法。
第二个例子是一个与装饰有关的重叠问题:假设有一些不同形状和颜色的贴纸,现在要求将这些贴纸全部贴在一张大的海报纸上,要求每一个贴纸都要完整展示出来,也不能有任何部分重叠或遮挡其他贴纸。
学生需要根据每个贴纸的形状和大小,巧妙地将它们粘贴在海报纸上,使得整个海报看起来既美观又不冗杂。
这个问题不仅考验学生的粘贴技巧,还考验他们的审美能力和空间感知能力。
人教版七年级数学上册第四章同步测试题(含答案)4.1 几何图形一、选择题1. 如图所示的几何体是由形状、大小都完全相同的小正方体组合而成的,则图中的图形不是从正面、左面、上面看这个几何体得到的平面图形的是()2. 如图所示的几何体,从上面看得到的平面图形是()3. 下列四个图形中,是三棱锥的展开图的是()4. 如图,下列各组图形中全部属于柱体的是()5. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是( )6. 下列几何体中,含有曲面的有()A.1个B.2个C.3个D.4个7. 圆柱是由长方形绕着它的一边所在的直线旋转一周得到的,那么如图所示的几何体是图中的哪一个图形绕着直线旋转一周得到的()8. 将如图所示的长方体的表面展开,则得到的平面图形不可能是图中的 ()9. 如图,给定的是一个纸盒的外表面,图中的几何体能由它折叠而成的是()10. 如果一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形二、填空题11. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.12. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.13. 如图所示的图形中,是棱柱的有______.(填序号)14. 如图所示的8个立体图形中,是柱体的有,是锥体的有,是球的有.(填序号)15. 如图所示是某几何体的展开图,那么这个几何体是.16. 如图,把下列实物图和与其对应的立体图形连接起来.三、解答题17. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.18. 如图,是长方体的展开图,将其折叠成一个长方体,那么:(1)与点N重合的点是哪几个?(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?图19. 如图①是三个直立于水平面上的形状完全相同的几何体(下底面为圆,单位:cm),将它们拼成如图②所示的新几何体,求新几何体的体积(结果保留π).人教版七年级数学上册 4.1 几何图形同步课时训练-答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】B7. 【答案】A8. 【答案】C9. 【答案】B10. 【答案】C[解析] 一个棱柱有18条棱,则这个棱柱是六棱柱,六棱柱的底面是六边形.二、填空题11. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.12. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同13. 【答案】②⑥14. 【答案】①②⑤⑦⑧④⑥③15. 【答案】圆柱16. 【答案】①-C,②-B,③-D,④-E,⑤-A 连线略三、解答题17. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.18. 【答案】解:(1)与点N重合的点是点H,J.(2)由AG=CK=14 cm,LK=5 cm,可得CL=CK-LK=14-5=9(cm),所以长方体的表面积为2×(9×5+2×5+2×9)=146(cm2),体积为5×9×2=90(cm3).19. 【答案】解:π×22×(4+6)+[π×22×(4+6)]=40π+20π=60π(cm3).答:新几何体的体积为60π cm3.4.2直线、射线、线段同步练习试题(一)一.选择题1.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.有下列生活、生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设.②用两个钉子就可以把木条固定在墙上.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①④B.②④C.①②D.③④4.已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,点M、N分别是线段AB、AC中点,求线段MN的长是()A.5cm B.5cm或15cm C.25cm D.5cm或25cm 5.已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC =BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③6.如图,点C是AB的中点,点D是BC的中点,下列结论:①CD=AC﹣DB,②CD=AB,③CD=AD﹣BC,④BD=2AD﹣AB,正确的有()A.1个B.2个C.3个D.4个7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离8.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处9.老爷爷从家到超市有甲、乙、丙三条路可以选择,在不考虑其它因素的情况下,他选择了乙路前往,则其中蕴含着的数学道理是()A.两点确定一条直线B.两点之间线段最短C.连结直线外一点与直线上各点的所有线段中,垂线段最短D.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线10.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D 是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处二.填空题11.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.12.点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为.13.如图,AE⊥AB于A点,DB⊥AB于B点,点P为线段AB上任意一点,若AE =2,DB=4,AB=8,则PE+PD的最小值是.14.曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好的观赏风光,如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是.15.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.三.解答题16.如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.17.如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.18.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?19.已知如图,A,B,C三点在同一直线上,AB=6,BC=2.(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.参考答案与试题解析一.选择题1.【解答】解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.2.【解答】解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.【解答】解:根据两点之间,线段最短,得到的是:①④;②③的依据是两点确定一条直线.故选:A.4.【解答】解:(1)当点C位于点B的右边时,MN=(AC﹣AB)=5cm,(2)当点C位于点A的左边时,MN=(AC+AB)=25cm故线段MN的长为5cm或25cm.故选:D.5.【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.6.【解答】解:∵点C是AB的中点,点D是BC的中点,∴AC=BC=AB,CD=BD=BC=AC,∴①CD=BC﹣DB=AC﹣DB,正确;②CD=BC=AB,正确;③CD=AD﹣AC=AD﹣BC,正确;④BD=AB﹣AD≠2AD﹣AB,错误.所以正确的有①②③3个.故选:C.7.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因是两点之间,线段最短,故选:A.8.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.9.【解答】解:图中三条路线,甲和丙是曲线,乙是线段,由两点间线段最短,∴乙最短,故选:B.10.【解答】解:BD=(150+300)÷2﹣150=75(m),以点A为停靠点,则所有人的路程的和=7×150+12×(150+300)=6450m,以点B为停靠点,则所有人的路程的和=2×150+12×300=3900m,以点C为停靠点,则所有人的路程的和=2×(150+300)+7×300=3000m,以点D为停靠点,则所有人的路程的和=2×(150+300)÷2+7×75+12×(150+300)÷2=3675m.故停靠点的位置应设在点C.故选:C.二.填空题11.【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.12.【解答】解:∵点A到原点的距离为4,且位于原点的左侧,∴点A表示的数为﹣4,∵一个点从A处向右移动2个单位长度,再向左移动7个单位长度,∴﹣4+2﹣7=﹣9,故答案为:﹣9.13.【解答】解:过点D作DT⊥EA交EA的延长线于T,连接DE.∵AE⊥AB,DB⊥AB,DT⊥ET,∴∠B=∠T=∠BAT=90°,∴四边形ABDT是矩形,∴BD=AT=4,AB=DT=8,∴ET=AE+AT=2+4=6,∴DE===10,∵PE+PD≥DE,∴PE+PD≥10,∴PE+PD的最小值为10.故答案为10.14.【解答】解:其中蕴含的数学道理是两点之间线段最短,故答案为:两点之间线段最短.15.【解答】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.三.解答题16.【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.17.【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.18.【解答】解:(1)经过这四点最多能确定6条直线:直线AB,直线AD,直线BC,直线CD,直线AC,直线BD,故答案为:6;(2)从节省材料的角度考虑,应选择图中路线2;如果有人想在桥上较长时间观赏湖面风光,应选择路线1,因为两点之间,线段最短,路线2比路线1短,可以节省材料;而路线1较长,可以在桥上较长时间观赏湖面风光.19.【解答】解:(1)如图,如图1,∵AB=6,BC=2.∴AC=AB+BC=8;如备用图1,AC=AB﹣BC=4.答:AC的长为8或4;(2)如图,∵M,N分别是AB,BC的中点,∴BM=AB=3,BN=BC=1,∴MN=BM+BN=3+1=4,或MN=BM﹣BN=3﹣1=2.答:MN的长为4或2;(3)如图,∵M,N分别是AC,BC的中点,∴MC=AC=4,NC=BC=1,∴MN=MC﹣NC=4﹣1=34.3角同步练习试题(一)一.选择题1.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离4.下列语句错误的个数是()①一个角的补角不是锐角就是钝角;②角是由两条射线组成的图形;③如果点C是线段AB的中点,那么AB=2AC=2BC;④连接两点之间的线段叫做两点的距离.A.4个B.3个C.2个D.1个5.按图1~图4的步骤作图,下列结论错误的是()A.∠AOB=∠AOP B.∠AOP=∠BOPC.2∠BOP=∠AOB D.∠BOP=2∠AOP6.如图,用量角器度量∠AOB,可以读出∠AOB的度数为()A.30°B.60°C.120°D.150°7.如图,小王从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东60°方向行走至C处,则∠ABC等于()A.90°B.100°C.110°D.120°8.如图,将一副三角板按不同位置摆放,其中α和β互为余角的是()A.B.C.D.9.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是()A.∠1=90°+∠3 B.∠3=90°+∠1 C.∠1=∠3 D.∠1=180°﹣∠310.为防止森林火灾的发生,会在森林中设置多个观测点,如图,若起火点M 在观测台B的南偏东46°的方向上,点A表示另一处观测台,若AM⊥BM,那么起火点M在观测台A的()A.南偏东44°B.南偏西44°C.北偏东46°D.北偏西46°二.填空题11.若两个角互补,且度数之比为3:2,求较大角度数为.12.若∠A=59.6°,则它的余角为°′.13.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.14.如图,点C在点B的北偏西60°的方向上,点C在点A的北偏西30°的方向上,则∠C等于度.15.如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB的大小为°.三.解答题16.如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.17.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD和∠AOC互余,并求∠COD的度数.18.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,OD,OE始终是∠AOC与∠BOC的平分线.则∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,OD,OE仍始终是∠AOC与∠BOC的平分线,直接写出∠DOE的度数(不必写过程).19.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.参考答案与试题解析一.选择题1.【解答】解:射线OA表示的方向是南偏东65°,故选:C.2.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.【解答】解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.4.【解答】解:①直角的补角是直角,故原说法错误;②角是由有公共的端点的两条射线组成的图形,故原说法错误;③如果点C是线段AB的中点,那么AB=2AC=2BC,说法正确;④连接两点之间的线段的长度叫做两点的距离,故原说法错误.故错误的个数有①②④共3个.故选:B.5.【解答】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.6.【解答】解:看内圈的数字可得:∠AOB=120°,故选:C.7.【解答】解:如图:∵小王从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东60°方向行走至点C处,∴∠DAB=40°,∠CBE=60°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+60°=100°.故选:B.8.【解答】解:A、α和β互余,故本选项正确;B、α和β不互余,故本选项错误;C、α和β不互余,故本选项错误;D、α和β不互余,故本选项错误.故选:A.9.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:A.10.【解答】解:如图:因为AM⊥BM,所以∠2+∠3=90°,因为南北方向的直线平行,所以∠2=46°,∠1=∠3,所以∠3=90°﹣∠2=90°﹣46°=44°,所以∠1=44°,所以起火点M在观测台A的南偏西44°,故选:B.二.填空题11.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.12.【解答】解:∵∠A=59.6°,∴∠A的余角为90°﹣59.6°=30.4°=30°24',故答案为30;24.13.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.14.【解答】解:如图:根据题意可得:∠1=60°,∠2=30°,∵AE∥DB∥CF,∴∠BCF=∠1=60°,∠ACF=∠2=30°,∴∠ACB=30°.故答案为:30.15.【解答】解:如图,∵点A在点O北偏西60°的方向上,∴OA与西方的夹角为90°﹣60°=30°,又∵点B在点O的南偏东20°的方向上,∴∠AOB=30°+90°+20°=140°.故答案为:140.三.解答题16.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.17.【解答】解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.18.【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠BOC=(∠AOC+∠BOC)∠AOB =45°;(3)∠DOE的大小分别为45°和135°,如图3,则∠DOE为45°;如图4,则∠DOE为135°.分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.19.【解答】解:(1)∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC=90°+35°=125°.(2)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC.∴∠AON=∠NOC.∴ON平分∠AOC.(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°。
一.传牙签参与游戏者每人抽一张扑克牌然后相继按扑克牌的顺序坐好持最小或最大的那张扑克牌的人为先头用嘴衔住那根牙签依次传到下一个人的嘴里不许掉哦注意不能借用手或任何工具帮忙如果掉了那自然要受到惩罚喽传完一圈后游戏未完。
将牙签撅一半继续抽扑克牌按新的顺序坐好接着下一轮的传递�6�7�6�7继续撅一半�6�7�6�7再撅�6�7�6�7越来越刺激. 二.偷天陷阱记得电影偷天陷阱中辛康纳利训练泽塔琼斯过红外线的情景吗这个游戏有些类似先制作道具找一些红绳玻璃绳就行中间穿上纸杯来形容铃铛还要准备眼罩根据参加人数再准备背景音乐disco。
让后请几个助手在舞台上拉着绳子让参赛者先睁着眼睛练习一下跟他们说这是一个非常有挑战性的游戏要考验他们的灵巧度和记忆力练习几次后蒙上他们的眼睛音乐响起让他们走这时候高潮是主持人让所有的助手把绳子拿开你就会看到很精彩的表演了注意旁边的人还可以故意误导一下说低头抬脚等等. 三.国王游戏先是每个人分张数字.然后抽出一人做国王国王可以命令任何做事情比如1号和3号接吻.有时是两个男的吻哈. 接龙第一个人说你好的好啊第二个人说你好的好啊好漂亮的亮的亮阿第三个人说你好的好啊好漂亮的亮的亮啊亮晶晶的晶啊. 四、我爱你VS不要脸听上去有些“暧昧”实际上是个练反应的好游戏。
规则众人围坐成一圈规定只能对自己左边的人说“我爱你”对右边的人说“不要脸”。
两人之间只能连续对话3次。
一旦有人说错即受罚。
亮点当游戏达到一定速度时反应跟不上的人往往会出现“我�6�7�6�7不要脸”或“不�6�7�6�7我爱你”之类的经典“自白”。
五.箩卜蹲将参与者分成四堆以上每堆人手牵着手围成一圈给每堆人以颜色或数字命名任意指定一堆萝卜开始统一下蹲同时还要念词再指定别的萝卜堆做同样动作目标要一致依此类推但不能马上回指。
以一实例加以说明。
有红、白、黄、紫四堆萝卜白萝卜先蹲蹲的时候念“白萝卜蹲白萝卜蹲白萝卜蹲完红萝卜蹲。
”念完后所有白萝卜手指一致指向红萝卜堆。
第1题第2题第4题 第6题 第9题 第12题 《18.2.1 矩形的性质》练习一、选择——基础知识运用1.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm ,则这个矩形的一条较短边的长度为( )A .10cmB .8cmC .6cmD .5cm 2.如图,在矩形ABCD 中,DE 平分∠ADC 交BC 于点E ,EF ⊥AD交AD 于点F ,若EF =3,AE =5,则AD 等于( )A .5B .6C .7D .83.Rt △ABC 中,∠C =90°,锐角为30°,最短边长为5cm ,则最长边上的中线是( )A .5cmB .15cmC .10cmD .2.5cm4.如图,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF =7,BC=10,则△EFM 的周长是( )A .17B .21C .24D .27 5.如图,在矩形ABCD 中,AF ⊥BD 于E ,AF 交BC 于点F ,连接DF ,则图中面积相等但不全等的三角形共有( )A .2对B .3对C .4对D .5对6.如图,在平面直角坐标系中,矩形OABC ,OA =3,OC =6,将△ABC沿对角线AC 翻折,使点B 落在点B ′处,AB ′与y 轴交于点D ,则点D的坐标为( )A .(0,-)B .(0,-)C .(0,-)D .(0,-)7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)8.已知AC 为矩形ABCD 的对角线,则图中∠1与∠2一定不相等的是( )A .B .C .D .9.如图,矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE ⊥AC 交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.410.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米( )A.50B.50或40C.50或40或30D.50或30或2011.菱形具有而矩形不具有性质是( )第5题第13题 第14题 第15题 第16题 第18题 A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.对角线平分且相等12.在矩形ABCD 中,AB =1,AD =3,AF 平分∠DAB ,过C 点作CE ⊥BD 于E ,延长AF .EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ;④BE =3ED .正确的是( )A.②③B.③④C.①②④D.②③④13.如图,在矩形ABCD 中,EF ∥AB ,GH ∥BC ,EF 、GH 的交点P 在BD上,图中面积相等的四边形有( )A.3对B.4对C.5对D.6对14. 将矩形ABCD 沿AE 折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED 的大小是( )A.60°B.50°C.75°D.55°15.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD ,BC 于E ,F 点,连接CE ,则△CDE 的周长为( )A.5cmB.8cmC.9cmD.10cm16.如图,在矩形ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,则图中全等的直角三角形共有( )A.6对B.5对C.4对D.3对17.矩形ABCD 中的顶点A 、B 、C 、D 按顺时针方向排列,若在平面直角坐标系内,B 、D 两点对应的坐标分别是(2,0).(0,0),且A 、C 两点关于x 轴对称,则C 点对应的坐标是( )A.(1,1)B.(1,﹣1) C .(1,﹣2) D.(,﹣)18.如图,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为( )A.600m 2B.551m 2C.550m 2D.500m 2二、填空——知识巩固运用19.如果把电视屏幕看作一个长方形平面,建立一个直角坐标系,若左下方的点的坐标是(0,0),右下方的点的坐标是(32,0),左上方的点的坐标是(0,28),则右上方的点的坐标是 .20.长方形ABCD 面积为12,周长为14,则对角线AC 的长为 .21.如图,把一个矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在A ′的位置上.若OB =,21=OC BC ,求点A ′的坐标为 .22.在矩形ABCD 中,A (4,1),B (0,1),C (0,3),则点D 的坐标为 .23.如图,一张矩形纸片沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD 等于_________.第21题 第22题 第24题第23题24.如图,点A、D、G、M在半⊙O上,四边形ABOC、DEOF、HMNO均为矩形.设BC=a,EF=b,NH=c,则a、b、c的大小关系为______________.三、解答——知识提高运用25.如图,自矩形ABCD的顶点C作CE⊥BD,E为垂足,延长EC至F,使CF =BD,连接AF,求∠BAF的大小.26.如图,在△ABC中,∠BAC>90°,DC⊥DB,BE⊥EC,F为BC上的一个动点,猜想:当F为于BC上的什么位置时,△FDE是等腰三角形,并证明你的猜想是正确的.27.如图,在矩形ABCD中,AD=12,AB=7,DF平分∠ADC,AF⊥EF.(1)求证:AF=EF;(2)求EF长.第27题28.八年级(12)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线,如果一条对角线用了38盆红花,还需要从花房运来多少盆红花?为什么?如果一条对角线用了49盆呢?29.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积是多少?30.如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=8,DF=4,则菱形ABCD的边长为多少?31.如图,矩形的长与宽分别为a和b,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a和b要满足什么数量关系?32.如图,在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE的度数是多少?4.参考答案一、选择——基础知识运用1.【答案】D【解析】∵四边形ABCD是矩形,∴OA=OC= AC,OD=OB= BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D。
一、解答题1.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.2.如图,已知点C 是线段AB 的中点,点D 在线段CB 上,且DA =5,DB =3.求CD 的长.解析:1【解析】【分析】根据线段的和差,可得AB 的长,根据线段中点的性质,可得AC 的长,根据线段的和差,可得答案.【详解】由线段的和差,得AB=AD+BD=5+3=8.由线段中点的性质,得AC=CB=12AB=4. 由线段的和差,得CD=AD−AC=5−4=1.【点睛】此题考查两点间的距离,解题关键在于掌握各性质定义.3.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】 ∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.4.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
建 设
和 谐
社 会
第二节展开与折叠练习题 姓名_______
_
(友情提示:认真做题,细心检查你的进步会很快........加油,相信你是最棒的) 1.(2013 福建 龙岩)
如图是一个正方体的表面展开图,则图中“加”字所在面的对面的字是( )
A .北
B .京
C .奥
D .运 2.如果有一个正方体,它的展开图可能是下面四个展开图中的( )
3.将一圆形纸片对折后再对折,得到图5,然后沿着图中的虚线剪开, 得到两部分,一部分展开后的平面图形是 ( ) ?
4、(06广东)水平放置的正方体的六个面分别面、后面、上面、下面、左面、右面”表示,如个正方体的表面展开图,若图中“2”在正方体
则这个正方体的后面是 ( ) A .O B . 6 C .快 D .乐
5、(06广西贺州)如图是一个正方体的展开图,将它折叠成正方体后,“建”字面是( ) A.和 B.谐 C.社 D.会 6.(06贵阳)如图是正方体的一个平面展开图,如果折叠成原来方体时与边a 重合的是 ( )
(A d (B )
(C ) f (D ) 7、(05河北)将一正方形纸片按图5中的方式依次对折后,再沿⑶中的虚线裁剪将⑷中的纸片打开铺平,所得图案应该是
案中的( )
A .
B .
C . D.
8. (05锦州)一张正方形纸片经过两次对折,并在如图位置上剪去一个小正方开后是( ) 9.(05黄石)如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是( ) A . B . C . D.
A
B
C
D
图3
图5
(1题图)
12
5
2
1
4
4
61
③若B 在右面,D 在后面,则A 在下面; ④若B 在前面,A 在上面,则D 在右面; 其中正确的说法是____________
21、下面四个图形都是由相同的六个小正方形纸片组成,小正方形上分别贴有北京2008年奥运会吉
个福娃(贝贝、晶晶、欢欢、迎迎、妮妮)的卡通画和奥运五环标志,如果分别用“贝、晶、欢妮”五个字来表示五个福娃,那么折叠后能围成如图所示正方体的图形是 ( )
22.如图所示,下列哪个图形经过折叠能围成一个符合条件的立方体( )
C 迎 妮 欢
晶 贝
★(B 妮 迎 欢
晶 贝
★(晶 欢 迎
妮
贝 A ★欢
迎
妮
欢
晶 妮 迎
★(
贝 D A B C
D。