初二上数学知识点总结
- 格式:doc
- 大小:12.50 KB
- 文档页数:3
8年级上数学知识点归纳总结一、三角形。
1. 三角形的概念与分类。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 按角分类:锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。
- 按边分类:不等边三角形(三边都不相等)、等腰三角形(有两边相等),其中等腰三角形包括等边三角形(三边都相等)。
2. 三角形的性质。
- 三角形三边关系:三角形两边的和大于第三边,三角形两边的差小于第三边。
- 三角形内角和定理:三角形三个内角的和等于180°。
- 三角形的外角性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
3. 三角形中的重要线段。
- 中线:连接三角形顶点和它对边中点的线段。
三角形的三条中线相交于一点,这点叫做三角形的重心。
- 角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。
三角形的三条角平分线相交于一点。
- 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段。
锐角三角形的三条高都在三角形内部;直角三角形的两条直角边是它的高,另一条高在三角形内部;钝角三角形的高有两条在三角形外部,一条在三角形内部。
4. 全等三角形。
- 概念:能够完全重合的两个三角形叫做全等三角形。
- 性质:全等三角形的对应边相等,对应角相等。
- 判定:- SSS(边边边):三边对应相等的两个三角形全等。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。
- HL(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。
二、轴对称。
1. 轴对称图形与轴对称。
- 轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
初二数学上册知识点总结归纳一、整数和有理数1. 整数运算:加法、减法、乘法、除法2. 整数的性质:相等性、大小关系、相反数、绝对值3. 有理数的性质:相等性、大小关系、相反数、绝对值4. 有理数的加法和减法:同号相加、异号相减5. 有理数的乘法和除法:同号得正、异号得负二、代数式与方程1. 代数式的概念:字母、数字和运算符号的组合2. 代数式的运算:加法、减法、乘法、除法3. 方程的概念:等号两边的代数式4. 方程的解:使方程成立的值5. 一元一次方程:解一次方程的方法6. 一元一次方程的应用:问题的转化和解答三、图形的认识1. 图形的分类:平面图形和立体图形2. 平面图形的名称和性质:点、线、线段、射线、角、三角形、四边形、多边形、圆3. 立体图形的名称和性质:球体、圆柱体、圆锥体、棱锥体、棱柱体四、相交线与平行线1. 相交线的性质:相互垂直、补角相等、同位角相等、对顶角相等2. 平行线的判定:相交线与平行线的性质3. 平行线的性质:对应角相等、内错角相等、同位角相等4. 直线与平面的关系:直线与平面有一个公共点,直线与平面没有公共点五、数的倍数与约数1. 数的倍数的概念:一个数除以另一个数,商是整数2. 数的倍数的性质:公倍数、最小公倍数3. 数的约数的概念:能整除给定数的数4. 数的约数的性质:公约数、最大公约数六、四则运算与算式1. 公式与算式的概念:有运算符号和等号的式子2. 算式的运算法则:先乘除后加减、先括号后计算3. 利用四则运算解决实际问题七、角与直线的关系1. 角的概念:角的三要素、角的分类2. 角的比较与度量:角的大小比较、度量角的单位3. 角的平分线和角的三等分线4. 直线的分类:与角有关的直线、与平行线有关的直线八、方形与平行四边形1. 方形的性质:四个角都是直角的四边形2. 平行四边形的性质:对边平行、对边相等、对角相等3. 平行四边形的判定:各边的长度、对角线的关系4. 平行四边形的性质应用九、单位换算与量的计算1. 常用单位的换算:长度、面积、体积、质量、时间2. 运用单位换算解决实际问题3. 人口密度、文明程度等综合计算十、比例与比例应用1. 比例的概念:比值相等的关系2. 解决比例问题的方法:分离两比值、求未知数3. 按比例象形、小学生由高到低站队、分数排数等应用4. 面积比例、速度比例、比例尺及其应用十一、数轴与大小关系1. 数轴的概念:用线段表示数及其大小2. 数轴上点的坐标:规定数轴上一个点的坐标3. 数轴上的加法和减法:根据坐标的变化进行运算4. 数轴上的倍数:根据坐标的变化进行运算十二、综合与实践1. 基本依据:理论与实际结合2. 实际问题:通过解答实际问题,理解和应用所学知识通过对初二数学上册的知识点进行总结归纳,可以加深对这些知识的理解和掌握。
初二数学上学期知识点总结优秀6篇初二数学上册知识点篇一一.知识概念1.同底数幂的乘法法则:m,n都是正数2..幂的乘方法则:m,n都是正数3.整式的乘法(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3)多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式:5.完全平方公式:6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即a≠0,m、n都是正数,且mn.在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,-2.50=1,则00无意义。
③任何不等于0的数的-p次幂p是正整数,等于这个数的p的次幂的倒数,即a≠0,p 是正整数,而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的;当a0时,a-p的值可能是正也可能是负的,如,④运算要注意运算顺序。
7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。
8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的'步骤:1先看各项有没有公因式,若有,则先提取公因式;2再看能否使用公式法;3用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;4因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;5因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。
初二数学知识点全总结一、整数1. 整数的概念和表示法2. 整数的加减法3. 整数的乘除法4. 整数的乘方和开方5. 整数的大小比较和大小关系的判断6. 整数的运算性质和规律二、分数1. 分数的概念和表示法2. 分数的加减法3. 分数的乘除法4. 分数的约分和商的混合数表示法5. 分数的运算性质和规律6. 分数的大小比较和大小关系的判断三、小数1. 小数的概念和表示法2. 小数的加减法3. 小数的乘除法4. 小数与分数的相互转换5. 小数的运算性质和规律6. 小数的大小比较和大小关系的判断四、代数式与方程式1. 代数式的概念和表示法2. 代数式的加减法和乘法3. 代数式的乘方和乘方的运算规则4. 代数式的化简和展开5. 一元一次方程和一元一次方程的解法6. 代数式和方程式在实际问题中的应用五、平面图形1. 点、线、面的概念和性质2. 直线、射线、线段的概念和性质3. 角的概念和性质4. 三角形、四边形、多边形的概念和性质5. 圆的概念和性质6. 平面图形的周长和面积计算六、几何变换1. 平移、旋转、翻转的概念和性质2. 平移、旋转、翻转的操作方法和计算规则3. 平面图形在几何变换中的变化规律4. 几何变换在实际问题中的应用七、统计与概率1. 数据的搜集、整理、分析和表示2. 数据的统计量和图表的绘制3. 概率的概念和性质4. 事件的概念和性质5. 概率计算和事件发生的可能性判断以上是初二数学的主要知识点总结,其中包括整数、分数、小数、代数式与方程式、平面图形、几何变换、统计与概率等方面的内容。
掌握这些知识点对于学好初二数学非常重要,希望对你有所帮助。
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。
1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。
第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
初二上册数学知识点总结归纳初二上册数学知识点总结第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c 分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
数学知识点总结
一、上册知识点:
1.整数的加减法:正整数、负整数、零的概念,整数的加法和减法运算法则。
2.有理数:有理数的概念,有理数的分类(正有理数、负有理数、零),有理数的加法和减法运算法则。
3.乘方:乘方的概念,乘方的性质,乘方的运算法则。
4.乘法与除法:乘法的概念,乘法的性质,乘法的运算法则;除法的概念,除法的性质,除法的运算法则。
5.分数:分数的概念,分数的性质,分数的加减法运算法则。
6.代数式:代数式的概念,代数式的简化,代数式的加减法运算法则。
7.一元一次方程:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。
8.几何图形:点、线、面的概念,几何图形的基本性质,几何图形的分类。
9.角:角的概念,角的分类,角的性质,角的度量。
10.平行线:平行线的概念,平行线的性质,平行线的判定。
二、下册知识点:
1.直角三角形:直角三角形的概念,直角三角形的性质,直
角三角形的边角关系。
2.勾股定理:勾股定理的概念,勾股定理的应用。
3.多边形:多边形的概念,多边形的分类,多边形的性质。
4.圆:圆的概念,圆的性质,圆的度量。
5.圆柱和圆锥:圆柱和圆锥的概念,圆柱和圆锥的性质,圆柱和圆锥的计算。
6.比例与比例式:比例的概念,比例的性质,比例式的概念,比例式的计算。
7.百分数:百分数的概念,百分数的性质,百分数的计算。
8.数据的收集与整理:数据的收集方法,数据的整理方法,数据的分析与表示。
9.概率:概率的概念,概率的计算。
10.函数与图像:函数的概念,函数的性质,函数的图像。
初二数学上学期知识点总结(10篇)在平平淡淡的学习中,大家较不陌生的就是知识点吧!知识点有时候特指教科书上或考试的知识。
掌握知识点有助于大家更好的学习。
问学必有师,讲习必有友,以下是可爱的小编为家人们收集整理的初二数学上学期知识点总结(较新10篇),欢迎参考阅读,希望可以帮助到有需要的朋友。
初二数学上学期知识点总结篇一分式的加减法1、分式与分数类似,也可以通分。
根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
2、分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。
(1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:3、概念内涵:通分的关键是确定较简分母,其方法如下:较简公分母的系数,取各分母系数的较小公倍数;较简公分母的字母,取各分母所有字母的次幂的积,如果分母是多项式,则首先对多项式进行因式分解。
初二数学上册知识点篇二多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的`一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到初二数学上册知识点篇三平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算。
初二数学上学期的知识点汇总一、数与式1.1 整数•整数的概念及表示方法•整数的加减乘除(含绝对值)•整数的大小比较1.2 分数•分数的概念及表示方法•分数的化简•分数的加减乘除1.3 小数•小数的概念及表示方法•小数的加减乘除•小数和分数的互换1.4 数指和运算•数指的概念及表示方法•数指的四则运算•检验结果的方法二、代数式2.1 代数式的概念•代数式的定义及基本概念•代数式的化简与展开•如何将代数式加减乘除2.2 一元一次方程•一元一次方程的概念•一元一次方程的解法(等式法、代入法、消元法)•一元一次方程实际应用问题的解法2.3 不等式•不等式的概念及表示方法•不等式的解集•不等式的加减乘除2.4 命题•命题的概念及表示方法•命题的真值与否定•命题的充分必要条件和充分条件三、图形与变换3.1 平面图形•三角形、四边形、多边形的特点•相似与全等图形的概念•各种图形的面积与周长公式3.2 空间图形•立体图形的种类及特点•立体图形的表面积和体积公式•立体图形的展开图3.3 图形的变换•平移、旋转、翻转、对称的概念和特点•图形的变形、相似和全等的判断•图形的变换在生活中的应用四、统计与概率4.1 统计•统计的概念及基本术语•统计数据的处理方法(平均数、中位数、众数、范围等)•统计数据的图形表示(直方图、折线图、饼图等)4.2 概率•概率的概念及基本术语•概率的计算方法(多个事件的概率、独立事件和非独立事件的概率)•概率的应用(游戏、抽奖、赌博、生活中的概率问题)以上内容是初二数学上学期的主要知识点汇总,希望同学们认真学习并掌握,为下学期的学习打下坚实的基础。
初二数学知识点总结归纳【完整版】八年级上册数学知识点篇一1、全等三角形的对应边、对应角相等2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5、边边边公理(SSS)有三边对应相等的两个三角形全等6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7、定理1在角的平分线上的点到这个角的两边的距离相等8、定理2到一个角的两边的距离相同的点,在这个角的平分线上9、角的平分线是到角的两边距离相等的所有点的集合10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13、推论3等边三角形的各角都相等,并且每一个角都等于60°14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15、推论1三个角都相等的三角形是等边三角形16、推论2有一个角等于60°的等腰三角形是等边三角形17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18、直角三角形斜边上的中线等于斜边上的一半19、定理线段垂直平分线上的点和这条线段两个端点的距离相等20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合22、定理1关于某条直线对称的两个图形是全等形23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^227、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形28、定理四边形的内角和等于360°29、四边形的外角和等于360°初二数学知识点归纳篇二一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;(2)正比例函数图像特征:一些过原点的直线;(3)图像性质:①当k0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;(4)求正比例函数的解析式:已知一个非原点即可;(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)(8)一次函数图像特征:一些直线;(9)性质:①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx 平移|b|个单位长度而得;(当b0,向上平移;当b0,向下平移)②当k0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;④当b0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b0时,直线y=kx+b与y轴负半轴有交点为(0,b);(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点;用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。
初二上数学知识点总结
初二上数学知识点总结
多做好知识点归纳,对自己的学习很有帮助,今天我们就一起来看看初二上数学知识点总结吧!
初二上数学知识点总结
1 全等三角形的对应边、对应角相等
2 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
5 边边边公理(SSS) 有三边对应相等的两个三角形全等
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
7 定理1 在角的'平分线上的点到这个角的两边的距离相等
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
9 角的平分线是到角的两边距离相等的所有点的集合
10 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
22 等腰三角形的顶角平分线、底边上的中线和底边上的
高互相重合
23 推论3 等边三角形的各角都相等,并且每一个角都等
于60°
24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25 推论1 三个角都相等的三角形是等边三角形
26 推论 2 有一个角等于60°的等腰三角形是等边三角
形
27 在直角三角形中,如果一个锐角等于30°那么它所对
的直角边等于斜边的一半
28 直角三角形斜边上的中线等于斜边上的一半
29 定理线段垂直平分线上的点和这条线段两个端点的距离相等
30 逆定理和一条线段两个端点距离相等的点,在这条线
段的垂直平分线上
31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32 定理1 关于某条直线对称的两个图形是全等形
33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
37 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
38 定理四边形的内角和等于360°
39 四边形的外角和等于360°
40 多边形内角和定理 n边形的内角的和等于(n-
2)×180°。