tl431内部电路及参数
- 格式:pdf
- 大小:158.82 KB
- 文档页数:2
上图是一个基准电压源电路,若D6与D5、D4的特性完全一样,那么就有Vref=Vbe4+(Vd3/Rd3)*Rd2式中Vbe4是D4的基级与发射极之间的电压,Vd3是D3的电压,为Vbed6-Vbed5。
由于这三个管子特性完全相同,那么D5、D6的集电极电压是相等的。
所以Vref= Vbe4+(KT/q)* (Rd2/Rd3)*ln(Rd2/Rd1),这里利用了PN结的电流方程:i=Is(equ/kt -1)【Is为PN结反向饱和电流】基准稳压电源在电路中的应用是很广泛的,特别是在AD/DA IC中,本想接下来介绍以下比较常见的TL431的,我在学习TL431时,发现它的内部结构电路图,不是我想象的拿么难,觉得有必要把内部结构分析下,纯粹是为了提高自己的模电。
不过我首先得先介绍两个基准电流源:1> 微电流源:它的原理图如下:这里的NPN管的放大倍数β都是>>1的,所以U2管的集电极电流为Iu2=Iu4=(Ubeu1-Ubeu2)/Ru4式中Ubeu1-Ubeu2只有几十毫伏,甚至更小,因此只要几千欧的Ru4就可以得到几十微安的Iu2,由于这两管子特性完全相同,所以同样可以利用PN结的电流方程得到:Iu2=(Ut/Ru4)*ln(Iu3/Iu2)2> 比例电流源它的原理图如下:这里的NPN管同样是特性相同的管子。
从电路可知Ubeu0+Iru3*Ru3=Ubeu1+Iru4*Ru4 (1)根据PN结的电流方程可知Ubeu0 = Ut * ln(Ieu0/Is), Ubeu1=Ut*ln(Ieu1/Is)把上两式代入 1 中可得:Iru4*Ru4 = Iru3*Ru3 + Ut*ln(Ieu0/Ieu1);这里的对数部分可以忽略,因为Ieu0/Ieu1接近于1。
当β>>2时,Icuo=Iru3=Iru2, Icu1=Iru4;所以 Iru4*Ru4 = Iru2*Ru3 而此式中的Iru2=(Vcc-Ubeu0)/(Ru2+Ru3)这两个基准电流源的具体分析可以参考童诗白教授和华成英副教授主编的模拟电子技术基础。
TL431是一种高精度、低温漂电压基准器件,目前已得到广泛应用。
TL431具有很高的电压增益,实际应用中易发生自激等问题,造成许多困惑,本文系统分析TL431的内部电路,并给出利用计算机分析计算的方法,使设计人员对关于TL431电路的稳定性有准确的整体把屋。
一、基本参数估计(1)静态电流分配:TL431的最小工作电流为0.4mA,此时V10基本上没有电流(取0.03mA,be压降0.6)。
V9射极电流为0.6V/10k=0.06mA。
设V3的be压降为0.67V ,V1、V2的集电极电压均为0.67V,所计算时把R1、R2看作并联,,则算得V3射极电流为(2.5-0.67*2)/(3.28+2.4//7.2)=0.228mA。
剩余电流0.4-0.228-0.06-0.03=0.52mA,提供给V7、V8电流镜,V7、V8各获得0.04mA。
V4、V5、V6、V7、V8工作电流均为0.04mA。
(2)假内部三极管的fT值为100—200MHz,当工作电流小的时候fT为10—100MHz,由此间接估计三极管内部的等效电容。
cb结电容均假设为1—2pF。
V4、V7 、V8、V9等三极管工作电流小,所以fT要小很多(结电容为主,扩散电容较小)。
(3)V4、V5工作电流较小,通常小电流时电流放大倍数也较小。
设V4的放大倍数为50倍左右。
(4)为方便计算,设V9、与V10的电流放大系数相同,V9、V10与电流增益直接相关,它们的放大倍数可由TL431数据表间接计算出来。
注1:晶体管的低频放大倍数与直流放大倍数是不相同的,静态工作电流小时二者相差不大,静态电流大时二者可能相差很大,具体与该晶体管的特性有关。
二、TL431带隙基准电压产生原理带隙基准产生的原理不是本文要阐述的主要问题,但TL431内部的基准电路与增益和关,所以有必要对其分析。
1、Vbe压降在室温下有负温度系数约C=-1.9至-2.5mV/K,通常取-2mV/K,而热电压UT=DT在室温下有正温度系数D=0.0863 mV/K,将UT乘以适当倍率并与Vbe相加可大大消除温度影响。
TL 431 三端可调精密基准电路
概述: 封装外形图: 单位:mm
T L 431为三端可调节精密基准源。
通过两个外接 电阻,输出电压可在 Vref ( 约 2.5 V )到 20V 连续调节。
该电路输出阻抗小(0.2Ω)。
开启特性好,在许多应用场合,它能较好地替换齐纳二极管。
采用TO-92或SOT-23封装形式。
特点:
温度系数50ppm/℃
在工作温度范围内有温度补偿 输出电压可设定 响应速度快 输出噪声低
电原理图:
极限值:
规范值
单位参数名称符号
最小典型最大
贮存温度 Tstg -65 - +150 ℃
工作温度 Topr 0 - 70 ℃
焊接温度(10秒) T L - 265 - ℃
内部功耗 P D - 0.78 - W 阴极电压 Vz - 18 - V
mA 阴极连续电流 -10 - +150
基准源输入电流 I REF - 20 - mA
阴极电压Vz V REF - 20 V
工作条件
阴极电流 Iz 1.0 - 100 mA 电特性:(除非另有说明,Tamb=25℃)
测试图:
测试图1 Vz=V REF测试图2 Vz >V REF测试图3 漏电流测试应用图:
图1 并联调节图2 串联调节
图3 三端稳压源的输出控制图4 延时器
B O O N 杭州百隆电子有限公司 TL431
图 5 限流器或电流源 图 6 恒流变换
特性曲线:
B O O N杭州百隆电子有限公司T L431。
TL431电路原理及频率特特性的研究许剑伟 2008-1-1 莆田十中TL431是一种高精度、低温漂电压基准器件,目前已得到广泛应用。
TL431具有很高的电压增益,实际应用中易发生自激等问题,造成许多困惑,本文系统分析TL431的内部电路,并给出利用计算机分析计算的方法,使设计人员对关于TL431电路的稳定性有准确的整体把屋。
一、基本参数估计(1)静态电流分配:TL431的最小工作电流为0.4mA,此时V10基本上没有电流(取0.03mA,be压降0.6)。
V9射极电流为0.6V/10k=0.06mA。
设V3的be压降为0.67V ,V1、V2的集电极电压均为0.67V,所计算时把R1、R2看作并联,,则算得V3射极电流为(2.5-0.67*2)/(3.28+2.4//7.2)=0.228mA。
剩余电流0.4-0.228-0.06-0.03=0.52mA,提供给V7、V8电流镜,V7、V8各获得0.04mA。
V4、V5、V6、V7、V8工作电流均为0.04mA。
(2)假内部三极管的fT值为100—200MHz,当工作电流小的时候fT为10—100MHz,由此间接估计三极管内部的等效电容。
cb结电容均假设为1—2pF。
V4、V7 、V8、V9等三极管工作电流小,所以fT要小很多(结电容为主,扩散电容较小)。
(3)V4、V5工作电流较小,通常小电流时电流放大倍数也较小。
设V4的放大倍数为50倍左右。
(4)为方便计算,设V9、与V10的电流放大系数相同,V9、V10与电流增益直接相关,它们的放大倍数可由TL431数据表间接计算出来。
注1:晶体管的低频放大倍数与直流放大倍数是不相同的,静态工作电流小时二者相差不大,静态电流大时二者可能相差很大,具体与该晶体管的特性有关。
二、TL431带隙基准电压产生原理带隙基准产生的原理不是本文要阐述的主要问题,但TL431内部的基准电路与增益和关,所以有必要对其分析。
tl431稳压电路介绍
TL431是一款输出电压可调的基准电压源,辅以合适的外围电路它可以在很大范围内输出质量较好的基准电压。
TL431的实用电路如下图,图中公式内的Vref=2.495V,可以近似认为2.5V,Iref最多只有几微安可以忽略不计,对输出电压的影响微乎其微,除非比例电阻你使用了阻值极高的(比如十几k或更大)。
当图中的比例电阻R1和R2阻值相等时,TL431的输出电压Vout就是5V,当R1为0时输出电压就是2.5V,当R1的阻值为R2的3倍时,
TL431的输出电压达到10V。
当然这里的前提是输入电压一定要高于输出电压。
限流电阻R的阻值选择要根据实际需要的输出电流和输入电压计算,原则是既要保护TL431的工作电流不会超出额定值,又要满足输出电流和TL431起码的工作电流,输入电压越高R阻值应该越大,输出电流越大R 的阻值应该越小。
TL431电路原理及频率特特性的研究许剑伟2008-1-1 莆田十中TL431是一种高精度、低温漂电压基准器件,目前已得到广泛应用。
TL431具有很高的电压增益,实际应用中易发生自激等问题,造成许多困惑,本文系统分析TL431的内部电路,并给出利用计算机分析计算的方法,使设计人员对关于TL431电路的稳定性有准确的整体把屋。
一、基本参数估计(1)静态电流分配:TL431的最小工作电流为0.4mA,此时V10基本上没有电流(取0.03mA,be压降0.6)。
V9射极电流为0.6V/10k=0.06mA。
设V3的be压降为0.67V ,V1、V2的集电极电压均为0.67V,所计算时把R1、R2看作并联,,则算得V3射极电流为(2.5-0.67*2)/(3.28+2.4//7.2)=0.228mA。
剩余电流0.4-0.228-0.06-0.03=0.52mA,提供给V7、V8电流镜,V7、V8各获得0.04mA。
V4、V5、V6、V7、V8工作电流均为0.04mA。
(2)假内部三极管的fT值为100—200MHz,当工作电流小的时候fT为10—100MHz,由此间接估计三极管内部的等效电容。
cb结电容均假设为1—2pF。
V4、V7 、V8、V9等三极管工作电流小,所以fT要小很多(结电容为主,扩散电容较小)。
(3)V4、V5工作电流较小,通常小电流时电流放大倍数也较小。
设V4的放大倍数为50倍左右。
(4)为方便计算,设V9、与V10的电流放大系数相同,V9、V10与电流增益直接相关,它们的放大倍数可由TL431数据表间接计算出来。
注1:晶体管的低频放大倍数与直流放大倍数是不相同的,静态工作电流小时二者相差不大,静态电流大时二者可能相差很大,具体与该晶体管的特性有关。
二、TL431带隙基准电压产生原理带隙基准产生的原理不是本文要阐述的主要问题,但TL431内部的基准电路与增益和关,所以有必要对其分析。
1、Vbe压降在室温下有负温度系数约C=-1.9至-2.5mV/K,通常取-2mV/K,而热电压UT=DT在室温下有正温度系数D=0.0863 mV/K,将UT乘以适当倍率并与Vbe相加可大大消除温度影响。
TL431具体恒流电路
1、单个TL431恒流电路
如图,即是利用单个TL431恒流的示意图
原理:此电路非常简单,利用了431的2.495V的基准来做恒流,同样限制了LED上面的压降,但优点与缺点同样明显。
优点:电路简单,元器件少,成本低,因为TL431的基准电压精度高,R12,T13只要采高精度电阻,恒流精度比较高。
缺点:由于TL431是2.5V基准,故恒流取样电路的损耗极大,不适合做输出电流过大的电源。
此电路的致命缺陷是不能空载,故不适合做外置式的LED电源。
这个电路的恒流点计算相信大家都知道:ID=2.495/(R12//R13)。
取样电阻
R12,R13的功率为PR=2.495*2.495/R13),对于小功率电源来说,这个功率的损耗相当可观,所以不建议采用此电路做电流大于200mA的产品。
TL431德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
平面向上,元件脚向自己.左起,1脚(R)REF也就是控制极.2脚(A)ANODE(元件符号像二极管的正极.3脚(K)CATHODE (类似二极管的负极)介绍: TL431是一个有良好的热稳定性能的三端可调分流基准电压源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
特点:•可编程输出电压为36V•电压参考误差:±0.4%,典型值@25℃(TL431B)•低动态输出阻抗,典型0.22Ω•负载电流能力1.0mA to 100mA•等效全范围温度系数50 ppm/℃典型•温度补偿操作全额定工作温度范围•低输出噪声电压图1 TO92封装引脚图图2 8脚封装引脚功能图3 SOP-8 贴片封装引脚图图4 TL431符号及内部方框图图5 TL431内部电路图MAXIMUM RATINGS (Full operating ambient temperature range applies, unlessotherwise noted.)最大额定值(环境温度范围适用,除非另有说明。
)RECOMMENDED OPERATING CONDITIONS建议操作条件ELECTRICAL CHARACTERISTICS(TA=25℃, unless otherwise noted.)电气特性(25℃,除非另有说明。
)ELECTRICAL CHARACTERISTICS (TA = 25℃, unless otherwise noted.)电气特性(25℃,除非另有说明。
tl431内部电路及参数
tl431内部电路和参数介绍:
TL431功能简介
本设计的基准电压和反馈电路采用常用的三端稳压器TL431来完成,在反馈电路的应用中运用采样电压通过TL431限压,再通过光电耦合器PC817把电压反馈到SG3525的COMP端。
由于TL431具有体积小、基准电压精密可调,输出电流大等优点,所以用TL431可以制作多种稳压器。
其性能是输出电压连续可调达36V,工作电流范围宽达0.1~100mA,动态电阻典型值为0.22欧,输出杂波低。
其最大输入电压为37V,最大工作电流为150mA,内基准电压为2.5V,输出电压范围为2.5~30V。
TL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.5~36V可调式精密并联稳压器。
其性能优良,价格低廉,可广泛用于单片精密开关电源或精密线性稳压电源中。
此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。
TL431大多采用DIP-8或TO-92封装形式,引脚排列分别如图4.26所示。
图中,A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。
TL431的等效电路如图所示,主要包括①误差放大器A,其同相输入端接。