长方体的再认识-教师版
- 格式:docx
- 大小:344.87 KB
- 文档页数:16
长方体的再认识内容分析长方体的再认识是初中数学六年级下学期第4章的内容.通过本章的学习,同学们需要掌握长方体的表示方法、长方体直观图的画法,理清长方体中棱与棱的位置关系、棱与平面的位置关系、平面与平面的位置关系,并要学会如何检验直线与平面是否垂直、直线与平面是否平行、平面与平面是否垂直、平面与平面是否平行的方法.难点是相关的长方体的表面积和体积的计算.知识结构模块一:长方体的元素知识精讲1、长方体的元素长方体有六个面,八个顶点,十二条棱.2、长方体的元素特征(1)长方体的每个面都是长方形.(2)长方体的十二条棱可以分为三组,每组中的四条棱的长度相等.(3)长方体的六个面可以分为三组,每组中的两个面的形状和大小相同.3、正方体是特殊的长方体例题解析【例1】填空:(1)长方体有______个顶点;(2)长方体有______个面,每个面都是______,相对的两个面的面积______;(3)长方体共有______条棱,按棱的长短可分为______组,每组棱的长度相等,每组有______条棱.【难度】★【答案】【解析】【例2】判断:(1)若长方体的十二条棱都相等,这个长方体就是正方体;()(2)桌面所在的平面的大小就是桌面的大小;()(3)长方体共有6个面;()(4)长方体的六个面,至少有四个面的形状、大小相同;()(5)平面就是水平面;()(6)水平面是平面.()【难度】★【答案】【解析】【例3】在长方体ABCD– EFGH中,与棱EF相等的棱是()A.棱AB、棱CD、棱GH B.棱AB、棱AE、棱BFC.棱GH、棱EH、棱FG D.棱BC、棱CG、棱GF【难度】★【答案】【解析】【例4】用一根长为100厘米的塑料管和橡皮泥做一个棱长为5厘米,6厘米和7厘米的长方体架子,应该如何截取?材料够吗?【难度】★★【答案】【解析】【例5】棱长总和是24厘米的正方体,它的表面积为______,体积为______.【难度】★★【答案】【解析】【例6】长方体的长、宽、高之比为2 : 1 : 1,棱长总和是80厘米,把这个长方体截成两正方体时,表面积增加了_____.【难度】★★【答案】【解析】【例7】要做一个棱长分别为3厘米、5厘米和7厘米的无盖的长方体纸盒,最少需要多大的纸?最多需要多大的纸?【难度】★★★【答案】【解析】【例8】一根长为36分米的铁丝截开后刚好能够搭成一个长方体架子,这个长方体架子的长、宽、高的长度均为整数分米,且互不相等,求这个长方体的体积.【难度】★★★【答案】【解析】1、 长方体的直观图画法:斜二侧画法水平放置的长方体直观图通常画法的基本步骤:第一步:画平行四边形ABCD ,使AB 等于长方体的长,AD 等于长方体宽的二分之一,45DAB ∠=︒.(如图1所示)第二步:过AB 分别画AB 的垂线AE 、BF ,过C 、D 分别画CD 的垂线CG 、DH ,使它们的长度都等于长方体的高.(如图2所示)第三步:顺次联结E 、F 、G 、H .(如图3所示)第四步:将被遮住的线段改用虚线(隐藏线)表示.(如图4所示)图4表示的长方体通常表示为ABCD -EFGH .它的六个面通常表示为:平面ABCD 、平 面ABFE 、平面BCGF 等.它的十二条棱通常分别表示为:棱AB 、棱AE 、棱EF 等.模块二:长方体直观图的画法知识精讲ABCDABCDEFGHABC D EFGHABC DEFGH图1 图2 图3图4【例9】 图中长方体正确表示为( ) A .长方体ABCD B .长方体EFGH C .长方体AB D .长方体ABCD -EFGH 【难度】★ 【答案】 【解析】【例10】 要补全一个长方体的直观图,至少需要知道_____条棱,这几条棱应该分别是____________. 【难度】★ 【答案】 【解析】【例11】 画一个棱长分别是2厘米、3厘米、4厘米的长方体. 【难度】★ 【答案】 【解析】【例12】 画一个棱长总和为36厘米的正方体. 【难度】★★ 【答案】 【解析】【例13】 补画下列各图,使它成为长方体(虚线部分表示被遮住的部分). 【难度】★★ 【答案】 【解析】例题解析ABCD EFGH1、 长方体中棱与棱的位置关系如图所示的长方体ABCD -EFGH 中:棱EH 与棱EF 所在的直线在同一平面内,它们有唯一的公共点,我们称这两条棱相交.棱EF 与棱AB 所在的直线在同一平面内,但它们没有公共点,我们称这两条棱平行.棱EH 与棱AB 所在的直线既不平行,也不相交,我们称这两条棱异面.空间两条直线有三种位置关系:相交、平行、异面.【例14】 在如图所示的长方体中,哪些棱与棱AD 平行?哪些棱与AD 相交?哪些棱与AD异面? 【难度】★ 【答案】 【解析】【例15】 在长方体中,每一条棱与______条棱平行,每一条棱与______条棱相交,每一条棱与______条棱异面,互相平行的棱有______对,互相异面的棱有______对,相交的棱有______对. 【难度】★★ 【答案】 【解析】模块三:长方体中棱与棱位置关系的认识知识精讲例题解析A BCD EFGHA BCD EFGH【例16】 如图,在长方体ABCD —EFGH 中,填写下列各对线段所在直线的位置关系.(1)棱AD 与AG :_________________; (2)棱DH 与EG :_________________; (3)EG 与BD :_________________; (4)棱DC 与DB :_________________. 【难度】★★ 【答案】 【解析】【例17】 垂直于同一直线的两条直线的位置关系是____________. 【难度】★★ 【答案】 【解析】【例18】 如果两条直线在同一平面上的投影是两条平行线,那么这两条直线的位置关系是__________. 【难度】★★★ 【答案】 【解析】ABCDEFGH1、 长方体中棱与平面的位置关系如图1,直线PQ 垂直于平面ABCD ,记作:直线PQ 平面ABCD ,读作:直线PQ 垂直于平面ABCD .如图2,直线PQ 平行于平面ABCD ,记作:直线PQ // 平面ABCD ,读作:直线PQ 平行于平面ABCD .如图4所示的长方体ABCD -EFGH 中:棱EF 与面BCGF ,棱FG 与面ABFE ,棱BF 与面ABCD 都给我们以直线与平面垂直的形象.棱EF 与面ABCD ,棱BF 与面ADHE ,都给我们以直线与平面平行的形象. 2、 检验直线与平面是否垂直的方法“铅垂线”法、“三角尺法”、“合页型折纸”法. 3、 检验直线与平面是否平行的方法“铅垂线”法、“长方形纸片”法.【例19】 教室里的日光灯与地面的位置关系是______,桌腿与桌面的位置关系是______. 【难度】★ 【答案】 【解析】模块四:长方体中棱与平面位置关系的认识知识精讲例题解析ABCD PQ ABCDPQ 图1图2【例20】 如图,在长方体ABCD -EFGH 中:(1)与棱DH 垂直的平面是___________________; (2)与棱BC 平行的平面是___________________; (3)与平面ADHE 垂直的棱是________________; (4)与平面EFGH 平行的棱是________________; 【难度】★ 【答案】 【解析】【例21】 铅垂线是垂直于____面的直线,用___________法可以检验课桌的边沿是否与地面平行,用__________法可以检验细棒是否与地面垂直. 【难度】★ 【答案】 【解析】【例22】 如图,用__________法可以检验细棒是否与斜面垂直. 【难度】★★ 【答案】 【解析】【例23】 在长方体中的每一条棱有______个平面和它垂直,每一个面有______条棱与它垂直,每一条棱有______个平面和它平行,每一个面有______条棱与它平行. 【难度】★★ 【答案】 【解析】【例24】 在长方体ABCD -EFGH 中,AB = 3厘米,BF = 5厘米,与棱AB 垂直的平面的面积之和是32平方厘米,求这个长方体的表面积. 【难度】★★★ 【答案】 【解析】ABCDEFGHαββα1、 长方体中平面与平面的位置关系如下左图,平面α垂直于平面β,记作平面α⊥平面β,读作平面α垂直于平面β.如上右图,平面α平行于平面β,记作平面α//平面β,读作平面α平行于平面β. 如图所示的长方体ABCD -EFGH 中:面EFGH ,面ABFE 与面BCGF 三个面中,任意两个都 给我们以平面与平面垂直的形象.面ABCD 与面EFGH ,面BCGF 与面ADHE ,面ABFE 与面DCGH ,都给我们以平面与平面平行的形象. 2、 检验平面与平面是否垂直的方法“铅垂线”法、 “合页型折纸”法、“三角尺”法. 3、 检验平面与平面是否平行的方法“长方形纸片”法.【例25】 如图,与平面ABFE 垂直的平面有____________,与平面BCGF 平行的平面有_____________. 【难度】★ 【答案】 【解析】知识精讲例题解析模块五:长方体中平面与平面位置关系的认识ABCDEFGHABCDEFGHC A BDE F【例26】 下列结论正确的是( )A .在长方体中,与其中的一个面垂直的面有2个B .在长方体中,与其中的一个面平行的面有4个C .长方体有两个相对的面是正方形,那么这个长方体有6条棱的长度相等D .长方体相邻的两个面互相垂直,相对的两个面互相平行 【难度】★★ 【答案】 【解析】【例27】 如图,与面ADHE 垂直的面有__________________________. 【难度】★★ 【答案】 【解析】【例28】 可以用________________检验教室的墙面与地面是否垂直. 可以用________________检验衣橱里横向的两块隔板是否平行. 【难度】★★ 【答案】 【解析】【例29】 如图,是一个正方体的展开图,在原正方体中,与平面C 垂直的平面是________.(用图中的字母表示) 【难度】★★★ 【答案】 【解析】ABC D EFGH【例30】 如图,在长方体ABCD -EFGH 中,找出与平面BCHE 垂直的平面,并找出现成的合页型折纸,在图上用阴影部分表示. 【难度】★★★ 【答案】 【解析】【习题1】 正方体的棱长扩大2倍后,体积增大到原来的______倍. 【难度】★ 【答案】 【解析】【习题2】 在图中的长方体中:(1)从正面看,看不见的棱有___________; (2)与棱EH 相等的棱有_______________; (3)与平面ADHE 相对的平面有________; (4)位于水平位置的平面有_____________. 【难度】★ 【答案】 【解析】【习题3】 在长方体中,若两条棱没有公共点,则这两条棱的位置关系是__________. 【难度】★ 【答案】 【解析】随堂检测ABCDEFGHABCDEFGHABCDEFGH 1 4 5 3 2 1 5 ?3【习题4】 下列说法正确的是( )A .平静的水面是水平面,所以光滑的镜面也是水平面B .长方体中棱与平面不是垂直就是平行C .若两条直线都平行于同一个平面,那么这两条直线也平行D .长方体中任何一条棱都与两个平面平行 【难度】★★ 【答案】 【解析】【习题5】 如图所示的六面体中,AEFB 和DHGC 是相同的直角梯形,其余都是长方形,则:(1)其中有______条棱与平面ADHE 垂直; (2)其中有______条棱与平面AEFB 垂直; (3)其中有______条棱与平面ABCD 垂直; (4)其中有______条棱与平面BFGC 垂直. 【难度】★★ 【答案】 【解析】【习题6】 一个正方体的每个面上都标有数字1、2、3、4、5、6,根据图中该正方体A 、B 、C 三种状态所显示的数字,可推出“?”处的数字是( )A .1B .2C .4D .6【难度】★★ 【答案】 【解析】【习题7】长方体的总棱长是72厘米,它的长: 宽= 2 : 1,宽: 高= 2 : 3,这个长方体的体积是______.【难度】★★【答案】【解析】【习题8】把一块长是50厘米的长方体分成2 : 3两部分后,它的表面积增加了300平方厘米,则分成的两块长方体木块的体积分别为__________.【难度】★★★【答案】【解析】【习题9】小方制作了一个无盖的长方体木盒,木盒的棱长分别为3厘米、5厘米和8厘米,求这个木盒的表面积.【难度】★★★【答案】【解析】【习题10】一个长方体的表面积是88平方厘米,这个长方体可以被分割为5个完全相同的正方体,求这个长方体的体积.【难度】★★★【答案】【解析】A BCDEF【作业1】长方体中经过同一顶点的面的个数有()A.1个B.2个C.3个D.4个【难度】★【答案】【解析】【作业2】如图,在一张长方形纸片ABCD对折后翻开所成的图形中:(1)与直线DF平行的直线是_____________;(2)与直线EF平行的直线是_____________;与直线EF相交的直线是______________;(3)与直线AE异面的直线是_____________;与直线BC异面的直线是______________.【难度】★【答案】【解析】【作业3】在长方体中,若两条棱异面,则与这两条棱都相交的棱()A.不一定存在B.有且只有一条C.可能有一条,也可能有两条D.不止两条【难度】★★【答案】【解析】【作业4】补画长方体:【难度】★★【答案】【解析】课后作业A BCD EFGH【作业5】 下列图形中,不能围成长方体的是( )A .B .C .D .【难度】★★ 【答案】 【解析】【作业6】 如图,桌面上放着一本打开的书,(1)与桌面垂直的平面有哪几个? (2)平面ABFE 与平面ABHG 是否垂直? 【难度】★★ 【答案】 【解析】【作业7】 将一个长、宽、高分别为2厘米、2.5厘米、3厘米的长方体切割成一个体积最大的正方体,则切割剩余部分的体积是______. 【难度】★★ 【答案】 【解析】【作业8】 将两个长是5厘米、宽是4厘米、高是3厘米的长方体重叠放置,它的表面积是_________________. 【难度】★★★ 【答案】 【解析】AB CDOEFPNMGH【作业9】12个棱长为1厘米的正方体叠在一起,成为一个长方体,求这个长方体的表面积.【难度】★★★【答案】【解析】【作业10】如图,把一块长是108厘米的长方体木块的棱AE分成3 : 1的两段,分点为M,过点M按平行于面ABCD的方向把长方体分成两块后,表面积增加了800平方厘米,这两块长方体的体积分别是多少?【难度】★★★【答案】【解析】。
长方体的再认识知识精要一、长方体的再认识1、长方体的特征。
(1)长方体有6个面,8个顶点,12条棱。
(2)长方体的每个面都是长方形。
(3)长方体的12条棱可以分为三组,每组中四条棱的长度都相等。
(4)长方体的6个面可分为3组,每组中相对的两个面的形状和大小均相同。
2、长方体的直观图画法长方体的直观图有多种画法,通常我们采用斜二侧画法: 水平放置的长方体直观图通常的画法的基本步骤:(4)(3)(2)(1)GHFCGHFCGHFCCDDDEEE3、长方体棱与棱的位置关系二、长方体中棱与平面的位置关系1、直线PQ 垂直于平面ABCD ,记作:直线ABCD PQ 平面⊥,读作:直线PQ 垂直于平面ABCD 。
2、检验直线与平面垂直的方法:(1)铅垂线法:只能用于检验直线与水平面是否垂直; (2)三角尺法:可以检验一般的直线与平面是否垂直; (3)合页型法:可以检验一般的直线与平面是否垂直;3、直线PQ 平行于平面ABCD ,记作:直线ABCD PQ 平面//,读作:直线PQ 平行于平面ABCD 。
4、检验直线与平面平行的方法:(1) 铅垂线法:从被测直线的两个不同的点放下铅垂线,使铅垂线的下端刚好接触地面。
如果从这两个不同点到铅垂线的下端的线段的长度相等,那么说明被测直线平行于水平面。
(2) 长方形纸片法:将长方形纸片的一边贴合于已知平面,另一边靠近被测直线,如果另一边能够紧贴被测直线,则说明被测直线平行于已知平面。
三、长方体中平面与平面的位置关系1、平面α垂直于平面β,记作:βα平面平面⊥,读作:平面α垂直于平面β。
2、检验平面与平面垂直的方法:(1)铅垂线法,(2)三角尺法;(3) 合页型折纸法。
3、平面α平行于平面β,记作:βα平面平面//,读作:平面α平行于平面β。
4、检验平面与平面平行的方法:长方形纸片法:将长方形纸片的一边贴合于已知平面,按交叉的方向分两次放在两个平面之中,如果另一边能够紧贴被测平面,则说明被测平面平行于已知平面。
沪教版数学六年级下册第八章《长方体的再认识》复习教学设计一. 教材分析沪教版数学六年级下册第八章《长方体的再认识》复习教学内容主要包括长方体的特征、表面积和体积的计算方法以及长方体在实际生活中的应用。
本章内容是对长方体知识的系统复习和巩固,旨在帮助学生深化对长方体的认识,提高空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经学习过长方体的相关知识,对长方体的特征、表面积和体积的计算方法有一定的了解。
但在实际应用中,部分学生可能会遇到困难和问题。
因此,在复习教学中,需要关注学生的学习情况,针对性地进行指导和帮助。
三. 教学目标1.知识与技能:通过对长方体的再认识,使学生掌握长方体的特征、表面积和体积的计算方法,提高空间想象能力和解决问题的能力。
2.过程与方法:通过复习教学,培养学生自主学习、合作学习的能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和团队协作精神,使学生在数学学习中获得成就感。
四. 教学重难点1.教学重点:长方体的特征、表面积和体积的计算方法。
2.教学难点:长方体在实际生活中的应用,空间想象能力的培养。
五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考,发现长方体的特征和计算方法。
2.案例分析法:教师提供实际生活中的案例,引导学生运用长方体的知识解决问题。
3.小组合作学习法:学生分组讨论,共同完成任务,提高团队协作能力。
六. 教学准备1.教学课件:制作长方体的特征、表面积和体积的计算方法的教学课件。
2.教学案例:收集实际生活中的长方体应用案例。
3.学习任务单:设计学习任务单,引导学生进行自主学习和合作学习。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾长方体的特征、表面积和体积的计算方法,激发学生的学习兴趣。
2.呈现(10分钟)教师利用课件展示长方体的特征和计算方法,让学生直观地感受长方体的结构。
长方体的再认识内容分析长方体的再认识是初中数学六年级下学期第4章的内容.通过本章的学习,同学们需要掌握长方体的表示方法、长方体直观图的画法,理清长方体中棱与棱的位置关系、棱与平面的位置关系、平面与平面的位置关系,并要学会如何检验直线与平面是否垂直、直线与平面是否平行、平面与平面是否垂直、平面与平面是否平行的方法.难点是相关的长方体的表面积和体积的计算.知识结构模块一:长方体的元素知识精讲1、长方体的元素长方体有六个面,八个顶点,十二条棱.2、长方体的元素特征(1)长方体的每个面都是长方形.(2)长方体的十二条棱可以分为三组,每组中的四条棱的长度相等.(3)长方体的六个面可以分为三组,每组中的两个面的形状和大小相同.3、正方体是特殊的长方体例题解析【例1】填空:(1)长方体有______个顶点;(2)长方体有______个面,每个面都是______,相对的两个面的面积______;(3)长方体共有______条棱,按棱的长短可分为______组,每组棱的长度相等,每组有______条棱.【难度】★【答案】见解析.【解析】(1)8;(2)6;长方形;相等;(3)十二;三;四.【总结】考查长方体的相关元素的概念.【例2】判断:(1)若长方体的十二条棱都相等,这个长方体就是正方体;()(2)桌面所在的平面的大小就是桌面的大小;()(3)长方体共有6个面;()(4)长方体的六个面,至少有四个面的形状、大小相同;()(5)平面就是水平面;()(6)水平面是平面.()【难度】★【答案】见解析.【解析】(1)正确;(2)错误:桌面所在的平面是无穷无尽的,但是桌面的面积是固定的;(3)正确;(4)错误,长方体至少有两个面形状大小相同;(5)错误:平面不一定是水平面(6)正确:水平面就是一个平面.【总结】考查长方体的元素,注意进行辨析.【例3】在长方体ABCD– EFGH中,与棱EF相等的棱是()A.棱AB、棱CD、棱GH B.棱AB、棱AE、棱BFC.棱GH、棱EH、棱FG D.棱BC、棱CG、棱GF【难度】★【答案】A【解析】画图即可观察出,与一条棱相等的棱共有三条,分别是棱AB、棱CD、棱GH.【总结】考查长方体的棱的概念.【例4】用一根长为100厘米的塑料管和橡皮泥做一个棱长为5厘米,6厘米和7厘米的长方体架子,应该如何截取?材料够吗?【难度】★★【答案】够,还剩28cm材料剩余.【解析】由题意,若按照棱长分别为5cm、6cm、7cm来做的话,可以做一个长方体架子,用掉(5+6+7)×4=72cm材料,还有28cm材料剩余.【总结】考查长方体的总棱长的和的概念.【例5】棱长总和是24厘米的正方体,它的表面积为______,体积为______.【难度】★★【答案】24平方厘米;8立方厘米.【解析】由题意可知正方体的棱长为:24÷12=2cm,故表面积为:2×2×6=24平方厘米,体积为:2×2×2=8立方厘米.【总结】考查正方体的表面积与体积的计算.【例6】长方体的长、宽、高之比为2 : 1 : 1,棱长总和是80厘米,把这个长方体截成两正方体时,表面积增加了_____.【难度】★★【答案】50平方厘米.【解析】设长为2x,宽为x,高为x,则有:(2x+x+x)×4=80,解得:x=5,所以长方体的长为:5×2=10cm;宽为5×1=5cm;高为5×1=5cm,当长方体被截成两个正方体时,即增加了两个面,则增加的面积为:5×5×2=50平方厘米.【总结】考查正方体的表面积问题,注意切割后表面积的变化.【例7】 要做一个棱长分别为3厘米、5厘米和7厘米的无盖的长方体纸盒,最少需要多大的纸?最多需要多大的纸? 【难度】★★★【答案】最少107平方厘米,最多127平方厘米.【解析】要使得需要的纸最少:即使得无盖的那一面面积最大,此时需要: (3×5+3×7)×2+5×7=107平方厘米;要使得需要的纸最大:即使得无盖的那一面面积最小,此时需要: (3×7+5×7)×2+3×5=127平方厘米.【总结】考查长方体的表面积的运算,注意对无盖的理解.【例8】 一根长为36分米的铁丝截开后刚好能够搭成一个长方体架子,这个长方体架子的长、宽、高的长度均为整数分米,且互不相等,求这个长方体的体积. 【难度】★★★【答案】12立方分米或立方分米15或24立方分米.【解析】由题意可得,长宽高的和为36÷4=9,由题意有以下三种情况:①长、宽、高分别为:1、2、6,此时体积为:12立方分米 ②长、宽、高分别为:1、3、5,此时体积为:15立方分米 ③长、宽、高分别为:2、3、4,此时体积为:24立方分米 【总结】考查长方体的体积,注意分类讨论.1、 长方体的直观图画法:斜二侧画法水平放置的长方体直观图通常画法的基本步骤:第一步:画平行四边形ABCD ,使AB 等于长方体的长,AD 等于长方体宽的二分之一,45DAB ∠=︒.(如图1所示)第二步:过AB 分别画AB 的垂线AE 、BF ,过C 、D 分别画CD 的垂线CG 、DH ,使它们的长度都等于长方体的高.(如图2所示)模块二:长方体直观图的画法知识精讲第三步:顺次联结E 、F 、G 、H .(如图3所示)第四步:将被遮住的线段改用虚线(隐藏线)表示.(如图4所示)图4表示的长方体通常表示为ABCD -EFGH .它的六个面通常表示为:平面ABCD 、平 面ABFE 、平面BCGF 等.它的十二条棱通常分别表示为:棱AB 、棱AE 、棱EF 等.【例9】 图中长方体正确表示为( ) A .长方体ABCD B .长方体EFGH C .长方体AB D .长方体ABCD -EFGH 【难度】★ 【答案】D【解析】长方体的表示方法必须表示出每一个点,并且按照一定的顺序来表示. 【总结】考查长方体的表示方法.【例10】 要补全一个长方体的直观图,至少需要知道_____条棱,这几条棱应该分别是____________. 【难度】★【答案】3;长、宽、高.【解析】知道长、宽、高,便能画出长方体的直观图. 【总结】考查长方体的画法.例题解析ABCDABCDEFG HABCD EFGHABCD EFGH图1 图2 图3图4ABCDEFGH【例11】 画一个棱长分别是2厘米、3厘米、4厘米的长方体. 【难度】★ 【答案】见解析.【解析】①画平行四边形ABCD ,使AB 等于4,AD 等于长方体宽的二分之一,即1.5, 作45DAB ∠=︒(如图1所示);②过AB 分别画AB 的垂线AE 、BF ,过C 、D 分别画CD 的垂线CG 、DH ,使它们的长 度都等于长方体的高(如图2);③顺次联结E 、F 、G 、H ,(如图3所示);④将被遮住的线段改用虚线(隐藏线)表示.(如图4)图4即为所求的长方体ABCD -EFGH .【总结】考查长方体的斜二测画法,注意对画图语言的准确表示.【例12】 画一个棱长总和为36厘米的正方体. 【难度】★★ 【答案】见解析.【解析】由题可确定正方体棱长为36÷12=3cm ,根据斜二测画法要求即可. 【总结】考查长方体的画法.ABCDABC D EFGHABCD EFGHABC D EFGH图1图2 图3图4【例13】补画下列各图,使它成为长方体(虚线部分表示被遮住的部分).【难度】★★【答案】见解析.【解析】如下图所示:原图中给的三条线一定分别是长宽高,按照图示补全即可.(1)(2)(3)(4)【总结】考查长方体的画法,注意对所给的棱的准确分析.1、长方体中棱与棱的位置关系如图所示的长方体ABCD-EFGH中:棱EH与棱EF所在的直线在同一平面内,它们有唯一的公共点,我们称这两条棱相交.棱EF与棱AB所在的直线在同一平面内,但它们没有公共点,我们称这两条棱平行.棱EH与棱AB所在的直线既不平行,也不相交,我们称这两条棱异面.空间两条直线有三种位置关系:相交、平行、异面.模块三:长方体中棱与棱位置关系的认识知识精讲A BCDE FGH【例14】 在如图所示的长方体中,哪些棱与棱AD 平行?哪些棱与AD 相交?哪些棱与AD异面? 【难度】★ 【答案】见解析.【解析】与棱AD 平行的棱有:棱BC 、棱FG 、棱EH ;与棱AD 相交的棱有:棱AB 、棱AE 、棱DH 、棱DC ; 与棱AD 异面的棱有:棱EF 、棱HG 、棱BF 、棱CG . 【总结】考查棱与棱的位置关系.【例15】 在长方体中,每一条棱与______条棱平行,每一条棱与______条棱相交,每一条棱与______条棱异面,互相平行的棱有______对,互相异面的棱有______对,相交的棱有______对. 【难度】★★【答案】3;4;4;18;48;24.【解析】①每一条棱与3条棱平行;②每条棱与4条棱相交;③每条棱与4条棱异面; ④每组互相平行的4条棱中,同一平面内互相平行的共有4对,异面平行的有2对; 因此共有:(4+2)×3=18对棱平行;⑤与每一条棱异面的有4对,那么共有:12×4=48 对棱互相异面;⑥因为每条棱与4条棱相交,剔除重复的部分,所以相交的棱共有: 4×12÷2=24对.【总结】考查长方体中棱与棱之间的位置关系,这些都是不变的,可以要求学生记住.【例16】 如图,在长方体ABCD —EFGH 中,填写下列各对线段所在直线的位置关系.(1)棱AD 与AG :_________________; (2)棱DH 与EG :_________________; (3)EG 与BD :_________________; (4)棱DC 与DB :_________________. 【难度】★★ 【答案】见解析.【解析】(1)相交;(2)异面;(3)异面;(4)相交. 【总结】考查长方体中棱与棱之间的位置关系.例题解析ABCD EFGH ABCD EFGH【例17】 垂直于同一直线的两条直线的位置关系是____________. 【难度】★★【答案】平行或异面或垂直.【解析】在同一平面内,垂直于同一条直线的两直线平行;若没有强调同一平面,则垂直于同一直线的两直线可能异面,也可能垂直. 【总结】考查直线的位置关系.【例18】 如果两条直线在同一平面上的投影是两条平行线,那么这两条直线的位置关系是__________. 【难度】★★★ 【答案】见解析.【解析】平行或异面,由于是投影,那么原两条直线未必在同一平面内,可能异面,只要满 足投影平行即可,可以让学生自己拿着笔,打开手电筒演示一下. 【总结】考查两直线的位置关系.1、 长方体中棱与平面的位置关系如图1,直线PQ 垂直于平面ABCD ,记作:直线PQ 平面ABCD ,读作:直线PQ 垂直于平面ABCD .如图2,直线PQ 平行于平面ABCD ,记作:直线PQ // 平面ABCD ,读作:直线PQ 平行于平面ABCD .模块四:长方体中棱与平面位置关系的认识知识精讲ABCD PQ ABCDPQ 图1图2如图4所示的长方体ABCD -EFGH 中:棱EF 与面BCGF ,棱FG 与面ABFE ,棱BF 与面ABCD 都给我们以直线与平面垂直的形象.棱EF 与面ABCD ,棱BF 与面ADHE ,都给我们以直线与平面平行的形象. 2、 检验直线与平面是否垂直的方法“铅垂线”法、“三角尺法”、“合页型折纸”法. 3、 检验直线与平面是否平行的方法“铅垂线”法、“长方形纸片”法.【例19】 教室里的日光灯与地面的位置关系是______,桌腿与桌面的位置关系是______. 【难度】★ 【答案】见解析.【解析】(1)平行;(2)垂直. 【总结】考查直线与平面的位置关系.【例20】 如图,在长方体ABCD -EFGH 中:(1)与棱DH 垂直的平面是___________________; (2)与棱BC 平行的平面是___________________; (3)与平面ADHE 垂直的棱是________________; (4)与平面EFGH 平行的棱是________________; 【难度】★ 【答案】见解析.【解析】(1)平面ABCD 、平面EFGH ;(2)平面EFGH 、平面AEHD ; (3)棱AB 、棱EF 、棱HG 、棱DC ;(4)棱AB 、棱BC 、棱CD 、棱AD . 【总结】考查直线与平面的位置关系,注意进行辨析.例题解析ABCDEFGH【例21】铅垂线是垂直于____面的直线,用___________法可以检验课桌的边沿是否与地面平行,用__________法可以检验细棒是否与地面垂直.【难度】★【答案】见解析.【解析】地、铅垂线、铅垂线.【总结】考查直线与平面的位置关系.【例22】如图,用__________法可以检验细棒是否与斜面垂直.【难度】★★【答案】三角尺法.【解析】三角尺法.【总结】考查直线与平面的位置关系.【例23】在长方体中的每一条棱有______个平面和它垂直,每一个面有______条棱与它垂直,每一条棱有______个平面和它平行,每一个面有______条棱与它平行.【难度】★★【答案】见解析.【解析】2、4、2、4.【总结】考查直线与平面的位置关系.【例24】在长方体ABCD-EFGH中,AB = 3厘米,BF = 5厘米,与棱AB垂直的平面的面积之和是32平方厘米,求这个长方体的表面积.【难度】★★★【答案】81.2平方厘米.【解析】由题意,与棱AB垂直的平面即为左右两个侧面,面积和为32,则每个侧面面积为16,因为BF=5cm,可得:BC=3.2cm,所以长方体的表面积为:2×(3×3.2+3×5+3.2×5)=81.2平方厘米.【总结】考查直线与平面的位置关系,综合性较强,注意认真分析.αββα1、 长方体中平面与平面的位置关系如下左图,平面α垂直于平面β,记作平面α⊥平面β,读作平面α垂直于平面β.如上右图,平面α平行于平面β,记作平面α//平面β,读作平面α平行于平面β.如图所示的长方体ABCD -EFGH 中:面EFGH ,面ABFE 与面BCGF 三个面中,任意两个都 给我们以平面与平面垂直的形象.面ABCD 与面EFGH ,面BCGF 与面ADHE ,面ABFE 与面DCGH ,都给我们以平面与平面平行的形象. 2、 检验平面与平面是否垂直的方法“铅垂线”法、 “合页型折纸”法、“三角尺”法. 3、 检验平面与平面是否平行的方法“长方形纸片”法.【例25】 如图,与平面ABFE 垂直的平面有____________,与平面BCGF 平行的平面有_____________. 【难度】★ 【答案】见解析.【解析】面BCGF 、面ADHE 、面ABCD 、面EFGH ; 面ADHE .【总结】考查平面与平面的位置关系.知识精讲例题解析模块五:长方体中平面与平面位置关系的认识ABCDEFGHABCDEFGHC A BDE F【例26】 下列结论正确的是( )A .在长方体中,与其中的一个面垂直的面有2个B .在长方体中,与其中的一个面平行的面有4个C .长方体有两个相对的面是正方形,那么这个长方体有6条棱的长度相等D .长方体相邻的两个面互相垂直,相对的两个面互相平行 【难度】★★ 【答案】D【解析】A 错误,有四个;B 错误,有1个;C 错误,还有一条高不能确定;D 正确 【总结】考查平面与平面的位置关系.【例27】 如图,与面ADHE 垂直的面有__________________________. 【难度】★★ 【答案】见解析【解析】面ABFE 、面ABCD 、面EFGH 、面DCGH . 【总结】考查直线与平面的位置关系.【例28】 可以用________________检验教室的墙面与地面是否垂直. 可以用________________检验衣橱里横向的两块隔板是否平行. 【难度】★★ 【答案】见解析.【解析】铅垂线法或合页型折纸法、长方形纸片法. 【总结】考查直线与平面的位置关系的检测方法.【例29】 如图,是一个正方体的展开图,在原正方体中,与平面C 垂直的平面是________.(用图中的字母表示) 【难度】★★★ 【答案】见解析.【解析】与已知面垂直的平面是与之相邻的四个平面:B 、D 、E 、F . 【总结】考查平面与平面的位置关系.A BCD EFGH【例30】 如图,在长方体ABCD -EFGH 中,找出与平面BCHE 垂直的平面,并找出现成的合页型折纸,在图上用阴影部分表示. 【难度】★★★ 【答案】见解析.【解析】由题意可知,与平面BCHE 垂直的平面分别是: 平面ABFE 、平面DCGH .【总结】考查平面与平面的位置关系,注意认真分析,综合性较强.【习题1】 正方体的棱长扩大2倍后,体积增大到原来的______倍. 【难度】★ 【答案】8.【解析】正方体的体积等于长×宽×高,所以棱长扩大两倍后,体积就扩大2×2×2=8倍. 【总结】考查正方体的棱长与体积的关系.【习题2】 在图中的长方体中:(1)从正面看,看不见的棱有___________; (2)与棱EH 相等的棱有_______________; (3)与平面ADHE 相对的平面有________; (4)位于水平位置的平面有_____________. 【难度】★ 【答案】见解析.【解析】(1)棱:AD 、DC 、BC 、EH 、GF 、HG 、HD 、GC ;(2)棱:AD 、GF 、BC ; (3)面BCGF ;(4)面ABCD 、面EFGH . 【总结】考查长方体的棱与面的位置关系.随堂检测ABCDEFGHABCDEFGHABCDEFGH 【习题3】 在长方体中,若两条棱没有公共点,则这两条棱的位置关系是__________. 【难度】★ 【答案】平行异面.【解析】两条棱没有公共点,则说明这两条棱要么平行,要么异面. 【总结】考查长方体中棱与棱的位置关系.【习题4】 下列说法正确的是( )A .平静的水面是水平面,所以光滑的镜面也是水平面B .长方体中棱与平面不是垂直就是平行C .若两条直线都平行于同一个平面,那么这两条直线也平行D .长方体中任何一条棱都与两个平面平行 【难度】★★ 【答案】D【解析】A 、光滑的镜面不一定是水平面,与所放的位置有关;B 、棱可能正好在这个平面 内;C 、这两条直线可能相交,只要它们都在平行于该平面的某个平面内;D 正确. 【总结】考查对长方体的基本位置关系的认识.【习题5】 如图所示的六面体中,AEFB 和DHGC 是相同的直角梯形,其余都是长方形,则:(1)其中有______条棱与平面ADHE 垂直; (2)其中有______条棱与平面AEFB 垂直; (3)其中有______条棱与平面ABCD 垂直; (4)其中有______条棱与平面BFGC 垂直. 【难度】★★【答案】(1)4;(2)4;(3)2;(4)0.【解析】(1)AB 、DC 、HG 、EF ,共4条;(2)AD 、EH 、BC 、FG ,共4条;(3)AE 、DH ,共2条;(4)0条.【总结】考查立体图形中棱与棱的关系,注意进行辨析.14 5 32 1 5? 3 【习题6】 一个正方体的每个面上都标有数字1、2、3、4、5、6,根据图中该正方体A 、B 、C 三种状态所显示的数字,可推出“?”处的数字是( )A .1B .2C .4D .6【难度】★★ 【答案】D .【解析】第三个图5和3相邻,第二个图1和3相邻,因此4对面是3,1对面是6,5对面 是2,6和3、5相邻,所以问号处是6,故选D . 【总结】考查对长方体的面的认识.【习题7】 长方体的总棱长是72厘米,它的长 : 宽 = 2 : 1,宽 : 高 = 2 : 3,这个长方体的体积是______. 【难度】★★ 【答案】3192cm .【解析】因为长方体的总棱长为72厘米,故长+宽+高=72418÷=厘米, 由题意知长:宽:高=4:2:3,设长宽高分别为423x x x 、、,则423182x x x x ++==,解得:,所以长、宽、高分别为8、4、6, 所以体积是3846192cm ⨯⨯=. 【总结】考查长方体的体积的计算.【习题8】 把一块长是50厘米的长方体分成2 : 3两部分后,它的表面积增加了300平方厘米,则分成的两块长方体木块的体积分别为__________. 【难度】★★★【答案】3330004500cm cm 、. 【解析】把一块长是50厘米的长方体分成2 : 3两部分后,长分别为20厘米和30厘米.因为切割后表面积增加了300平方厘米,故原厂方体的长×宽为:23002150cm ÷=, 故分成的两块长方体木块的体积分别为:3201503000cm ⨯=、3301504500cm ⨯=. 【总结】本题综合性较强,一方面考查长方体的体积计算,另一方面要对增加的表面积进行 准确理解.【习题9】小方制作了一个无盖的长方体木盒,木盒的棱长分别为3厘米、5厘米和8厘米,求这个木盒的表面积.【难度】★★★【答案】见解析.【解析】当有盖时,表面积为:()2⨯⨯+⨯+⨯=,2353858158cm①当高是3厘米时,木盒的表面积为:2-⨯=;15858118cm②当高是5厘米时,木盒的表面积为:2-⨯=;15838134cm③当高是8厘米时,木盒的表面积为:215835143cm-⨯=.【总结】考查长方体的表面积计算,注意要分类讨论.【习题10】一个长方体的表面积是88平方厘米,这个长方体可以被分割为5个完全相同的正方体,求这个长方体的体积.【难度】★★★【答案】340cm.【解析】设正方形边长为x厘米,则由题意可得:22,解得:,+⨯⨯==x x x245882故这个长方体的体积为:3⨯⨯⨯=.222540cm【总结】本题综合性较强,主要考查长方体的表面积与体积的计算,注意认真分析题意.课后作业【作业1】长方体中经过同一顶点的面的个数有()A.1个B.2个C.3个D.4个【难度】★【答案】C【解析】C【总结】考查长方体的基本认识.A BCDEF【作业2】如图,在一张长方形纸片ABCD对折后翻开所成的图形中:(1)与直线DF平行的直线是_____________;(2)与直线EF平行的直线是_____________;与直线EF相交的直线是______________;(3)与直线AE异面的直线是_____________;与直线BC异面的直线是______________.【难度】★【答案】见解析.【解析】(1)与直线DF平行的直线是AE;(2)与直线EF平行的直线是AD、BC,与直线EF相交的直线是AE、BE、DF、CF;(3)与直线AE异面的直线是BC、FC,与直线BC异面的直线是AE、DF.【总结】考查立体图形中直线间的位置关系.【作业3】在长方体中,若两条棱异面,则与这两条棱都相交的棱()A.不一定存在B.有且只有一条C.可能有一条,也可能有两条D.不止两条【难度】★★【答案】B【解析】画图观察即可.【总结】考查长方体的棱与棱之间的位置关系.【作业4】补画长方体:【难度】★★【答案】见解析.【解析】如图所示:【总结】考查长方体的画法.A BCD EFGH【作业5】 下列图形中,不能围成长方体的是( )A .B .C .D .【难度】★★ 【答案】B【解析】B 选项两个面重复了,围不成长方体. 【总结】考查长方体的展开图,注意进行分析.【作业6】 如图,桌面上放着一本打开的书,(1)与桌面垂直的平面有哪几个? (2)平面ABFE 与平面ABHG 是否垂直? 【难度】★★ 【答案】见解析.【解析】(1)平面ABHG 、平面ABFE 、平面ABDC ; (2)不一定,当90HBF ∠=时,两面垂直. 【总结】考查平面之间的位置关系.【作业7】 将一个长、宽、高分别为2厘米、2.5厘米、3厘米的长方体切割成一个体积最大的正方体,则切割剩余部分的体积是______.【难度】★★ 【答案】37cm .【解析】要切割成体积最大的正方体,则所切得的正方体的边长为2厘米, 故切割剩余部分的体积是:332 2.5327cm ⨯⨯-=. 【总结】考查长方体的切割问题,注意认真分析.【作业8】 将两个长是5厘米、宽是4厘米、高是3厘米的长方体重叠放置,它的表面积是_________________.【难度】★★★【答案】222164158148cm cm cm 或或.AB CDOEFPNMGH【解析】表面积分别为: ()()2554553432164cm +⨯++⨯+⨯⨯=⎡⎤⎣⎦; ()()2445443532158cm +⨯++⨯+⨯⨯=⎡⎤⎣⎦; ()()2335334542148cm+⨯++⨯+⨯⨯=⎡⎤⎣⎦. 【总结】考查长方体的表面积计算,注意进行分类讨论.【作业9】 12个棱长为1厘米的正方体叠在一起,成为一个长方体,求这个长方体的表面积. 【难度】★★★【答案】222504038cm cm cm 或或.【解析】当以121⨯叠放时,表面积为:[]212112111250cm ⨯+⨯+⨯⨯=;当以62⨯叠放时,表面积为:()2626121240cm ⨯+⨯+⨯⨯=⎡⎤⎣⎦;当以43⨯叠放时,表面积为:()2434131238cm ⨯+⨯+⨯⨯=. 【总结】考查长方体叠放及表面积的计算问题,注意进行分类讨论.【作业10】 如图,把一块长是108厘米的长方体木块的棱AE 分成3 : 1的两段,分点为M ,过点M 按平行于面ABCD 的方向把长方体分成两块后,表面积增加了800平方厘米,这两块长方体的体积分别是多少? 【难度】★★★【答案】331080036400cm cm 和.【解析】因为把长方体分成两块后,表面积 增加了800平方厘米,所以原长方体的宽×高为:8002=400÷平方厘米.故大长方体的体积为:3108400324004⨯⨯=立方厘米,小长方体的体积为:1108400108004⨯⨯=立方厘米.【总结】考查长方体的分割及体积计算问题,注意进行认真分析.。
数学学科教师辅导讲义 第一步:画平行四边形ABCD ,使AB 等于长方体的长,AD 等于长方体宽的一半,45BAD ∠=︒(图①);
、BC、FG.
【答案】④
厘米.
【例6】如图①所示,已知线段a、b、c,画一个长为a,宽为b,高为c的长方体直观图.
【解析】用斜二侧画长方体时要注意三点:(1)长方体直观图中宽是等于已知宽的二分之一;(2)长方体中三个面都是
【例6】如图所示,补画下面的图形,使它们成为长方体的直观图.
【分析】补画长方体时要想清楚补画的面是画长方形还是平行四边形,们先把一个面画完整,再画上其他面.
【解】补画的图形如图所示.
把下列长方体补画完整:
【答案】略. 【随堂练习】
.如图,画一个立方体,使它的棱长为a.
的立方体如图所示:
)平行;(4)异面
AB BC EF EG;(
2),,,。
学科教师辅导讲义课题长方体的再认识1、认识长方体的面、棱、顶点以及长宽高(棱长)的含义。
教学目的2、掌握长方体直观图的画法。
3、掌握长方体中棱、面的位置关系,以及空间性质。
教学内容一、作业检查长方体知识梳理1•长方体的元素:8个顶点、12条棱,6个面长方体的表面积(6个面的面积之和)、体积(长x宽x高) 长方体的每个面都是长方形•长方体的十二条棱可以分成三组:每组中的四条棱的长度相等长方体的六个面可以分成三组,每组中的两个面的形状和大小都相同2. 长方体直观图的画法:斜二侧画法•①12条棱分三组,注意每组4条是互相平行、相等的;其中看不见的三条棱画成虚线,②把水平放置的两个面画成含45°角的平行四边形,③画长方体直观图时,宽要减半画。
3. 长方体中棱与棱的位置关系:(1) 如图所示的长方体AG中,棱EH与棱EF所在的直线在同一个面内,它们有唯一的公共点,我们称这两条棱相交.⑵棱EF与棱AB所在的直线在同一个面内,但它们没有公共点,我们称这两条棱平行.(3)棱EH与棱AB所在的直线既不平行,也不相交,我们称这两条棱异面.定义:空间两条直线有三种位置关系:相交、平行、异面.(1) 一般地,如果直线AB与直线CD在同一平面内,具有唯一公共点,那么称这两条直线的位置关系为相交,读作: 直线AB与直线CD相交.(2) 如果直线AB与直线CD在同一平面内,但没有公共点,那么称这两条直线的位置关系为平行,记作:AB//CD读作:直线AB与直线CD平行 .(3) 如果直线AB与直线CD既不平行,也不相交,那么称这两条直线的位置关系为异面,读作:直线AB与直线CD异面.4、长方体中棱与面的位置关系:(1) 如图所示的长方体AG中,棱(直线)EA垂直于面ABCD读作:棱(直线)EA垂直于平面ABCD(2) 如图所示的长方体AG中,棱(直线)EF平行于面ABCD读作:棱(直线)EF平行于平面ABCD5、长方体中面与面的位置关系:(1) 如图所示的长方体AG中,平面EFBA垂直于面ABCD读作平面EFBA垂直于平面ABCD(2) 如图所示的长方体AG中,平面EFGH平行于面ABCD读作:平面EFGH平行于平面ABCD三•强化练习1、长方体的每个面都是(),长方体的对边(),每个角都是()。
沪教版数学六年级下册第八章《长方体的再认识》教学设计一. 教材分析《长方体的再认识》是沪教版数学六年级下册第八章的内容,本节内容是在学生已经掌握了长方体的特征的基础上进行教学的。
教材通过丰富的图片和实际例子,帮助学生进一步理解和掌握长方体的特征,提高学生的空间想象能力和抽象思维能力。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对长方体已经有了一定的了解。
但是在具体操作和解决问题时,部分学生可能会存在一些困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。
三. 教学目标1.知识与技能:学生能够进一步理解和掌握长方体的特征,提高空间想象能力和抽象思维能力。
2.过程与方法:通过观察、操作、思考、交流等过程,学生能够深化对长方体的认识,培养解决问题的能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验数学学习的乐趣,增强对数学的兴趣。
四. 教学重难点1.教学重点:学生能够进一步理解和掌握长方体的特征。
2.教学难点:学生能够在实际问题中灵活运用长方体的特征,解决问题的能力。
五. 教学方法1.情境教学法:通过丰富的图片和实际例子,激发学生的学习兴趣,提高学生的空间想象能力。
2.引导发现法:教师引导学生观察、操作、思考,发现长方体的特征,培养学生的抽象思维能力。
3.合作交流法:学生通过小组合作、交流,共同解决问题,提高学生的合作能力和沟通能力。
六. 教学准备1.教具准备:长方体模型、图片、实物等。
2.学具准备:学生每人准备一个长方体模型。
七. 教学过程1.导入(5分钟)教师通过展示长方体的图片和生活实例,引导学生回顾长方体的特征,激发学生的学习兴趣。
2.呈现(10分钟)教师通过长方体模型和实物,引导学生观察和操作,让学生直观地感受长方体的特征。
同时,教师引导学生思考:长方体有哪些特征?这些特征是如何体现在实际物体中的?3.操练(10分钟)教师提出一些有关长方体的问题,让学生分组讨论和操作,共同解决问题。
数学六年级〔下〕沪教版〔长方体的再认识Ⅱ〕教师版数学学科教师辅导讲义年级:预初科目:数学课时数:3课题长方体的再认识Ⅱ1.通过熟练掌握长方体的棱与面、面与面之间的位置关系,认识各种图形中的直线与平面、平面与平面之间的垂直与平行关系.教学目的2.结合长方体的总面积、体积和棱长等相关知识进行计算,学会按一定的要求进行补画长方体的局部图形.教学内容【知识梳理】1.通过掌握长方体中棱与面之间的关系有垂直和平行,从而认识各种图形中的直线与平面的垂直〔如图1所示:直线PQ 面ABCD〕与平行〔如图2所示:直线PQ∥面ABCD〕关系:图1 图22.通过掌握长方体中面与面之间的关系有垂直和平行,从而认识各种图形中的平面与平面的垂直〔如图3所示:平面平面〕与平行〔如图4所示:平面∥平面〕关系:图3图4【典型例题讲解】题型一:直线与平面、平面与平面的位置关系【例l】如下图,在长方体ABCD EFGH中,点M,M,P,Q分别是棱AB,CD,GH,EF的中点.(1)哪些棱与面MNPQ平行?1/7数学六年级〔下〕沪教版〔长方体的再认识Ⅱ〕教师版哪些棱与面MNPQ垂直?【分析】(1)可以使用长方形纸片、直角三角尺两次;(2)熟练掌握定义之后,也可以直接进行判读.【解析】(1)AD、DH、HE、AE、BC、CG、GF、BF与面MNPQ平行;AB、CD、GH、EF与面MNPQ垂直.【例2】如下图,一个物体是由三个长方体叠在一起组成的,与面A2B2C2D2平行的面有哪几个?与面A1B1C1D1垂直的面有哪几个?【分析】几个长方体叠合在一起后,判断面与面平行、面与面垂直的方法并没有发生改变,要注意不要重复表示或遗漏某一个平面.【解析】与面A2B2C2D2平行的面有面B1EFA1和面ABCD;与面A1B1C1D1垂直的面有面B2A2AB、面B2E1EC1CB、面E1F1FE、面A2F1FD1DA、面CC2D2D.【方法总结】解这种题时,一定要按平行或垂直的定义或检验平行或垂直的方法来判断,不可盲目判断,注意也不要漏写多写.【借题发挥】如图,在长方体ABCDEFGH中(1)与平面ABCD平行的棱有哪些?(2)与棱BC平行的平面有哪些?(3)与平面ADGF平行的棱有哪些?【答案】〔1〕棱EF、棱HG、棱HE、棱GF;2〕面ADHE、面EFGH、面ADGF;3〕棱HE、棱BC.2.如右图所示,在长方体ABCD EFGH中,分别与ACF的AC、CF、AF中一边平行的面各有哪些?【答案】分别与AC、CF、AF平行的面各有一个,它们分别是平面EFGH、平面AEHD、平面CDHG.题型二:按要求画图题【例3】如下图,补画长方体中与面ABCD平行的棱.2/7数学六年级〔下〕沪教版〔长方体的再认识Ⅱ〕教师版【分析】基于对长方体的认识,可以得出与面ABCD平行的棱有EF、FG、GH、HE,即为与面ABCD平行的面EFGH的4条边,所以在图中只要画出面EFGH即可.【答案】EFHG【借题发挥】平面ABCD线段DH垂直于平面ABCD〔如下列图〕画一个平面HGFE,经过H点,且和ABCD平面平行.【答案】EFG【注意】要把遮挡的局部用虚线表示出来.题型三:综合应用【例4】如果把图中的骰子看作是一个立方体,点数1的对面是6.点数2的对面是5.点数4的对面是点数3.那么与点数2垂直的面的点数和是多少?【分析】与点数2垂直的面分别是点数l、点数3、点数4扣点数6.然后求出点数和.【解析】l 3 4 6=14所以,与点数2垂直的面的和是l4.【例5】(1)如下图,写出互相平行的面,并说明检验的方法.(2)在平面BCGF和平面ADHE之间有两个长方形ABCD和EFGH,所以平面BCGF∥平面ADHE,你认为这句话对吗?为什么?3/7【分析】把面ADHE(长方形)和面ABFE(梯形AB∥EF)看作是长方形纸片交叉地放置两次,而且AB、AD与面ABCD紧贴,EF、EH与面EFGH说明面ABCD∥面EFGH.同样用长方形ABCD和平行四边形BCGF 紧贴,从而可以检验平面ABFE∥平面DCGH.虽然在平面BCGF和平面ADHE之间有两个长方形ABCD和EFGH.但它们不是交叉放置,所以不能检验平面BCGF与平面ADHE平行.【解析】平面ABCD∥平面EFGH.平面ABFE∥平面DCGH;不对,没有交叉放置.【方法总结】要严格按照检验两个面平行的方法去检验,注意方法中的“交叉〞二字.【例6】从一个棱长10厘米的长方体中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下的外表积是多少?【解析】(1)如果沿一条棱挖,外表积损失了两侧的两个小正方形 2 2 2 8〔平方厘米〕.就是600 8592(平方厘米)(2)如果沿着某一侧上平行于边挖,外表积增加了210 210 248〔平方厘米〕.总外表积为60032632〔平方厘米〕.(3)如果在某一侧面上斜着挖,外表增加了4个面,其面积为22210248(平方厘米).总面积是60048=648(平方厘米).(4)挖通两个对面,外表增加了421022272〔平方厘米〕.总面积为60072672〔平方厘米〕.所以综上所述,剩下的面积有四种情况,分别是592平方厘米、632平方厘米、648平方厘米、672平方厘米.【借题发挥】1.如图,在一个正方体的三个面上分别写上1、2、3.在与这三个面分别平行的面上依次写上4、5、6〔1的对面写4,依次类推〕.与写数字2的面垂直的面上的数字和是多少?1.【答案】与写数字2的面垂直的面上的数字和是14.一个长方体的长是20厘米、宽是10厘米、高是8厘米,从这块木头上切下一个最大的正方体后,剩下局部的外表积是多少平方厘米?【答案】752cm2〔最大的正方体的棱长为8厘米〕【随堂练习】看到图时,小明说,因为平面FGEH和平面ABCD之间有两个长方形:ADEH和BCGF,所以平面FGEH与平面ABCD 是平行的,你认为他说的对吗?为什么?4/72.图中点M、N、Q、P分别是长方体的四条高的中点,与平面MNQP平行的平面有哪些?为什么?3.如何检验文件柜的隔板与隔板相互平行?说出你所用的方法.【答案】1.不对,没有交叉放置.2.平面ABCD、平面EFGH.3.可以用“长方形纸片〞检验文件柜的隔板与隔板是否相互平行.把一长方形硬纸片放在两层隔板之间,按交叉的方向放两次,使纸片的一边都紧贴一块隔板,再观察它的对边,如果对边都能与另一块隔板紧贴,那么这两块隔板平行.【课堂总结】【课后作业】1.如图,在长方体ABCD EFGH中,(1)哪些平面与棱CG平行?(2)哪些平面与平面BDHF垂直?(3)哪些棱与平面DBFH平行?5/7(4)哪些棱与平面DBFH垂直?(5)四边形DBFH是什么四边形?2.(1)如图,把一张长方形纸片ABCD对折,EF为折痕,AB与平面CDEF平行吗?用现成的长方形纸片试试,验证一下你的结论.除了“长方形纸片〞,还有什么形状的“纸片〞也能用来检验直线和平面是否平行?为什么?读一读,想一想:这里介绍一种在平面上表达立体图形的又一个常用方法——“三视图〞法,即从三个方向〔前面、上面和左面〕看一个物体,然后描绘三张所看见的图形来表达这个立体的形状的方法.例如,长方体〔图8 20〕无论从前面、上面和左面,看到的都是长方形,所以它的三视图是图8 21.有一个规那么的立体图形,它的三视图如下列图822所示.想一想,这个立体是什么形状呢?【答案】1.〔1〕平面ABFE、平面ADHE、平面DBFH;〔2〕平面ABCD、平面EFGH;〔3〕棱AE、棱CG;〔4〕没有;〔5〕长方形.2.〔1〕平行;现成的长方形纸片是长方形ABFE;〔2〕梯形、平行四边形,因为它们都是至少有一组对边是平行的.3.圆柱.6/7数学六年级〔下〕沪教版〔长方体的再认识Ⅱ〕教师版7/7。
学科:数学年级:预初学校:泥城中学课题:§8.1长方体的元素执教老师:张婷婷教学目标1. 通过观察长方体的元素,了解长方体的顶点、棱、面等概念.2. 掌握长方体的三个基本特征,能制作长方体架子.3. 在小学阶段初步认识的基础上,进一步培养空间观察和想象能力.教学重点长方体的各个元素的特征、性质.教学难点确立空间思维能力,能看懂立体图形.教学过程一、情景引入:给出下列图形,让学生复习已学过的一些平面图形:答:正方形、长方形、平行四边形、圆形和三角形提问: 这是我们以前学过的哪些几何图形?事实上:正方形、长方形、平行四边形、圆形和三角形都是平面上的图形,我们把它们叫做平面图形。
你能说出这些立体图形的名称吗?答:圆柱,圆锥,球体,长方体。
二.新课探索:讨论:说出教室里的长方体。
如:粉笔盒,铅笔盒等。
展示上海图片,找出长方体的使用。
出示长方体模具。
数一数:长方体有几个顶点,几条棱,几个面?(点,线,面)八个顶点,六个面,十二条棱。
三.尝试发现:观察:观察长方体模型,六面体模型,课件的动态演示,讨论并归纳长方体以及长方体元素的特征。
1.长方体的每个面都是长方形。
2.长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。
3.正方体的六个面可以分为三组,每组中相对的两个面的大小和形状都相等。
观察:根据课件观察长方体变化成为正方体的过程,思考长方体和正方体的关系。
正方体是特殊的长方体,它的六个面大小都相等,十二条棱也都相等。
练一练:判断:长方体的每个面都是长方形。
(√)长方体有十二条棱。
(√)六个面,十二条棱和八个顶点组成的图形都是长方体。
(×)长方体向对面的面积都相等。
(√)四.动手实践:操作:利用橡皮泥团和若干根吸管制作一个长为6厘米,宽为8厘米,高为4厘米的长方体架子。
提示:截取适当长度的吸管作为长方体的边,以用橡皮泥作为长方体的端点,运用长方体的三个特征搭建。
五.拓展研究:小小建筑师某建筑形状是一个长方体,近日要请一名工程师制造这个建筑的模型,模型的三条棱长分别是15分米,12分米,8分米.给你150分米长的。
第15课时长方体的再认识(2)知识精要1、元素:长方体有六个面、十二条棱、八个顶点2、特征:长方体的每个面都是长方形;长方体的十二条棱可以分成三组,每组中的四条棱的长度相等;长方体的六个面可以分成三组,每组中的两个面的形状和大小都相等。
3、长方体的画法:斜二侧画法。
4、 长方体中棱与棱的位置关系:(1)、相交,(2)、平行,( 3)、异面 。
5、 直线垂直于平面记作:直线P Q ⊥平面ABCD ;直线平行于平面记作:直线P Q ∥平面ABCD 。
6、计算公式之一:(三条棱长分别是a 、b 、c 的长方体)a) 棱长和 = 4()a b c ++ ; ② 体积 = abc ;③ 表面积 = 2()ab bc ac ++ ; ④ 无盖表面积 = S ab -、S bc -、S bc - 7、计算公式之二:(边长是a 正方体)① 棱长和= 12a ;②体积= 3a ;③表面积= 26a ;④无盖表面积 =25a 。
8、长方体不一定是正方体;正方体一定是长方体。
9、长方体中棱与棱的位置关系有3种,分别是平行、相交、异面。
10、长方体中棱与面的位置关系有2种,分别是:平行、垂直。
11、长方体中面与面的位置关系有2种,分别是:平行、垂直。
12、检验垂直或平行的方法: (1)、检验直线与平面垂直的方法:① 铅垂线法:将铅垂线靠近被测直线,如果铅垂线能够紧贴被测直线,说明直线垂直于水平面。
(可用于检验细棒是否垂直于水平面、黑板的边沿是否垂直于水平面)② 三角尺法:将两把三角尺的一条直角边分别紧贴已知平面并且位置交叉,将两把三角尺的另一条直角边分别靠近被测细棒,如果两条直角边都能够紧贴被测直线,说明直线垂直于已知平面。
(可用于检验细棒是否垂直于墙面)③ 合页型折纸法:将一张长方形的硬纸片对折,张开一个角度后直立于已知平面,用折痕靠近被测直线,如果折痕能够紧贴被测直线,说明直线垂直于已知平面。
(2)、检验平面与平面垂直的方法: ① 铅垂线法;② 三角尺法;③ 合页型折纸法。
例题解析【例1】填空:(1)长方体有______个顶点;(2)长方体有______个面,每个面都是______,相对的两个面的面积______;(3)长方体共有______条棱,按棱的长短可分为______组,每组棱的长度相等,每组有______条棱.【难度】★【答案】见解析.【解析】(1)8;(2)6;长方形;相等;(3)十二;三;四.【总结】考查长方体的相关元素的概念.【例2】判断:(1)若长方体的十二条棱都相等,这个长方体就是正方体;()(2)桌面所在的平面的大小就是桌面的大小;()(3)长方体共有6个面;()(4)长方体的六个面,至少有四个面的形状、大小相同;()(5)平面就是水平面;()(6)水平面是平面.()【难度】★【答案】见解析.【解析】(1)正确;(2)错误:桌面所在的平面是无穷无尽的,但是桌面的面积是固定的;(3)正确;(4)错误,长方体至少有两个面形状大小相同;(5)错误:平面不一定是水平面(6)正确:水平面就是一个平面.【总结】考查长方体的元素,注意进行辨析.【例3】在长方体ABCD– EFGH中,与棱EF相等的棱是()A.棱AB、棱CD、棱GH B.棱AB、棱AE、棱BFC.棱GH、棱EH、棱FG D.棱BC、棱CG、棱GF【难度】★【答案】A【解析】画图即可观察出,与一条棱相等的棱共有三条,分别是棱AB、棱CD、棱GH.【总结】考查长方体的棱的概念.1/ 16【例4】用一根长为100厘米的塑料管和橡皮泥做一个棱长为5厘米,6厘米和7厘米的长方体架子,应该如何截取?材料够吗?【难度】★★【答案】够,还剩28cm材料剩余.【解析】由题意,若按照棱长分别为5cm、6cm、7cm来做的话,可以做一个长方体架子,用掉(5+6+7)×4=72cm材料,还有28cm材料剩余.【总结】考查长方体的总棱长的和的概念.【例5】棱长总和是24厘米的正方体,它的表面积为______,体积为______.【难度】★★【答案】24平方厘米;8立方厘米.【解析】由题意可知正方体的棱长为:24÷12=2cm,故表面积为:2×2×6=24平方厘米,体积为:2×2×2=8立方厘米.【总结】考查正方体的表面积与体积的计算.【例6】长方体的长、宽、高之比为2 : 1 : 1,棱长总和是80厘米,把这个长方体截成两正方体时,表面积增加了_____.【难度】★★【答案】50平方厘米.【解析】设长为2x,宽为x,高为x,则有:(2x+x+x)×4=80,解得:x=5,所以长方体的长为:5×2=10cm;宽为5×1=5cm;高为5×1=5cm,当长方体被截成两个正方体时,即增加了两个面,则增加的面积为:5×5×2=50平方厘米.【总结】考查正方体的表面积问题,注意切割后表面积的变化.【例7】要做一个棱长分别为3厘米、5厘米和7厘米的无盖的长方体纸盒,最少需要多大的纸?最多需要多大的纸?【难度】★★★【答案】最少107平方厘米,最多127平方厘米.【解析】要使得需要的纸最少:即使得无盖的那一面面积最大,此时需要:(3×5+3×7)×2+5×7=107平方厘米;要使得需要的纸最大:即使得无盖的那一面面积最小,此时需要:3 / 16(3×7+5×7)×2+3×5=127平方厘米.【总结】考查长方体的表面积的运算,注意对无盖的理解.【例8】 一根长为36分米的铁丝截开后刚好能够搭成一个长方体架子,这个长方体架子的长、宽、高的长度均为整数分米,且互不相等,求这个长方体的体积. 【难度】★★★【答案】12立方分米或立方分米15或24立方分米.【解析】由题意可得,长宽高的和为36÷4=9,由题意有以下三种情况:①长、宽、高分别为:1、2、6,此时体积为:12立方分米 ②长、宽、高分别为:1、3、5,此时体积为:15立方分米 ③长、宽、高分别为:2、3、4,此时体积为:24立方分米 【总结】考查长方体的体积,注意分类讨论.【例9】 图中长方体正确表示为( ) A .长方体ABCD B .长方体EFGH C .长方体AB D .长方体ABCD -EFGH 【难度】★ 【答案】D【解析】长方体的表示方法必须表示出每一个点,并且按照一定的顺序来表示. 【总结】考查长方体的表示方法.【例10】 要补全一个长方体的直观图,至少需要知道_____条棱,这几条棱应该分别是____________. 【难度】★【答案】3;长、宽、高.【解析】知道长、宽、高,便能画出长方体的直观图. 【总结】考查长方体的画法.ABCDEFGH4 / 16【例11】 画一个棱长分别是2厘米、3厘米、4厘米的长方体. 【难度】★ 【答案】见解析.【解析】①画平行四边形ABCD ,使AB 等于4,AD 等于长方体宽的二分之一,即1.5, 作45DAB ∠=︒(如图1所示);②过AB 分别画AB 的垂线AE 、BF ,过C 、D 分别画CD 的垂线CG 、DH ,使它们的长 度都等于长方体的高(如图2);③顺次联结E 、F 、G 、H ,(如图3所示);④将被遮住的线段改用虚线(隐藏线)表示.(如图4)图4即为所求的长方体ABCD -EFGH .【总结】考查长方体的斜二测画法,注意对画图语言的准确表示.【例12】 画一个棱长总和为36厘米的正方体. 【难度】★★ 【答案】见解析.【解析】由题可确定正方体棱长为36÷12=3cm ,根据斜二测画法要求即可. 【总结】考查长方体的画法.ABCDABC D EFGHABCD EFGHABC DEFGH图1图2 图3图45 / 16【例13】 补画下列各图,使它成为长方体(虚线部分表示被遮住的部分).【难度】★★ 【答案】见解析.【解析】如下图所示:原图中给的三条线一定分别是长宽高,按照图示补全即可.(1) (2) (3) (4) 【总结】考查长方体的画法,注意对所给的棱的准确分析.【例14】 在如图所示的长方体中,哪些棱与棱AD 平行?哪些棱与AD 相交?哪些棱与AD异面? 【难度】★ 【答案】见解析.【解析】与棱AD 平行的棱有:棱BC 、棱FG 、棱EH ;与棱AD 相交的棱有:棱AB 、棱AE 、棱DH 、棱DC ; 与棱AD 异面的棱有:棱EF 、棱HG 、棱BF 、棱CG . 【总结】考查棱与棱的位置关系.【例15】 在长方体中,每一条棱与______条棱平行,每一条棱与______条棱相交,每一条棱与______条棱异面,互相平行的棱有______对,互相异面的棱有______对,相交的棱有______对. 【难度】★★【答案】3;4;4;18;48;24.【解析】①每一条棱与3条棱平行;②每条棱与4条棱相交;③每条棱与4条棱异面; ④每组互相平行的4条棱中,同一平面内互相平行的共有4对,异面平行的有2对; 因此共有:(4+2)×3=18对棱平行;⑤与每一条棱异面的有4对,那么共有:12×4=48A BCD EFGH6 / 16对棱互相异面;⑥因为每条棱与4条棱相交,剔除重复的部分,所以相交的棱共有: 4×12÷2=24对.【总结】考查长方体中棱与棱之间的位置关系,这些都是不变的,可以要求学生记住.【例16】 如图,在长方体ABCD —EFGH 中,填写下列各对线段所在直线的位置关系.(1)棱AD 与AG :_________________; (2)棱DH 与EG :_________________; (3)EG 与BD :_________________; (4)棱DC 与DB :_________________. 【难度】★★ 【答案】见解析.【解析】(1)相交;(2)异面;(3)异面;(4)相交. 【总结】考查长方体中棱与棱之间的位置关系.【例17】 垂直于同一直线的两条直线的位置关系是____________. 【难度】★★【答案】平行或异面或垂直.【解析】在同一平面内,垂直于同一条直线的两直线平行;若没有强调同一平面,则垂直于同一直线的两直线可能异面,也可能垂直. 【总结】考查直线的位置关系.【例18】 如果两条直线在同一平面上的投影是两条平行线,那么这两条直线的位置关系是__________. 【难度】★★★ 【答案】见解析.【解析】平行或异面,由于是投影,那么原两条直线未必在同一平面内,可能异面,只要满 足投影平行即可,可以让学生自己拿着笔,打开手电筒演示一下. 【总结】考查两直线的位置关系.【例19】 教室里的日光灯与地面的位置关系是______,桌腿与桌面的位置关系是______. 【难度】★ 【答案】见解析.【解析】(1)平行;(2)垂直. 【总结】考查直线与平面的位置关系.ABCD EFGH7 / 16【例20】 如图,在长方体ABCD -EFGH 中:(1)与棱DH 垂直的平面是___________________; (2)与棱BC 平行的平面是___________________; (3)与平面ADHE 垂直的棱是________________; (4)与平面EFGH 平行的棱是________________; 【难度】★ 【答案】见解析.【解析】(1)平面ABCD 、平面EFGH ;(2)平面EFGH 、平面AEHD ; (3)棱AB 、棱EF 、棱HG 、棱DC ;(4)棱AB 、棱BC 、棱CD 、棱AD . 【总结】考查直线与平面的位置关系,注意进行辨析.【例21】 铅垂线是垂直于____面的直线,用___________法可以检验课桌的边沿是否与地面平行,用__________法可以检验细棒是否与地面垂直. 【难度】★ 【答案】见解析.【解析】地、铅垂线、铅垂线. 【总结】考查直线与平面的位置关系.【例22】 如图,用__________法可以检验细棒是否与斜面垂直. 【难度】★★ 【答案】三角尺法. 【解析】三角尺法.【总结】考查直线与平面的位置关系.【例23】 在长方体中的每一条棱有______个平面和它垂直,每一个面有______条棱与它垂直,每一条棱有______个平面和它平行,每一个面有______条棱与它平行. 【难度】★★ 【答案】见解析. 【解析】2、4、2、4.ABCDEFGH8 / 16【总结】考查直线与平面的位置关系.【例24】 在长方体ABCD -EFGH 中,AB = 3厘米,BF = 5厘米,与棱AB 垂直的平面的面积之和是32平方厘米,求这个长方体的表面积. 【难度】★★★ 【答案】81.2平方厘米.【解析】由题意,与棱AB 垂直的平面即为左右两个侧面,面积和为32,则每个侧面面积 为16,因为BF =5cm ,可得:BC =3.2cm ,所以长方体的表面积为: 2×(3×3.2+3×5+3.2×5)=81.2平方厘米.【总结】考查直线与平面的位置关系,综合性较强,注意认真分析.【例25】 如图,与平面ABFE 垂直的平面有____________,与平面BCGF 平行的平面有_____________. 【难度】★ 【答案】见解析.【解析】面BCGF 、面ADHE 、面ABCD 、面EFGH ; 面ADHE .【总结】考查平面与平面的位置关系. 【例26】 下列结论正确的是( )A .在长方体中,与其中的一个面垂直的面有2个B .在长方体中,与其中的一个面平行的面有4个C .长方体有两个相对的面是正方形,那么这个长方体有6条棱的长度相等D .长方体相邻的两个面互相垂直,相对的两个面互相平行 【难度】★★ 【答案】D【解析】A 错误,有四个;B 错误,有1个;C 错误,还有一条高不能确定;D 正确 【总结】考查平面与平面的位置关系.【例27】 如图,与面ADHE 垂直的面有__________________________. 【难度】★★ 【答案】见解析ABCD EFGH ABCD EFGH9 / 16CA BDE F【解析】面ABFE 、面ABCD 、面EFGH 、面DCGH . 【总结】考查直线与平面的位置关系.【例28】 可以用________________检验教室的墙面与地面是否垂直. 可以用________________检验衣橱里横向的两块隔板是否平行. 【难度】★★ 【答案】见解析.【解析】铅垂线法或合页型折纸法、长方形纸片法. 【总结】考查直线与平面的位置关系的检测方法.【例29】 如图,是一个正方体的展开图,在原正方体中,与平面C 垂直的平面是________.(用图中的字母表示) 【难度】★★★ 【答案】见解析.【解析】与已知面垂直的平面是与之相邻的四个平面:B 、D 、E 、F . 【总结】考查平面与平面的位置关系.【例30】 如图,在长方体ABCD -EFGH 中,找出与平面BCHE 垂直的平面,并找出现成的合页型折纸,在图上用阴影部分表示. 【难度】★★★ 【答案】见解析.【解析】由题意可知,与平面BCHE 垂直的平面分别是: 平面ABFE 、平面DCGH .【总结】考查平面与平面的位置关系,注意认真分析,综合性较强.【习题1】 正方体的棱长扩大2倍后,体积增大到原来的______倍.随堂检测ABCDEFG H10 / 16【难度】★ 【答案】8.【解析】正方体的体积等于长×宽×高,所以棱长扩大两倍后,体积就扩大2×2×2=8倍. 【总结】考查正方体的棱长与体积的关系.【习题2】 在图中的长方体中:(1)从正面看,看不见的棱有___________; (2)与棱EH 相等的棱有_______________; (3)与平面ADHE 相对的平面有________; (4)位于水平位置的平面有_____________. 【难度】★ 【答案】见解析.【解析】(1)棱:AD 、DC 、BC 、EH 、GF 、HG 、HD 、GC ;(2)棱:AD 、GF 、BC ; (3)面BCGF ;(4)面ABCD 、面EFGH . 【总结】考查长方体的棱与面的位置关系.【习题3】 在长方体中,若两条棱没有公共点,则这两条棱的位置关系是__________. 【难度】★ 【答案】平行异面.【解析】两条棱没有公共点,则说明这两条棱要么平行,要么异面. 【总结】考查长方体中棱与棱的位置关系.【习题4】 下列说法正确的是( )A .平静的水面是水平面,所以光滑的镜面也是水平面B .长方体中棱与平面不是垂直就是平行C .若两条直线都平行于同一个平面,那么这两条直线也平行D .长方体中任何一条棱都与两个平面平行 【难度】★★ 【答案】D【解析】A 、光滑的镜面不一定是水平面,与所放的位置有关;B 、棱可能正好在这个平面ABCDEFGHAB C DEFGH14 5 32 1 5? 3 内;C 、这两条直线可能相交,只要它们都在平行于该平面的某个平面内;D 正确. 【总结】考查对长方体的基本位置关系的认识.【习题5】 如图所示的六面体中,AEFB 和DHGC 是相同的直角梯形,其余都是长方形,则:(1)其中有______条棱与平面ADHE 垂直; (2)其中有______条棱与平面AEFB 垂直; (3)其中有______条棱与平面ABCD 垂直; (4)其中有______条棱与平面BFGC 垂直. 【难度】★★【答案】(1)4;(2)4;(3)2;(4)0.【解析】(1)AB 、DC 、HG 、EF ,共4条;(2)AD 、EH 、BC 、FG ,共4条;(3)AE 、DH ,共2条;(4)0条.【总结】考查立体图形中棱与棱的关系,注意进行辨析.【习题6】 一个正方体的每个面上都标有数字1、2、3、4、5、6,根据图中该正方体A 、B 、C 三种状态所显示的数字,可推出“?”处的数字是( )A .1B .2C .4D .6【难度】★★ 【答案】D .【解析】第三个图5和3相邻,第二个图1和3相邻,因此4对面是3,1对面是6,5对面 是2,6和3、5相邻,所以问号处是6,故选D . 【总结】考查对长方体的面的认识.【习题7】 长方体的总棱长是72厘米,它的长 : 宽 = 2 : 1,宽 : 高 = 2 : 3,这个长方体的体积是______. 【难度】★★ 【答案】3192cm .【解析】因为长方体的总棱长为72厘米,故长+宽+高=72418÷=厘米, 由题意知长:宽:高=4:2:3,设长宽高分别为423x x x 、、,则423182x x x x ++==,解得:,所以长、宽、高分别为8、4、6, 所以体积是3846192cm ⨯⨯=. 【总结】考查长方体的体积的计算.【习题8】 把一块长是50厘米的长方体分成2 : 3两部分后,它的表面积增加了300平方厘米,则分成的两块长方体木块的体积分别为__________. 【难度】★★★【答案】3330004500cm cm 、. 【解析】把一块长是50厘米的长方体分成2 : 3两部分后,长分别为20厘米和30厘米.因为切割后表面积增加了300平方厘米,故原厂方体的长×宽为:23002150cm ÷=, 故分成的两块长方体木块的体积分别为:3201503000cm ⨯=、3301504500cm ⨯=. 【总结】本题综合性较强,一方面考查长方体的体积计算,另一方面要对增加的表面积进行 准确理解.【习题9】 小方制作了一个无盖的长方体木盒,木盒的棱长分别为3厘米、5厘米和8厘米,求这个木盒的表面积. 【难度】★★★ 【答案】见解析.【解析】当有盖时,表面积为:()22353858158cm ⨯⨯+⨯+⨯=,①当高是3厘米时,木盒的表面积为:215858118cm -⨯=; ②当高是5厘米时,木盒的表面积为:215838134cm -⨯=; ③当高是8厘米时,木盒的表面积为:215835143cm -⨯=. 【总结】考查长方体的表面积计算,注意要分类讨论.【习题10】 一个长方体的表面积是88平方厘米,这个长方体可以被分割为5个完全相同的正方体,求这个长方体的体积. 【难度】★★★ 【答案】340cm .【解析】设正方形边长为x 厘米,则由题意可得: 22245882x x x +⨯⨯==,解得:,ABCDEF故这个长方体的体积为:3222540cm ⨯⨯⨯=.【总结】本题综合性较强,主要考查长方体的表面积与体积的计算,注意认真分析题意.【作业1】 长方体中经过同一顶点的面的个数有( ) A .1个B .2个C .3个D .4个【难度】★ 【答案】C 【解析】C【总结】考查长方体的基本认识.【作业2】 如图,在一张长方形纸片ABCD 对折后翻开所成的图形中:(1)与直线DF 平行的直线是_____________; (2)与直线EF 平行的直线是_____________; 与直线EF 相交的直线是______________; (3)与直线AE 异面的直线是_____________; 与直线BC 异面的直线是______________. 【难度】★ 【答案】见解析.【解析】(1)与直线DF 平行的直线是AE ;(2)与直线EF 平行的直线是AD 、BC ,与直线EF 相交的直线是AE 、BE 、DF 、CF ; (3)与直线AE 异面的直线是BC 、FC ,与直线BC 异面的直线是AE 、DF . 【总结】考查立体图形中直线间的位置关系.【作业3】 在长方体中,若两条棱异面,则与这两条棱都相交的棱( )A .不一定存在B .有且只有一条C .可能有一条,也可能有两条D .不止两条【难度】★★ 【答案】B课后作业A BCD EFGH【解析】画图观察即可.【总结】考查长方体的棱与棱之间的位置关系.【作业4】 补画长方体:【难度】★★ 【答案】见解析. 【解析】如图所示:【总结】考查长方体的画法.【作业5】 下列图形中,不能围成长方体的是( )A .B .C .D .【难度】★★ 【答案】B【解析】B 选项两个面重复了,围不成长方体. 【总结】考查长方体的展开图,注意进行分析.【作业6】 如图,桌面上放着一本打开的书,(1)与桌面垂直的平面有哪几个? (2)平面ABFE 与平面ABHG 是否垂直? 【难度】★★ 【答案】见解析.【解析】(1)平面ABHG 、平面ABFE 、平面ABDC ; (2)不一定,当90HBF ∠=o 时,两面垂直. 【总结】考查平面之间的位置关系.【作业7】 将一个长、宽、高分别为2厘米、2.5厘米、3厘米的长方体切割成一个体积最大的正方体,则切割剩余部分的体积是______.【难度】★★ 【答案】37cm .【解析】要切割成体积最大的正方体,则所切得的正方体的边长为2厘米, 故切割剩余部分的体积是:332 2.5327cm ⨯⨯-=. 【总结】考查长方体的切割问题,注意认真分析.【作业8】 将两个长是5厘米、宽是4厘米、高是3厘米的长方体重叠放置,它的表面积是_________________.【难度】★★★【答案】222164158148cm cm cm 或或. 【解析】表面积分别为:()()2554553432164cm +⨯++⨯+⨯⨯=⎡⎤⎣⎦; ()()2445443532158cm +⨯++⨯+⨯⨯=⎡⎤⎣⎦; ()()2335334542148cm +⨯++⨯+⨯⨯=⎡⎤⎣⎦.【总结】考查长方体的表面积计算,注意进行分类讨论.【作业9】 12个棱长为1厘米的正方体叠在一起,成为一个长方体,求这个长方体的表面积. 【难度】★★★【答案】222504038cm cm cm 或或.【解析】当以121⨯叠放时,表面积为:[]212112111250cm ⨯+⨯+⨯⨯=;当以62⨯叠放时,表面积为:()2626121240cm ⨯+⨯+⨯⨯=⎡⎤⎣⎦;当以43⨯叠放时,表面积为:()2434131238cm ⨯+⨯+⨯⨯=. 【总结】考查长方体叠放及表面积的计算问题,注意进行分类讨论.AB CDOEFPNMGH【作业10】如图,把一块长是108厘米的长方体木块的棱AE分成3 : 1的两段,分点为M,过点M按平行于面ABCD的方向把长方体分成两块后,表面积增加了800平方厘米,这两块长方体的体积分别是多少?【难度】★★★【答案】331080036400cm cm和.【解析】因为把长方体分成两块后,表面积增加了800平方厘米,所以原长方体的宽×高为:8002=400÷平方厘米.故大长方体的体积为:3108400324004⨯⨯=立方厘米,小长方体的体积为:1108400108004⨯⨯=立方厘米.【总结】考查长方体的分割及体积计算问题,注意进行认真分析.。