五年级几何长方体和正方体教师版
- 格式:doc
- 大小:2.22 MB
- 文档页数:42
新人教版五年级数学下册第三单元长方体和正方体教案第三单元长方体和正方体一、单元教学内容长方体和正方体P18——P44二、单元教学目标1.让学生通过观察和操作,认识长方体和正方体的特征以及它们的展开图。
2.让学生通过实例,了解体积(包括容积)的意义及度量单位(立方米、立行分米、立方厘米、升、毫升),会进行单位之间的换算。
感受1m3,1dm3,1cm3以及1L,1mL的实际意义。
3.结合具体情境,让学生探索并掌握长方体和正方体的体积和表面积的计算方法,并能运用所学知识解决一些简单的实际问题。
4.使学生掌握某些实物体积的测量方法。
三、单元教学重、难点1.掌握长方体和正方体的特征以及它们的体积和表面积的计算方法。
2.能运用所学知识解决一些简单的实际问题。
3.难点是体积和表面积两个概念的建立。
四、单元教学安排1.长方体和正方体的认识………………………………………………2课时2.长方体和正方体的表面积……………………………………………3课时3.长方体和正方体的体积………………………………………………6课时【知识结构】11.长方体和正方体的认识第1课时长方体一、讲授内容:长方体的认识(课本第18~19页的内容落第21~22页练五的1、2、3、6、7题)。
二、讲授方针:1.初步认识立体图形、认识长方体的特征。
2.通过观察、想象、动手操作等活动进一步发展空间观念。
3.继续造就学生研究数学的兴趣,进一步形成勇于探究、善于协作交换的研究品格。
三、教学重难点重点:掌握长方体的特征。
难点:通过观察、想象、动手操作等活动进一步发展空间观念。
四、讲授过程:(一)复导入1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形)2.出示教材第18页的主题图。
提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。
提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?3.举例:在一样平常糊口中你还见到过哪些长方体的物体?长方体又具有甚么特性呢?引出新课并板书课题。
五年级数学《长方体和正方体的体积》教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!五年级数学《长方体和正方体的体积》教案【优秀6篇】在教学工作者开展教学活动前,通常需要用到教学设计来辅助教学,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
《长方体和正方体的认识》教学设计《长方体和正方体的认识》教学设计【教学内容】人教版数学五年级下册第27~30 页。
【设计理念】空间观念的建立,要通过学生动手操作、观察得出结论,体现了教学以学生为主体,教师为主导的教学原则。
尊重个性差异、注重学法指导。
在本课的教学中,提供可操作的素材,学生所接触过的与空间图形有关的生活经验是发展其空间观念的宝贵资源。
教师要有意识地联【教材分析】《长方体和正方体的认识》是新人教版小学数学五年级下册第三单元的第一个知识点,是小学阶段学生认识立体形体的开始,更是学生认识立体图形的核心内容,对学生空间观念的形成十分重要。
本节课在本单元学习目标和作用。
【学情分析】是在学生已经初步认识了一些简单的立体图形的基础上,进一步系统研究长方体和正方体的相关知识,这是学生比较深入地研究立体图形。
学生通过研究长方体和正方体的特征,可以对周围的物体形成初步的空间观念。
【教学目标】1.通过观察、操作等活动认识长方体和正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征,理解它们之间的关系。
2、培养学生动手操作、观察、合作探索、抽象概念的能力和初步的空间概念。
在活动中进一步积累探索经验,增强空间观念,发展数学思考。
3、体会知识的形成过程,以及所学知识在实际生活中的应用价值。
【教学重点】长方体和正方体的特征,认识长方体的长宽高。
【教学难点】建立长方体、正方体的空间观念,形成立体图形的初步印象。
【准备】教具:长方体、正方体模型,长方体框架,多媒体课件学具:长方体和正方体实物,橡皮泥,塑料棒。
【教学过程】课前活动:师说一个指令,生做出与指令相反的动作。
站-生坐、坐-生站、坐-生站。
一、复习旧知,导入新课师:1、(课件出示一个点)大家看,这是什么?(生:点)(板书:点)2、(课件动态出示多个点连成一条线)你观察到了什么?(师板书:线)师:观察事物既要关注结果,同时也要注意过程。
五年级奥数长方体与正方体(二)教师版如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积立体图形 示例体积公式 相关要素长方体V abh = V Sh = h 、b 、a 三要素: h、S 二要素: 正方体3V a =V Sh= a一要素: h、S 二要素:不规则形体的体积常用方法: ①化虚为实法 ②切片转化法例题精讲长方体与正方体(二)③先补后去法④实际操作法⑤画图建模法【例 1】一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于立方厘米。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯, 6年级,第16题,6分【解析】由题意知长、宽、高的和为2847÷=,又根据题意长、宽、高各不相同,且是整数,所以只能是1、2、4,所以体积为8立方厘米【答案】8【例 2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,8题【解析】对于图c来说,每个小方块都摞了2层,最多有6块。
【答案】6【例 3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【考点】长方体与正方体【难度】2星【题型】解答【关键词】小数报,决赛【解析】0.078(1.30.3)0.2÷⨯=(米).0.2米=2分米.⨯⨯-=(立方米).1.30.30.30.0780.039所以这根木料的高是2分米;算错后,这根木料的体积比0.078立方米多0.039立方米.【答案】0.039【例 4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析教学目标1、通过观察、操作,认识长方体和正方的特征以及它们的展开图。
2、通过实例,理解体积(包括容积)的含义,认识常用的度量单位(立方米、立方分米、立方厘米、升、毫升),建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,会利用单位间的进率进行简单的换算。
3、探索并掌握长方体、正方体的体积和表面积的计算方法,并能解决一些简单的实际问题。
4、探索某些实物体积的测量方法。
二、内容安排三、各小节的教材说明和教学建议例1、例2例3例1、例2例6(一)长方体和正方体的认识(第18~22页)a、理解长方体各部分的名称,面、棱、顶点。
b、理解和掌握长方体的特征,形成长方体的概念。
长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
c、认识长方体的长、宽、高。
d、理解和掌握正方体的特征,形成正方体的概念。
正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。
e、长方体和正方体的相同点和不同点f、长方体和正方体的关系本小节学生应掌握的基本技能正确找出长方体横放、竖放、侧放几种不同情况下摆放的长、宽、高。
培养学生的动手能力和观察能力。
例如:用附页的图样做长方体和正方体;用小棒、橡皮泥做长方体框架;测量长方体的长、宽、高;用棱长1厘米的小正方体搭一搭等等。
运用所学知识解决实际问题。
例如:练习五中的第6题,学生要明确需要的彩灯线实际上是哪些棱长之和。
再例如练习五的第9题,要教给学生做这类题的方法对例题的理解主题图教材首先呈现了一些长方体或正方体形状的建筑物和生活用品。
让学生观察它们的形状,其落脚点是让学生感受到生活中很多物品的形状都是长方体和正方体的。
为进一步研究长方体,正方体的特征做准备。
看完主题图后,可以让学生说一说生活中还有哪些物体的形状是长方体或正方体的。
然后从实物图中抽象出长方体的几何直观图,让学生观察这个长方体,图中有什么?学生回答有面、线段、顶点。
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
第3单元长方体和正方体本单元的内容是在学生已经初步认识了一些简单的立体图形——长方体、正方体、圆柱和球的基础上,比较深入地研究立体图形,是从二维空间到三维空间的一次重要转化,系统学习长方体、正方体的有关知识,是学生发展空间观念的一次飞跃。
长方体和正方体是最基本的立体图形,通过学习长方体、正方体,可使学生对周围的空间和空间中的物体形成初步的空间观念,是学生进一步学习其他立体图形的基础。
另外,长方体和正方体体积的计算,也是形成体积的概念,掌握体积的计量单位和计算各种几何形体体积的基础。
教科书非常注重与实际生活的联系,结合学生熟悉的事物进行概念理解,注重用所学的知识解决实际问题。
分三小节编排:1.长方体和正方体的认识,主要教学生认识长方体、正方体的特征;2.长方体和正方体的表面积;3.长方体和正方体的体积。
在“长方体和正方体的体积”一节中,还介绍了容积的概念及体积单位、容积单位间的进率、名数的换算,并探索了某些实物体积的测量方法。
教学重点是认识长方体和正方体的特征,理解表面积、体积、容积的概念,掌握长方体和正方体的表面积、体积的计算方法,建立体积、容积单位表象,灵活运用所学知识解决简单的实际问题。
在学习本单元内容之前,学生已经能够直观地认识一些平面图形和立体图形,能从生活中找到大量的立体图形素材,并能通过这些素材发现一些基本特征。
本单元是在此基础上系统学习长方体和正方体的有关知识。
其中,表面积是学生对面积概念的拓展,体积对学生来说更是一个全新的概念,且学生对“物体占有一定的空间”这句话的理解有一定的困难。
因此,教学时要充分利用故事、实验、比较等方法,让学生切实感悟到物体占有空间,不同物体所占空间有大有小,从而深刻地理解体积的含义,为后面学习圆柱的体积计算作铺垫。
1.充分调动学生已有的知识经验,利用学生熟悉的教学资源,通过指、摸、比、剪、倒、估等操作实验活动认识长方体、正方体的特征,建立体积、容积单位表象,培养、发展学生的空间观念。
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析1.通过观察、操作,学生能够认识长方体和正方体的特征以及它们的展开图。
2.学生能够理解体积(包括容积)的含义,并能够使用常用的度量单位(立方米、立方分米、立方厘米、升、毫升)建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,并能够进行简单的换算。
3.学生能够掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
4.学生能够探索某些实物体积的测量方法。
长方体和正方体的认识本小节介绍了长方体和正方体的特征和形状,学生需要理解长方体各部分的名称,面、棱、顶点,并能够形成长方体和正方体的概念。
长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形,而正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。
长方体和正方体的体积和表面积计算本小节介绍了长方体和正方体的体积和表面积的计算方法,学生需要掌握体积计算公式的推导和体积单位间的进率及名数的换算。
同时,学生需要理解表面积的含义,并能够计算出长方体和正方体的表面积。
容积和容积单位本小节介绍了容积和容积单位的概念,学生需要理解容积的含义,并能够使用常用的容积单位(升、毫升)进行换算。
不规则物体的体积本小节介绍了如何测量不规则物体的体积,学生需要探索并掌握测量不规则物体体积的方法。
总体来说,本单元的教学目标是让学生通过观察、操作,认识长方体和正方体的特征以及它们的展开图,理解体积(包括容积)的含义,掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
同时,学生需要探索某些实物体积的测量方法。
同。
第二个价值是通过操作让学生深入理解长、宽、高的概念。
建议在活动中引导学生思考:为什么要把12条棱分成三组?为什么这三组棱分别叫长、宽、高?通过思考和操作,学生会逐渐理解长、宽、高的概念和它们之间的关系。
练五是应用题,要求学生根据长方体的特征计算面积、体积等。
长方体和正方体教学设计6篇长方体和正方体教学目标及重难点下面是整理的长方体和正方体教学设计6篇长方体和正方体教学目标及重难点,供大家赏析。
长方体和正方体教学设计1长方体和正方体的体积磐石市吉昌镇中心小学校李国华教学内容:人教版教材数学五年级下册29页到30页教学目标:1、探究、推导长方体和正方体体积的计算公式2、理解掌握并运用长方体和正方体体积公式解决实际问题3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力教学重点:理解掌握长方体和正方体体积的计算公式教学难点:长方体和正方体体积公式的推导教具准备:学生准备小正方体(多个)PPT 教学过程:一、复习1、填空(1)()叫做物体的体积。
(2)常用的体积单位有()()()2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。
学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的多少。
二、导入,确定学习目标1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)2、出示学习目标:(1)探究总结长方体和正方体的体积的计算方法(2)运用长方体和正方体体积的计算公式解决实际问题三、探究长方体体积的计算公式1、回顾“以旧学新”的几何问题研究方法以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。
看看这两种方法,哪种适合研究长方体体积。
简单讨论后,确定用“数方块”的方法。
2、教师PPT演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。
3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。
4、出示小组研究提示(1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)(2)把不同的长方体的相关数据填入下表(29页表格)(3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?5、各小组学生合作学习后,让各小组汇报数据,汇总到一起填入表格,观察表格,总结长方体体积公式:长方体体积=长×宽×高用字母表示:V=abh6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。
五年级数学下册《长方体正方体的认识》教案五年级数学下册《长方体正方体的认识》教案模板(通用6篇)五年级数学下册《长方体正方体的认识》教案1教学目的:1.使学生直观地认识长方体和正方体;2.能够辨认和区别长方体和正方体;3.培养学生初步的空间观念。
教学重点:直观地认识长方体、正方体。
教学难点:长方体和正方体的辨认和区别。
教具准备:1.长方体、正方体模型。
2.例1、做一做、长方体、正方体各种位置平面图幻灯片,幻灯机,录音机。
3.长方形、正方形拼组成的机器人及长方体、正方体拼组成的机器人。
学具准备:每个学生准备一个长方体和正方体。
教学过程:一、复习出示长方形、正方形组成的机器人于黑板。
师:小朋友们,这是什么?(机器人)这个机器人,可有学问了,不信呀,跟着教师来看看。
大家看机器人的手、脚和脖子,它们都是什么形状的?(长方形)谁能说说长方形有哪些特点?师:再看看机器人装满学问的肚子和脑袋又是什么形状的?(正方形)谁也来说说正方形有什么特点?[评析:通过复习长方形和正方形的特征,为长方体和正方体的认识作铺垫。
]二、新课教学1.初步认识长方体。
①师:这个机器人不仅很有学问,还很神奇。
你们看,老师把它的手和脚拼成一个什么样的图形。
(按上下、前后、左右的顺序依次将机器人的手和脚拼成一个长方体。
)师:大家想想看,在我们的生活中,有哪些东西的形状也是这样的?指名列举。
师:对了,像书、盒子、砖头以及老师手中的模型这样的形状,我们就把它叫做长方体。
出示例1上半部分幻灯,并板书:长方体。
②师:(触摸桌面)大家看这是课桌的一面,我们的长方体也有这样的面。
请大家拿起桌面上的长方体,跟老师摸一摸。
带领学生摸长方体的上面。
师:我们刚刚摸过的地方是这个长方体的上面,大家再摸摸看,除了上面,长方体还有哪些面?谁能按一定的顺序说说,让大家更容易记住。
指名回答,板书:上下、前后、左右师:一共是几个面?板书:6个面。
师:原来长方体有上下、前后、左右一共6个面。
长方体和正方体的认识、棱长和(教师版)学生姓名年级学科授课教师日期时段核心内容长方体和正方体的特征、棱长和课型一对一/一对N教学目标1、掌握长方体和正方体的特征;2、掌握正方体的11种平面展开图,学会解决正方体的展开图题型;3、找出正方体平面展开图相对的面;4、掌握求长方体和正方体棱长和的方法;5、有关图形的题目,要养成画图、标数据、分析后再动笔做的习惯。
重、难点1、掌握长方体和正方体的特征;2、掌握正方体的11种平面展开图、找出正方体平面展开图相对的面;3、掌握求长方体和正方体棱长和的方法;4、有关图形的题目,要养成画图、标数据、分析后再动笔做的习惯。
课首沟通知道长方体和正方体的特征是什么吗?记得它们棱长和的计算公式吗?知识导图课首小测1. [正方体的特征] [难度:★★ ] 正方体是特殊的(),是由6个()的正方形围成的立体图形,也有()个面,()条棱,()顶点,所有棱长度都()。
【参考答案】长方体;完全相同;6;12;8;相等2.[长方体、正方体的棱长总和] [难度:★★ ]【参考答案】棱长(或a);12;长+宽+高(或a+b+h);4导学一:长方体和正方体的认识知识点讲解 1:长方体和正方体的特征1.正方体的染色。
(1)三个面都染色:必定在顶点上;(2)两个面染色:必定在棱上;(3)一个面染色:必定在面上。
例题1.[正方体的特征;长方体的特征] [难度:★★ ]【参考答案】2.[正方体的特征] [难度:★★ ] 一个棱长10厘米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。
问:在这些小正方体中,(1)3个面涂有红色的有多少个?(2)2个面涂有红色的有多少个?(3)1个面涂有红色的有多少个?(4)6个面都没有涂色的有多少个?【参考答案】(1)8个;(2)96个;(3)384个;(4)512个【题目解析】根据题意可知,大正方体一共可以切成10×10×10=1000(个)小正方体。
长方体和正方体1.长方体和正方体的认识【知识梳理】1.长方体各部分的名称。
(1)面:围成立体图形的平面图形叫做立体图形的面。
围成长方体的长方形(或正方形)叫做长方体的面。
(如下图)(2)棱:立体图形中,面和面相交的线段,叫做棱。
(如下图)(3)顶点:棱和棱的交点,叫做顶点。
(如下图)顶点要点提示:立体图形和平面图形的区别:平面图形只在平面上有一定的面积,立体图形不仅在平面上占有一定的面积,还占有一定的空间。
2. 长方体的特征。
①长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形;②一个长方体有6个面、8个顶点和12条棱;③相对的面完全相同,相对的棱长度相等。
④相对的棱互相平行;相交于同一顶点的三条棱互相垂直。
要点提示:①有2个正方形面的长方体,其余的4个面是完全相同的长方形。
②有2个正方形面的长方体中有8条棱的长度相等,另外4条棱的长度相等。
3.长方体长、宽、高的含义。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体的12条棱中有4条长、4条宽、4条高。
4.长方体的棱长总和。
长方体的棱长总和=4条长+4条宽+4条高=(长+宽+高)×45.正方体的特征。
①正方体是由6个完全相同的正方形围成的立体图形。
②正方体有6个面、12条棱和8个顶点。
③6个面完全相同,12条棱的长度都相等。
④相对的棱互相平行;相邻的棱互相垂直。
6.正方体的棱长总和。
正方体的棱长总和=棱长×12 7.长方体和正方体的异同。
8.长方体和正方体的关系。
正方体是特殊的长方体。
用集合的形式表示,如下图:要点提示:①在长方体中,如果相交于一个顶点的三条棱的长度都相等,那么这个长方体就 是正方体。
②如果长方体中有3个面是相等的正方形,那么也可以断定这个长方体是正方体。
【诊断自测】1.填空。
(1)长方体和正方体都有( )面、( )条棱、( )个顶点。
长方体相对的面( ), 相对的棱( )。
第6讲 长方体与正方体的体积一、教学目标1.掌握长方体与正方体体积的求法,并熟记公式.2.掌握长方体与正方体体积变化规律.3.培养学生的三维空间想象能力.二、知识要点1.长方体长方体的长、宽、高分别为a 、b 、c ,那么可得: 长方体的体积:V abh =;长方体共有六个面(每个面都是长方形),底面面积为S ,高为h 时有:长方体的体积:V Sh =. 2.正方体我们也可以称其为立方体,它是一种特殊的长方体,它的六个面都是正方形.如果它的棱长为a ,那么可得:正方体的体积:3V a =;正方体共有六个面(每个面都是正方形),底面面积为S ,高为h 时有:V Sh = 3.体积变化规律①体积变化时,减去实际减少部分即可.②多次挖孔时,需考虑是否有重合部分,实际挖去部分是否与独立挖去时相同.③从长方体上切正方体时,剩余部分不一定是长方体. 4.排水法物体浸没在水中,原本容器中的水则会上涨,上涨部分水的体积等于浸没a b c a部分的体积.将物体拿出,则水位下降,利用V Sh 就可以算出物体的体积.排水法适用于:①不吸水物体;②不规则物体.三、例题精选【例1】 求下列图形的体积(单位:cm ).(1)(2)【★★★★★】【解析】(1)60cm 3;(2)512cm 3。
(1)3×5×4=60(cm 3);(2)8×8×8=512(cm 3)。
【巩固1】求下列图形的体积(单位:cm ).(1)(2)【★★★★★】【解析】(1)216cm 3;(2)125cm 3。
(1)9×6×4=216(cm 3); (2)5×5×5=125(cm 3)。
【例2】 一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于多少立方厘米?【★★★★★】【解析】8立方厘米.由题意知长、宽、高的和为:28÷4=7(厘米),又根据长宽高各不相同,且是整数,所以只能是1、2、4,故体积为:1×2×4=8(立方厘米).534555【巩固2】有一个长方体,长是宽的2倍,宽是高的3倍;长的3倍与高的2倍之和比宽的6倍多6厘米.这个长方体的体积是多少立方厘米?【★★★★★】【解析】486立方厘米.长是宽的2倍,宽是高的3倍,则长是高的6倍,长的3倍则是高的3×6=18倍,长的3倍与高的2倍之和为高的18+2=20倍,宽是高的3倍,宽的6倍则是高额3×6=18倍,则多出的6厘米为高的20-18=2倍,所以高为6÷2=3(厘米),宽为3×3=9(厘米),长为:3×6=18(厘米).则长方体体积为:3×9×18=486(立方厘米)【例3】如果一个棱长为2厘米的正方体的体积增加208立方厘米后仍是正方体,则棱长增加多少厘米?【★★★★★】【解析】4厘米:原来体积为:2×2×2=8(立方厘米),后来体积为:8+208=216(立方厘米),216=6×6×6,则棱长增加6-2=4(厘米)【巩固3】如果一个棱长为6厘米的正方体的体积减少189立方厘米后仍是正方体,则棱长减少多少厘米?【★★★★★】【解析】3厘米.原来体积为:6×6×6=216(立方厘米),后来体积为:216-189=27(立方厘米),27=3×3×3,则棱长减少6-3=3(厘米).【例4】一个长、宽、高分别为21厘米、15厘米、12厘米的长方体,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【★★★★★】【解析】1107立方厘米.最大可以先切去12×12×12的正方体,第二次还能切一个9×9×9的正方体,再切一次可以切6×6×6的正方体,剩下的体积应该是:21×15×12-(12×12×12+9×9×9+6×6×6)=1107(立方厘米).【巩固4】一个长、宽、高分别为16厘米、14厘米、8厘米的长方体,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【★★★★★】【解析】552立方厘米.最大可以先切去8×8×8的正方体,第二次还能再切一块8×8×8的正方体,还剩8×(14-8)×16=8×6×16,再切一次可以切6×6×6的正方体,剩下的体积应该是:16×14×8-(8×8×8×2+6×6×6)=552(立方厘米).【例5】有一个棱长为5cm的正方体木块,从它的每个面看都有一个穿透的完全相同的孔,求这个立体图形的体积是多少?【★★★★★】【解析】76立方厘米.将此带孔正方体看做由8个2×2×2=8(立方厘米)的正方体和12个1立方厘米的正方体粘成,所以总体积为:8×8+12=76(立方厘米).【巩固5】一个长、宽、高分别为12、9、7厘米的长方体,在它的每组两两相对的面的正中央都打一个棱长为4厘米的正方形的贯穿洞.那么这个长方体剩下部分的体积是多少立方厘米?【★★★★★】【解析】436立方厘米.原正方体体积为:12×9×7=756(立方厘米),切去部分体积为:4×4×(12+9+7)-4×4×4×2=320(立方厘米),故原正方体剩下部分体积为:756-320=436(立方厘米).【例6】有大、中、小三个正方体水池,它们的内棱长分别是6米、3米、2米.把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了8厘米和9厘米.如果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米?【★★★★★】【解析】3厘米.把碎石沉浸在水中,水面升高所增加的体积,就等于所沉入的碎石体积.因此,沉入中水池的碎石体积是:3×3×0.08=0.72(立方米),沉入小水池的碎石体积是:2×2×0.09=0.36(立方米),两堆碎石的体积一共是0.72+0.36=1.08(立方米),把他们都沉入大水池里,大水池水面升高所增加的体积也是1.08立方米,而大水池的底面积是6×6=36(立方米),所以水面升高了:1.08÷36=0.03(米)=3(厘米).【巩固6】边长40厘米立方体容器中装有水,水面上漂浮着一个体积为7200立方厘米的篮球,篮球在水面下的体积1200立方厘米,是若将篮球按至刚好一半在水面下,水面将上升多少厘米?(水的深度足够,且不会溢出)【★★★★★】【解析】1.5厘米.篮球浸入水中的体积为1200立方厘米,如果把篮球按至刚好一半在水面下,那么水面要上升来空出这一部分体积,则需要上升:(7200÷2-1200)÷(40×40)=1.5(厘米).四、回家作业【作业1】求以下图形的体积:(1)一个长方体的长宽高分别为6cm、5cm、4cm;(2)一个正方体的棱长为10cm。
长方体和正方体的表面积____________________________________________________________________________________________________________________________________________________________________重点:1.理解长方体表面积的意义,是指六个面的面积之和。
2. 掌握长方体和正方体表面积的计算方法。
难点:1. 能结合实际情况,计算题中给出图形的表面积。
2. 发现并找出堆放的正方体的个数与露在外面的面数的变化规律。
一、长方体和正方体的表面积长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。
长方体的表面积=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以求出表面积了。
正方体的表面积=棱长×棱长×6二、长方体和正方体表面积的应用在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那些面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积。
通风管顾名思义是通风用的,没有底面。
所以只要算四个侧面。
三、生活中的长方体和正方体(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱等。
知识点一:长方体表面积的意义及计算例题1.例题:长方体的6个面一定都是长方形()判断练习1:如果长方形的长发生变化,那么长方形的6个面的大小都会发生变化()判断练习2:一个长方体有4个面完全相同,其他2个面是()A长方形 B正方形 C无法确定例题2:一个正方体6个面写着A、B、C、D、E、F,根据下面的三种摆放情况,判断每个字母对面的字母是什么?字母D的对面是(),A的对面是(),B的对面是()练习:把下图中的长方体、正方体和相应的展开图链接起来。
五年级年级下册数学:《正方体与长方体》知识点+练习时间:___________ 学生:________ 授课老师:_______课堂安排:新课一、长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
二、正方体特点:(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点不同点面棱长方体都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等正方6个面都是正方形。
12条棱都相等。
体针对练习一【对应练习1】长、宽、高都相等的长方体叫________,它是特殊的________。
【对应练习2】用棱长为2cm的小正方体拼成一个大正方体,至少需要( )个这样的小正方体。
【对应练习3】正方体有()个面,每个面都(),都是()形,有()条棱,12条棱长度(),叫做正方体的棱长,有()个顶点,正方体是特殊的()。
【对应练习4】正方体是特殊的( ),是长、宽、高都( )的长方体。
三、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷12针对练习二【典型题1】一个长方体的棱长总和是24厘米,从一个顶点出发的三条棱的和是( )厘米。
知识要点基本的长方体和正方体问题1.右图中共有多少个面?多少条棱?后面前面右面左面上面【解析】如右图所示,可以分前、后、左、右、上、下六个方向看这个立体图形.前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1个面.所以共有1112218+++++=(个)面.前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱66618++=(条).2.如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.3.如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?长方体和正方体【解析】原来正方体的表面积为5⨯5⨯6=150.现在立体图形的表面积减少了前后两个面中的部分面,它们的面积为(3⨯2)⨯2=12,所以减少的面积就是12.4.右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【解析】原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.5.如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【解析】大立方体的表面积是20⨯20⨯6=2400平方厘米.在角上挖掉一个小正方体后,外面少了3个面,但里面又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面.所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3厘米.6.下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【解析】 我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),12⨯12⨯4=1(平方厘米),14⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).7. (《小学生数学报》邀请赛)从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【解析】 按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1图2 图3 图48. (北京市第十二届迎春杯)一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【解析】 截去一个小正方体,表面积不变,只有在截去的小正方体的面相重合时,表面积才会减少,所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是: 15⨯15⨯6-7⨯7⨯2=1252.想想为什么不是15⨯15⨯6-7⨯7-8⨯8 ?9. 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米.68766【解析】 可以将这个图形看作一个八棱柱,表面积和为:87662616661787292⨯-⨯⨯+⨯+++++++=()()(平方厘米).也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()8786762292⨯+⨯+⨯⨯=(平方厘米).10. 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【解析】 锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次,6+1⨯1⨯2⨯6=18(平方米).11. 右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【解析】 10⨯10⨯6=600(平方厘米).12. 有n 个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n为多少?【解析】由于堆成的长方体的底面就是原来正方体的底面,说明这个长方体是由这些正方体一字排开组成的,从这个长方体的顶部拿去一个正方体,减少的面积相当于侧面的四个正方形的面积,所以正方体每个面的面积是144436÷=(平方厘米).所堆成的长方体的表面积,包含底面的2个正方形和侧面的4n个正方形,所以n=-⨯÷=.(3096362)1442113.边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【解析】三个正方体两两拼接时,最多重合3个正方形面,其中边长为3的正方体与其它两个正方体重合的面积不超过边长为3的正方形,边长为5和边长为8的正方体的重合面面积不超过边长为5的正方形,三个正方形表面积和为6⨯3⨯3+6⨯5⨯5+6⨯8⨯8-2⨯2⨯3⨯3-2⨯5⨯5=502.14.如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【解析】当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.15.用6块右图所示(单位:cm)的长方体木块拼成一个大长方体,有许多种拼法,其中表面积最小的是多少平方厘米?最大是多少平方厘米?123【解析】要使表面积最小,需重叠的面积最大,如图⑴的拼接方式新的长方体长为5,宽为4,高为3,所以表面积为2⨯+⨯+⨯⨯=;要使表面积最大需重叠的面积最小,如图⑵(343334)266(cm)所示,长为18,宽为2,高为1,所以最大的表面积为2⨯+⨯+⨯⨯=(18118212)2112(cm)(1)(2)16. 要把12件同样的长a 、宽b 、高h 的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当 b =2h 时,如何打包?⑵当 b <2h 时,如何打包?⑶当 b >2h 时,如何打包?【解析】 图2和图3正面的面积相同,侧面面积=正面周长⨯长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h +6b ,图3的周长是12h +4b .两者的周长之差为2(b -2h ).当b =2h 时,图2和图3周长相等,可随意打包;当b <2h 时,按图2打包;当b >2h 时,按图3打包.图3图2图1hba17. 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【解析】 我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向):小正方体的四个侧面,大正方体的四个侧面.上下方向:55250⨯⨯=(平方分米);侧面:554100⨯⨯=(平方分米),44464⨯⨯=(平方分米).这个立体图形的表面积为:5010064214++=(平方分米).18.(2008年“希望杯”五年级第2试)如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.【解析】(法1)四个正方体的表面积之和为:2222(1235)6396234+++⨯=⨯=(平方厘米),重叠部分的面积为:222222222⨯+⨯+++++++=+++=(平方厘13(221)(321)(321)39141440米),所以,所得到的多面体的表面积为:23440194-=(平方厘米).(法2)三视图法.从前后面观察到的面积为22253238++=平方厘米,从左右两个面观察到的面积为22=平方厘米.5334+=平方厘米,从上下能观察到的面积为2525表面积为()++⨯=(平方厘米).383425219419.边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?【解析】这个图形的表面积是俯视面、左视面、正视面得到的图形面积的2倍. 该立体图形的上下、左右、前后方向的表面面积都是15平方厘米,该图形的总表面积为90立方厘米.20.把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【解析】从上下、左右、前后观察到的的平面图形如下面三图表示.因此,这个立体图形的表面积为:2个上面2+个左面2+个前面.上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米.因此,这个立体图形的总表面积为:(9810)254++⨯=(平方厘米).上下面左右面 前后面21. 现有一个棱长为1厘米的正方体,一个长宽为1厘米高为2厘米的长方体,三个长宽为1厘米高为3厘米的长方体.下列图形是把这五个图形合并成某一立体图形时,从上面、前面、侧面所看到的图形.试利用下面三个图形把合并成的立体图形(如例)的样子画出来,并求出其表面积. 例: 侧前上侧面所看到的图形前面所看到的图形上面所看到的图形【解析】 从前面看到的和从侧面看到的图形都只有3层,说明叠成的图形只有3层.从上面看到的图形中可以确定2个高为3厘米的长方体的位置,一个水平方向,一个竖直方向,再从前面和侧面的图形可以看出这两个长方体都在第1层;从而可以确定另一个高为3厘米的长方体及其它两个图形的位置,可得立体图形的形状如下图所示.从上面和下面看到的形状面积都为9平方厘米,共18平方厘米;从两个侧面看到的形状面积都为7平方厘米,共14平方厘米;从前面和后面看到的形状面积都为6平方厘米,共12平方厘米;隐藏着的面积有2平方厘米.一共有181412246+++=(平方厘米).立体涂色问题22. (05年清华附培训试题)将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的小正方形只有3个,求原来长方体的表面积是多少平方厘米?【解析】 长:3+1+1=5厘米;宽:1+1+1=3厘米;高:1+1+1=3厘米;所以原长方体的表面积是:(3⨯5+3⨯5+3⨯3)3⨯2=78平方厘米.23. 有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【解析】 44(1234)456⨯++++⨯=(平方米).24. 有一塔形几何体由若干个正方体构成,构成方式如下图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是________.【解析】 此几何体不论有多少层,其上、下表面积是固定不变的,为22228⨯+⨯=,它的每个侧面的面积应该超过()39847.75-÷=.最底层的正方体的单个侧面面积为224⨯=,往上依次为2,1,12,14,…… 前五层正方体的单个侧面面积和为114217.7524++++=, 所以要想超过7.75,至少应该是6个.25. 如图,这是一个用若干块体积相同的小正方体粘成的模型.把这个模型的表面(包括底面)都涂成红色,那么,把这个模型拆开以后,有三面涂上红色的小正方体比有两面涂上红色的小正方体多______ 块.【解析】 三面涂上红色的小正方体有:425428⨯+⨯=个,两面涂上红色的小正方体有:341416⨯+⨯=个,所以三面涂红色的比两面涂红色的多281612-=块.26. 右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正方体各有多少块?【解析】 三面涂红色的只有8个顶点处的8个立方体;两面涂红色的在棱长处,共(42)4(52)4(62)436-⨯+-⨯+-⨯=块;一面涂红的表面中间部分:(42)(52)2(42)(62)2(52)(62)252-⨯-⨯+-⨯-⨯+-⨯-⨯=块.27. 一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切n 次后,要使各面上均没有红色的小方块为24块,则n 的取值是________.【解析】 沿着长边等距离切5刀,可切为516+=块;沿着宽边等距离切4刀,可切为415+=块;沿着高边等距离切n 刀,可切为1n +块.由题意可知,长方体每一个面的外层是涂有1面(或2面、或3面)的小方块,所以,各面均没有红色的小方块共(62)(52)(12)12(1)n n -⨯-⨯+-=-个,因各面均没有红色的小方块为24块,所以,12(1)24n -=,解得3n =.28. 棱长是m 厘米(m 为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为13:12,此时m 的最小值是多少?【解析】 切割成棱长是1厘米的小正方体共有3m 个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为13:12,而131225+=,所以小正方体的总数是25的倍数,即3m 是25的倍数,那么m 是5的倍数.当5m =时,要使得至少有一面的小正方体有65个,可以将原正方体的正面、上面和下面涂色,此时至少一面涂红色的小正方体有5554265⨯+⨯⨯=个,表面没有红色的小正方体有1256560-=个,个数比恰好是13:12,符合题意.因此,m 的最小值是5.29. 有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个444⨯⨯的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【解析】 要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有3(42)8-=(个),用黑色的;在面上但不在边上的小正方体有2(42)624-⨯=(个),其中30822-=个用黑色.这样,在表面的44696⨯⨯=个11⨯的正方形中,有22个是黑色,962274-=(个)是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.30. 一个长方体的长是12厘米,宽10厘米,高也是整厘米数,在它的表面涂满颜色后,截成棱长是1厘米的小正方体,其中一面有色的小正方体有448个.求原来长方体的体积与表面积.【解析】 先求出长方体的高,再求其体积和表面积.设长方体的高为h 厘米,则按题意截成的一面有色的小正方体有()()()()()()122102212222210228836h h h -⨯-⨯+-⨯-⨯+-⨯-⨯=+个,因为一面有色的小正方体有448个,所以,8836448h +=,解得10h =.所以,长方体的体积为1210101200⨯⨯=立方厘米,表面积为()1210121010102680⨯+⨯+⨯⨯=平方厘米.31. 将一个棱长为整数分米的长方体6个面都涂上红色,然后把它全部切成棱长为1分米的小正方体.在这些小正方体中,6个面都没有涂红色的有12块,仅有两个面涂红色的有28块,仅有一个面涂红色的有 块,原来长方体的体积是 立方分米.【解析】 先考虑6个面都没有涂红色的正方体,它们最初是位于原长方体的“芯”(就是去掉长方体各面最外面一层后剩下的小长方体)内的正方体,共有12块,所以12就是这个“芯”的长、宽、高(各比原来长方形的长、宽、高小2)的乘积.而12分拆成3个整数的乘积只有4种情况:1112⨯⨯ 126⨯⨯ 134⨯⨯ 223⨯⨯;再看两面涂红的小正方体.两面涂红的小正方体就是最初位于长方体的棱上除了顶角处的那些小正方体,它们的个数和恰好是“芯”的长、宽、高之和的4倍.由于这样的小正方体共有28块,所以“芯”的长、宽、高之和为2847÷=;符合条件的只有2237++=,所以“芯”为223⨯⨯的长方体,原来的长方体是445⨯⨯的长方体. 一面涂红的长方体就是最初位于长方体各个面中间部分的长方体,它们的数量为:()222323232⨯+⨯+⨯⨯=(个), 原来长方体的体积为:44580⨯⨯=(立方分米).32. 右图是由27块小正方体构成的 3⨯3⨯3的正方体.如果将其表面涂成红色,则在角上的8个小正方体有三面是红色的,最中央的小方块则一点红色也没有,其余18块小方块中,有12个两面是红的,6个一面是红的.这样两面有红色的小方块的数量是一面有红色的小方块的两倍,三面有红色的小方块的数量是一点红色也没有的小方块的八倍.问:由多少块小正方体构成的正方体,表面涂成红色后会出现相反的情况,即一面有红色的小方块的数量是两面有红色的小方块的两倍,一点红色也没有的小方块是三面有红色的小方块的八倍?【解析】 对于由n 3块小正方体构成的n ⨯n ⨯n 正方体,三面涂有红色的有8块,两面涂有红色的有12⨯(n -2)块,一面涂有红色的有6⨯2(2)n -块,没有涂色的有3(2)n -块.由题设条件,一点红色也没有的小方块是三面涂有红色的小方块的八倍,即3(2)n -=8⨯8,解得n =6.33. 有6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某些面染上红色,使得有的长方体只有1个面是红色的,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体最多有多少个?【解析】 一面染红的长方体,显然应将45⨯的长方体染红,这时产生20个一面染成红色的小正方体,个数最多.二面染红的长方体,显然应将两个45⨯的长方体染红,这时产生40个一面染成红色的小正方体,个数最多.三面染红的长方体,显然应将45⨯,45⨯,43⨯的面染红,于是产生4(5534)36⨯++-=个一面染成红色的小正方体,其他方法得出的一面染成红色的正方体均少于36个.四面染红的长方体,显然应将45⨯,45⨯,43⨯,43⨯的面染红,产生4(553324)32⨯+++-⨯=个一面染成红色的正方体,其他方法得到的一面染成红色的小正方体均少于32个.五面染红的长方体,应只留一个35⨯的面不染,这时就产生(32)(52)(41)(553324)27-⨯-+-⨯+++-⨯=个一面染成红色的小正方体,其他染法得到的一面染成红色的小正方体均少于27.六面染红的长方体,产生[]2(32)(52)(52)(42)(42)(32)22⨯-⨯-+-⨯-+-⨯-=个一面染成红色的小正方体.于是最多得到222732364020177+++++=个一面染成红色的小正方体.34. 三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【解析】 每个长方体的棱长和是288396÷=厘米,所以,每个长方体长、宽、高的和是96424÷=厘米.因为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、高分别是9厘米、8厘米、7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个87⨯面,有8756⨯=个; 涂两面的长方体,若两面不相邻,应涂两个87⨯面,有872112⨯⨯=个;若两面相邻,应涂一个87⨯面和一个97⨯面,此时有()7892105⨯+-=个,所以涂两面的最少有105个;涂三面的长方体,若三面不两两相邻,应涂两个87⨯面、一个97⨯面,有()78894147⨯++-=个;若三面两两相邻,有()()()()()()718171918191146-⨯-+-⨯-+-⨯-=个,所以涂三面的最少有146个.那么切割后只有一个面涂色的小正方体最少有56105146307++=个.35. 把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【解析】 设小正方体的棱长为1,考虑两种不同的情况,一种是长方体的长、宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽、高中有一个是1时,分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些.因为有两个面涂上红色的小正方体恰好是100块,设100a b =⨯,那么分成的小正方体个数为()()()()221242104a b ab a b a b +⨯+⨯=+++=++,为了使小正方体的个数尽量少,应使()a b +最小,而两数之积一定,差越小积越小,所以当10a b ==时它们的和最小,此时共有()()102102144+⨯+=个小正方体.当长方体的长、宽、高都大于1时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是10042331÷+⨯=.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令312227=++,此时共有2227108⨯⨯=个小正方体.因为108144<,所以至少要把这个大长方体分割成108个小正方体.36. 把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【解析】 一个面最多有5个方格可染成红色(见左下图).因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成5个红色方格.红红红红红红红红红 红红其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图).因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图).所以,红色方格最多有52422222⨯+⨯+⨯=(个). (另解)事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本质原因入手,可严格说明22是红色方格数的最大值.对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色.但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方:⑴ ⑵ ⑶⑴如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色. ⑵如图,阴影部分是首尾相接由9个方格组成的环,这9个方格中只能有4个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格,剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格),像这样的环,在正方体表面最多能找到不重叠的两道(关于正方体中心对称的两道),涉及的18个方格中最多能有8个可染成红色.。