4.2.1直线、射线、线段1
- 格式:ppt
- 大小:3.26 MB
- 文档页数:9
2.1 直线、射线、线段一等奖创新教学设计人教版数学七年级上册《4.2.1直线、射线、线段》教学设计内容和内容解析内容主要内容是关于直线、射线和线段的概念和性质以及表示方法和画法等,都是重要的几何基础知识,同时也是学习后续图形与几何的知识以及其他数学知识的必备的知识基础.内容解析首先让学生通过探究得到关于直线的基本事实:经过两点有一条直线,并且只有一条直线。
这个基本事实很好地刻画了直线这种最基本的儿何图形.接着介绍了关于直线的基本事实的实际应用,以及直线的表示,线段与射线是与直线密切相关的两个基本概念,介绍了它们的表示、画法、比较.《直线、射线、线段》是图形认识中非常重要的内容.从知识上讲,直线、射线、线段是最简单、最基本的图形,是研究复杂图形如三角形、四边形等的基础.从本节开始出现的儿何图形的表示法、儿何语言等也是今后系统学习几何所必需的知识。
本节课的学习起着奠基的作用,重点训练学生动手操作及学会用规范的几何语言边实践边叙述的能力,逐步适应几何的学习及研究方法,从思想方法上讲,直线的得出经历了由感性到理性,由具体到抽象的思维过程,同时线段、射线的表示发是由直线类比得到,渗透了类比的数学思想。
目标和目标分析教学目标(1)了解直线、射线、线段的相关概念并知道它们之间的联系与区别(2)能根据语句画出相应的图形,会用语句描述简单的图形,在图形的基础上发展数学语言.(3)初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义。
达成目标(1)的标志是:能根据概念解决相应练习。
达成目标(2)的标志是:能通过数学语言画出图形,通过图形说出相应数学语言达成目标(3)的标志是:能说出两点确定一条直线的应用实例,体会现实生活中的数学问题目标分析直线、射线、线段的内容属于“几何与图形”领域,是在已经学习了点、线、面、体的基础上,继续学习基本的几何图形。
4.2线段、射线、直线一、选择题(每小题4分,共12分)1.如图,林林的爸爸只用两枚钉子就把一根木条固定在墙上,下列语句能解释这个原理的是()A.木条是直的B.两点确定一条直线C.过一点可以画无数条直线D.一个点不能确定一条直线2.下列语句正确的是()A.画直线AB=10cmB.确定O为直线l的中点C.画射线OB=3cmD.延长线段AB到点C,使得BC=AB3.三条互不重合的直线的交点个数可能是()A.0,1,3 B.2,3 C.0,1,2,3 D.0,1,2二、填空题(每小题4分,共12分)4.如图,写出其中能用P,A,B,C中的两个字母表示的不同射线.5.如图,将射线OA反向延长得射线,线段CD向延长得直线CD.6.京石高铁运行途中停靠的车站依次是:北京西站、涿州东站、固城东站、保定东站、定州东站、石家庄机场站、新石家庄站,那么要为这列火车制作的火车票有种.三、解答题(共26分)7.(8分)数一数,图中共有多少条线段?并分别写出这些线段.8.(8分)A,B,C,D四点如图所示,读下列语句,按要求作出图形(不写画法): (1)连接AD,并延长线段DA.(2)连接BC,并反向延长线段BC.(3)连接AC,BD,它们相交于点O.(4)DA延长线与BC反向延长线交于点P.【拓展延伸】9.(10分)动手画一画,再数一数.(1)过一点A能画几条直线?(2)过两点A,B能画几条直线?(3)已知平面上共有三个点A,B,C,过其中任意两点画直线,可画几条?(4)已知平面上共有n个点(n为不小于3的整数),其中任意三个点都不在同一直线上,那么连接任意两点,可画多少条直线?答案解析1.【解析】选B.根据两点确定一条直线,故选B.2.【解析】选D.A,直线无限长;B,直线不能度量,没有中点;C,射线可向一方无限延长;D,延长线段AB到点C,使得BC=AB,正确.3.【解析】选C.分四种情况:1.三条直线平行,有0个交点;2.三条直线相交于同一点,有1个交点;3.一条直线截两条平行线有2个交点;4.三条直线两两相交有3个交点.4.【解析】图形中能用P,A,B,C中的两个字母表示的不同射线有:射线PA 、射线PB 、射线PC 、射线AB 、射线BC 、射线BA 、射线CB .答案:射线PA 、射线PB 、射线PC 、射线AB 、射线BC 、射线BA 、射线CB5.【解析】将射线OA 反向延长得射线OB,线段CD 向两方延长得直线CD .答案:OB 两方6.【解析】画一条直线,在直线上依次取A,B,C,D,E,F,G 七个点,它们依次表示北京西站、涿州东站、固城东站、保定东站、定州东站、石家庄机场站、新石家庄站.点A 分别与B,C,D,E,F,G 形成6条线段;点B 分别与C,D,E,F,G 形成5条线段;点C 分别与D,E,F,G 形成4条线段;点D 分别与E,F,G 形成3条线段;点E 分别与F,G 形成2条线段;点F 与G 形成1条线段,所以直线上共有线段的条数是6+5+4+3+2+1=21,考虑往返情况,所以应制作火车票21×2=42(种).答案:42【知识拓展】若一条直线上有n 个点,那么以这n 个点中的任意两点为端点的线段共有(n-1)+(n-2)+…+2+1=21n (n-1)(条). 7.【解析】由图形得:共有10条线段,分别为:线段AB 、线段BC 、线段CD 、线段DA 、线段AC 、线段AO 、线段CO 、线段BD 、线段BO 、线段DO .8.【解析】如图所示.9.【解析】(1)过一点A 能画无数条直线.(2)过两点A,B 只能画一条直线.(3)①若三点共线则可画一条,②若三点不共线则可画三条.故可画1条或3条.(4)根据过两点的直线有1条,过不在同一直线上的三点的直线有3条,过任意三点都不在一条直线上的四点的直线有6条,按此规律由特殊到一般可得过任意三个点都不在同一直线上的n 个点共能画21n (n-1)条直线.。
4.2.1 直线、射线、线段分层作业1.如图,下列说法正确的是()A.点O在射线BA上B.点B是直线AB的端点C.直线AO比直线BO长D.经过A,B两点的直线有且只有一条2.下列说法中正确的是()A.延长直线ABB.反向延长射线ABC.线段AB与线段BA不是同一条线段D.射线AB与射线BA是同一条射线3.如图,下列说法错误的是()A.点A在直线AC上,点B在直线m外B.射线AC与射线CA不是同一条射线C.直线AC还可以表示为直线CA或直线m D.图中有直线3条,射线2条,线段1条4.如图,王伟同学根据图形写出了四个结论:①图中共有4条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线;其中结论错误的有()A.1个B.2个C.3个D.4个5.下面说法与几何图形相符的是()A.点P在直线n上B.直线OA与OB都经过点OC.1∠D.直线OA和直线m表示同一条直线∠可以表示成O6.如图,小轩同学根据图形写出了四个结论:①图中共有2条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BD与射线CD是同一条射线.其中结论错误的是()A.①③④B.①②③C.②③④D.①②④+等于()7.平面内两两相交的4条直线,其交点个数最少为m个,最多为n个,则m nA.6 B.11 C.7 D.17个端点.9.如图,点P在直线AB ;点Q在直线AB ,也在射线AB ,但在线段AB的上.10.下列说法:①两点确定一条直线;②射线OA和射线AO是同一条射线;③对顶角相等;④三角形任意两边和大于第三边的理由是两点之间线段最短.正确的序号是.11.有下列语句:①在所有连接两点的线中,直线最短;②线段AB是点A与点B的距离;③取直线AB的中点;④反向延长线段AB,得到射线BA,其中正确的是.12.如图所示,共有直线条,射线条,线段条.13.如图,(1)点B在直线AD ,点F在直线上;(2)点C在直线AD ,点E是直线和的交点;(3)经过点C的直线共有条,它们分别是.14.判断下列说法是否正确:(1)线段AB和射线AB都是直线AB的一部分(2)直线AB和直线BA是同一条直线;(3)射线AB和射线BA是同一条射线;(4)把线段向一个方向无限延伸可得到射线,向两个方向无限延伸可得到直线.15.根据下列语句画出图形.(1)点A在直线l上,点B在直线l外;(2)过点N画射线MN;(3)画一条与线段AB相交的直线CA.16.如图,已知A,B,C、D四个点,按要求画出图形.(1)画直线AB,CD相交于点P;(2)画射线AC;(3)连接BD;(4)图中共有几条线段?17.(尺规作图,保留作图痕迹)如图,已知四点A,B,C,D,(1)作线段AB,直线CD,射线CB;(2)反向延长线段AB到E,使AE BC;(3)在图中确定点O,使点O到A,B,C,D距离之和最小.18.往返于甲、乙两市的列车,中途需停靠4个站,如果每两站的路程都不相同,这两地之间有多少种不同的票价()A.15 B.30 C.20 D.1019.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2017厘米的线段AB,则线段AB盖住的整点共有()个A.2018或2019 B.2017或2018 C.2016或2017 D.2015或201620.如图,在线段MN上有P、Q两点,PQ长度为2cm,MN长为整数,则以M、P、Q、N为端点的所有线段长度和可能为()A.19cm B.20cm C.21cm D.22cm车票.22.同一平面内有四点A,B,C,D,经过每两点作一条直线,则可以作条直线.23.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:(1)这n条直线共有多少个交点?(2)这n条直线把平面分割为多少块区域?24.如图,如果直线l上依次有3个点A、B、C,那么(1)在直线l上共有多少射线?多少条线段?(2)在直线l上增加一个点,共增加了多少条射线?多少条线段?(3)如果在直线l上增加到n个点,则共有多少条射线?多少条线段?。
第二节 平面图形的进一步认识一、线段、射线、直线球球的数学功夫小学里学习了线段、射线、直线的概念和基本特征,会用刻度尺分别测量比较线段的长度;用刻度尺画出规定长度的线段;1.线段、射线、直线的表示方法:(1)一条线段用表示两个端点的大写字母来表示,如线段AB 或BA.或一个小写字母表示. (2)一条射线可用端点和射线上的另一点表示,规定把表示端点的字母写在前面. (3)一条直线可用两个大写字母表示,这两个大写字母代表直线上的两个点,如直线AB 或BA ;另外直线还可用一个小写字母表示.要点点拨:在学习直线、射线、线段时,要特别注意三者之间的区别,比如端点、表示方法、延伸性及能否度量等方面.3.点与直线的位置关系:(1)点经过直线,说明点在直线上;(2)点不经过直线,说明点在直线外.例1. 下图中有 条线段. 条射线, 条直线.分析与解答:根据线段、射线、直线的概念求解即可. 答案:6, 8 , 1例2. 在沪宁线上,一列火车(高铁),往返于南京和上海,沿途要经过镇江、常州、无锡、苏州四站,铁路部门要为这趟列车准备印制( )种车票. A .6 B .12 C .15 D .30分析与解答:先考虑从南京开往上海方向的,求出从南京出发的有5种车票,从镇江出发的有4种车票,从常州出发的有3种车票,从无锡出发的有2种车票,从苏州出发的有1种车票,即可得到印制的车票种数为2×(5+4+3+2+1)=30(种).答案:D球球的数学功夫升线初中阶段还要学习线段、射线、直线的表示方法及它们之间的关系,点与直线的位置关系,线段、射线、直线的性质,线段的等分点,用无刻度的直尺和圆规作图.1.基本事实:(1)直线的性质:经过两点有且只有一条直线.简称:两点确定一条直线.(2)线段的性质:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等.这些所有的线中,线段最短.简单说成:两点之间线段最短.2.两点间的距离:连接两点间的线段的长度叫两点间的距离.“∵”读作“因为”,“∴”读作“所以”。