乘法平方差公式
- 格式:ppt
- 大小:893.50 KB
- 文档页数:27
乘法分式——平方差公式一、内容及内容解析《平方差公式》是人教版新教材八年级上册第十五章第二节的内容,本节内容只需一课时完成,主要内容是平方差公式的推导及使用。
平方差公式是学生在已经学习了多项式乘法的基础上,再次应用乘法公式对多项式乘法实行简便运算的知识。
平方差公式不但是对乘法公式的进一步补充,它还为后面因式分解学习奠定了基础。
所以本节课的教学重点是:平方差公式的推导及应用二、目标和目标解析:目标:1、经历探索平方差公式的全过程2、能使用公式实行简单的运算3、在探索平方公式的过程中,培养学生观察、归纳、概括的水平。
目标解析:(1)学生通过对几道特殊的多项式乘法的观察、计算、猜想、验证,归纳出平方差公式。
(2)通过图形让学生找出平方差公式与面积之间的内在联系,进而感受到数与形的统一。
(3)通过剖析平方差公式的结构和分类练习,让学生熟练掌握平方差公式。
三、教学问题诊断分析学生刚学过多项式乘法已有一定基础,但本节课是特殊形式的多项式相乘,主要体现在结构特殊性上,而这种特殊形式又灵活多样,学生常常在字母表示的广泛含义上不易掌握,在乘法公式的灵活使用时常发生多种错误,常见的错误有:①学生难于跳出原有的定式思维;②符号错误;③混淆公式;④变式应用难以掌握。
所以,本节课的难点定为:理解平方差公式的结构特征,并能灵活使用平方差公式。
鉴于此,本节的教学难点是:揭示平方差公式的结构特征和公式的灵活使用。
四教学支持条件:利用多媒体展示教学的部分环节五、教学过程分析教学流程图:创设情境、导入新课自主探索、获取新知应用新知、形成技能变式训练、巩固提升总结归纳、上升理性即时反馈、查漏补缺教学情景:(一)创设情景,导入新课王力同学去商店买了单价是9.8元/千克的糖10.2千克,售货员刚拿起计算器,王力就说出应付99.6元,结果与售货员计算出的结果吻合。
售货员很惊讶地说:“你怎么算得这么快?”王力同学说:“我仅仅用了在数学上刚学过的一个公式”。
平方差的计算公式平方差,顾名思义,是指两个数的平方之差。
在数学中,我们常常会遇到计算平方差的问题,因此了解它的计算公式对我们的学习和解题是非常重要的。
平方差的计算公式可以表示为:(a + b)(a - b)。
其中,a和b是任意实数。
具体来说,当我们要计算两个数的平方差时,首先需要求得这两个数的和,然后再求得它们的差。
将这两个结果相乘,就得到了平方差。
例如,我们要计算5和3的平方差,首先求得它们的和5 + 3 = 8,然后求得它们的差5 - 3 = 2。
最后将这两个结果相乘,得到平方差8 × 2 = 16。
这个计算公式的原理其实很简单,可以通过展开(a + b)(a - b)的乘法式来进行理解。
展开后得a^2 - ab + ab - b^2,由于中间两项相加减为0,因此平方差可以简化为a^2 - b^2。
这就是平方差的另一种表示形式。
平方差在数学中具有广泛的应用。
它可以帮助我们解决一些复杂的算术问题,如因式分解、方程求解等。
通过利用平方差的计算公式,我们可以将复杂的计算转化为简单的运算步骤,提高我们的计算效率和解题能力。
除了在数学中的应用,平方差在物理学和工程学等领域也有其独特的意义。
例如,在物理学中,我们经常需要计算力的平方差来求解问题,这可以帮助我们分析力的大小和方向。
在工程学中,平方差的概念被广泛应用于电路分析和信号处理等领域,有助于解决实际问题。
总之,平方差的计算公式是(a + b)(a - b),它可以帮助我们计算两个数的平方之差。
了解这个公式的原理和应用,将对我们的数学学习和解题能力有很大帮助。
同时,在物理学和工程学等领域,平方差的概念也发挥着重要的作用。
希望通过本文的介绍,能够让大家对平方差有更深入的理解。
初中数学公式:平方差公式表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23[解方程]x^2-y^2=1991[思路分析]利用平方差公式求解[解题过程]x^2-y^2=1991(x+y)(x-y)=1991因为1991可以分成1×1991,11×181所以如果x+y=1991,x-y=1,解得x=996,y=995如果x+y=181,x-y=11,x=96,y=85同时也可以是负数所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85有时应注意加减的过程。
常见错误平方差公式中常见错误有:①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)②混淆公式;③运算结果中符号错误;④变式应用难以掌握。
三角平方差公式三角函数公式中,有一组公式被称为三角平方差公式:(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B)这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。
注意事项1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a.b可以是具体的数,也可以是单项式或多项式。
例题一,利用公式计算(1)103×97解:(100+3)×(100-3)=(100)^2-(3)^2=100×100-3×3=10000-9=9991(2)(5+6x)(5-6x) 解:5^2-(6x)^2 =25-36x^2。
乘法公式之平方差公式平方差公式是一种与乘法相关的数学公式,用于计算两个数的平方之差。
它的应用领域非常广泛,例如在代数、几何、物理等方面都有广泛的运用。
在这篇文章中,我们将详细介绍平方差公式,并给出一些实际问题的例子来说明它的应用。
平方差公式的数学表达式如下:(a+b)*(a-b)=a^2-b^2其中,a和b是任意实数。
平方差公式可以通过展开左边的乘法式,然后合并项得到右边的表达式。
这个公式起到了将两个数的平方之差转化为两个数的乘积的作用,方便了计算和运算。
平方差公式的证明可以通过配方法来完成。
我们将上述公式左边的乘法式进行展开:(a+b)*(a-b)=a*a-a*b+b*a-b*b由于乘法满足交换律,所以可以简化为:a*a-a*b+a*b-b*b再次合并相同项,得到:a*a-b*b这正是右边公式的表达式,证明了平方差公式的正确性。
接下来,让我们通过一些实际问题的例子来说明平方差公式的实际应用。
例子1:假设小明家的房子面积为40平方米,房子的长和宽相差5米,问房子的长和宽各是多少米?解:设房子的长为x米,宽为x-5米。
根据题意,可以列出方程:x*(x-5)=40应用平方差公式展开上式:x^2-5x-40=0我们可以使用因式分解、配方法或求根公式等方法解这个一元二次方程,求得房子的长和宽分别为10米和5米。
例子2:公司在去年和今年的年度销售额分别为100万和120万。
问今年的销售额比去年增长了多少百分比?解:设去年的销售额为a万,今年的销售额为b万。
根据题意,可以列出方程:(b-a)*(b+a)=20应用平方差公式展开上式:b^2-a^2=20我们可以求解这个二元一次方程,得到b=110万。
今年的销售额比去年增长了10%。
通过以上两个例子,我们可以看到平方差公式在实际问题中的应用。
它可以帮助我们将复杂的运算转化为简单的乘法运算,方便了计算和解题。
除了上述例子,平方差公式在代数中的运用也非常广泛。
例如,在因式分解中可以使用平方差公式将二次多项式进行因式分解。
平方差公式_公式总结表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23[解方程]x^2-y^2=1991[思路分析]利用平方差公式求解[解题过程]x^2-y^2=1991(x+y)(x-y)=1991因为1991可以分成1×1991,11×181所以如果x+y=1991,x-y=1,解得x=996,y=995如果x+y=181,x-y=11,x=96,y=85同时也可以是负数所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85有时应注意加减的过程。
常见错误平方差公式中常见错误有:①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)②混淆公式;③运算结果中符号错误;④变式应用难以掌握。
三角平方差公式三角函数公式中,有一组公式被称为三角平方差公式:(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A +B)sin(A-B)这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。
注意事项1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。
用乘法公式减少错误的 一个窍门:提高口算能 力,简化变形步骤。
一、 细说乘法公式 1、平方差公式应用的条件:两个多项式相乘,一个多项式可以看作两数的和,另一个多项式正好是这两数的差,或两多项式中,一项相同,另一项互为相反数结果写成:(相同项)2.(相反项)22、完全平方公式:结果可看作对这两数分别平方,再加上它们乘积的2倍。
即写成:(a-b) 2=a 2+b 2-2ab 试写出:(a ・b ・c) 2=3、完全平方公式相关变形及推广:(t) a 2 +b 2 =(白 + bV 一 2ab =(白 一 Z?)2 + lab ; (2)(a + /?)2 - (a -b)2= 4ah ;。
(一o + /?)2 =[—(Q -/?) - = (a _ I,)';"[—(Q + D )} =(Q + /?)2;⑤(a.b+c.d) 2 =二、 下列能运用什么乘法公式:3、 (b-a) (-a-b)〈比较两项的关系: 〉. • •乘法公式4、(-a-b) (a+b)〈比较两项的关系:〉. • ♦5、(-a+b) (-a-b)〈比较两项的关系:〉. • •6、(a+b)(-a+b)〈比较两项的关系:〉(1)(2)(2 X — 3 y)((3)(—a+ — ) ( —a ——) 5(―a —5 )()=25—a 2平方差公式等号右边为:(相 同项)2-(相反项)2那含Y 的是相同项还是相反 项呢?含X 的呢?(4) (x-1) (x 2+l)() = X 4-1(5) (a+b+c)(a-b~c)= [ a + ()][a -()](7) 99x101x10001(8) 20092 -2008x20107、 (_a -b) (a-b)〈比较两项的关系: 〉. ♦ ♦ ^―8、 (-a+b) (a-b)〈比较两项的关系: 〉平方差公式组题【典型例题】 9、热身训练(-x+-y) (-y--x)=23” 3” 2相由项 相如项用乘法公式运算:10. 计算:(1) x 2- (%-2y)(x + 2力 + (%2-力(),+ %2)12.解方程:5x + 6(3x + 2)(- 2 + 3x) - 541-X —Y 1) -X + — =2 13.己知两个连续奇数的平方差为2000,则这两个连续奇数分别是多少?IO 。
平方差公式知识点归纳总结平方差公式是数学中常用的公式之一,用于计算两个数的平方之差。
在代数学和几何学中都有广泛的应用。
本文将对平方差公式的定义、原理、应用以及相关例题进行全面的总结和归纳。
一、平方差公式的定义和原理平方差公式是指对于任意实数a和b,有:(a + b)(a - b) = a^2 - b^2这个公式也可以写成:a^2 - b^2 = (a + b)(a - b)平方差公式的原理是基于多项式的乘法公式进行推导,通过展开和合并同类项的方法,可以得到上述等式。
二、平方差公式的应用1. 因式分解平方差公式在因式分解中经常被使用。
对于二次三项式或含有平方项的多项式,可以利用平方差公式将其分解为两个因式的乘积。
例如,对于多项式x^2 - 4,我们可以将其分解为(x + 2)(x - 2)。
2. 数列求和平方差公式在数列求和中也有应用。
考虑一个等差数列:a, a + d, a + 2d, ..., a + (n-1)d,其中a为首项,d为公差,n为项数。
当我们计算这个数列的平方和时,可以利用平方差公式简化计算。
例如,要求等差数列1, 3, 5, 7的平方和,可以利用平方差公式将其化简为:(1^2 + 7^2) + (3^2 + 5^2) = 503. 平方差法求根平方差公式还可以在求解方程中使用。
特别是在二次方程的解法中,通过巧妙地运用平方差公式,可以简化求解的过程。
例如,对于二次方程x^2 - 5x + 6 = 0,我们可以利用平方差公式将其化简为:(x - 2)(x - 3) = 0从而得到方程的两个根x = 2和x = 3。
三、平方差公式的例题1. 例题一:计算(7 + 3)(7 - 3)的值。
解:根据平方差公式,我们有:(7 + 3)(7 - 3) = 7^2 - 3^2 = 49 - 9 = 402. 例题二:分解多项式x^2 - 9y^2。
解:利用平方差公式,我们可以得到:x^2 - 9y^2 = (x + 3y)(x - 3y)通过展开乘法,可以验证这个分解是正确的。
1平方差公式与完全平方公式1. 平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差。
这个公式叫做乘法的平方差公式()()22b a b a b a -=-+2. 公式的结构特征①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数 ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方) 一.基础部分【题型一】利用平方差公式计算 1. 位置变化:(1)()()x x 2525+-+(2)()()ab x x ab -+符号变化:(3)()()11--+-x x(4)⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-m n n m 321.01.032系数变化:(5)()()n m n m 3232-+(6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--b a b a 213213 指数变化:(7)()()222233x yy x ++-(8)()()22225252b aba --+-2.增项变化(1)()()z y x z y x ++-+- (2)()()939322+++-x x x x3.增因式变化(1)()()()1112+-+x x x(2)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-2141212x x x【题型二】利用平方差公式判断正误 4.下列计算正确的是( )A .()()()()2222425252525y x y x y x y x -=-=-+B .22291)3()1()31)(31(a a a a +=+-=--+-C .()()()()222249232332x y x y x y y x -=-=--- D .()()8242-=-+x x x【题型三】运用平方差公式进行一些数的简便运算例 5.用平方差公式计算.2 (1)397403⨯ (2)41304329⨯(3)1000110199⨯⨯ (4)2008200620072⨯-【题型四】平方差公式的综合运用 6.计算:(1)))(()2)(2(222x y y x y x y x x +-++-- (2)()()()()111142+-++-x x x x【题型五】利用平方差公式进行化简求值与解方程7.化简求值:())32)(32()23(32a b a b b a a b +---+,其中2,1=-=b a .【题型六】逆用平方差公式8.已知02,622=-+=-y x y x ,求5--y x 的值.课堂练习 一、选择1、下列运算正确的是( )A 、223)3)(3(y x y x y x -=-+B 、229)3)(3(y x y x y x -=-- C 、229)3)(3(y x y x y x --=-+- D 、229)3)(3(y x y x y x -=--+- 2、下列算式可用平方差公式的是( )A 、(m+2m )(m-2m)B 、(-m-n )(m+n)C 、(-m-n )(m-n)D 、(m-n )(-m+n) 3、计算2)55)(5151(y y x y x -+-+的结果是( ) A 、x 2B 、-x 2C 、2y 2-x 2D 、x 2-2y 24.计算(a m+b n)(a 2m-b 2n)(a m-b n)正确的是 ( ) A.a 4m-2a 2m b 2n+b 4mB.a 4m-b 4C.a 4m+b 4nD.a 2m+b 2n+2a m b n二、填空题三、解答题7.计算:①)2)(2(b a b a --+- ②2009200720082⨯-③))()((22b a b a b a +-+ ④.,12,222的值求若b a b a b a +=-=-四、用完全平方公式计算:(1)4992 (2)9982 (3)532 (4)88245。
学大教育科技(北京)有限公司Beijing XueDa Century Education Technology【知识要点】1. 平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差。
这个公式叫做乘法的平方差公式()()22b a b a b a -=-+2.公式的结构特征 ①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数 ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方) 一.基础部分【题型一】对平方差公式概念的理解 1.下列式中能用平方差公式计算的有( ) ①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个 2.下列计算正确的是( )A ()()()()2222425252525y x y x y x y x -=-=-+B .22291)3()1()31)(31(a a a a +=+-=--+-C .()()()()222249232332x y x y x y y x -=-=---D .()()8242-=-+x x x3.下列式中,运算正确的是( ) ①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482aba b ++⨯⨯=.A.①②B.②③C.②④D.③④ 4. 若,且,则.5. ( )(5a +1)=1-25a 2,(2x-3) =4x 2-9,(-2a 2-5b)( )=4a 4-25b 26. (x-y+z)(-x+y+z)=[z+( )][ ]=z 2-( )2【题型二】利用平方差公式计算7.基本题型:(1) (2)(a+2)(a-2)位置变化:(3)()()x x 2525+-+ (4)()()ab x x ab -+)8)(8(-+ab ab符号变化:(5)()()11--+-x x (6)⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-m n n m 321.01.032系数变化:(7)()()n m n m 3232-+ (8)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--b a b a 213213指数变化:(9)()()222233x y y x ++- (10)()()22225252b a b a --+-增项变化:(11)()()z y x z y x ++-+- (12)()()z y x z y x -+++-(13)()()1212+--+y x y x (14)()()939322+++-x x x x增因式变化:(15)()()()1112+-+x x x (16)⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-2141212x x x(17))2)(4)(2(2++-x x x (18))32)(32(22b a b a a +-逆用平方差公式(19) (a +b)2-(a -b)2; (20) (3x-4y)2-(3x+y)2【题型三】运用平方差公式进行一些数的简便运算 8.用平方差公式计算.(1)397403⨯ (2)41304329⨯(3)1000110199⨯⨯(4)2008200620072⨯-【题型四】平方差公式的综合运用 9.计算:(1)))(()2)(2(222x y y x y x y x x +-++-- (2)()()()()111142+-++-x x x x(3) (4)【题型五】利用平方差公式进行化简求值与解方程10.化简求值:())32)(32()23(32a b a b b a a b +---+,其中2,1=-=b a .11.解方程:()()2313154322365=⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛---+-++x x x x x【题型六】逆用平方差公式求值12.已知02,622=-+=-y x y x ,求5--y x 的值.)1)(1()2)(2(-++-+x x y x y x )31)(31()1(+---x x x x。