烹饪化学基础知识
- 格式:ppt
- 大小:5.90 MB
- 文档页数:2
餐厅化学知识点总结餐厅是人们休闲、娱乐和社交的场所,也是人们品尝美食和享受美好时光的地方。
在餐厅中,化学知识和技术在菜肴的烹饪、调味和存储过程中起着至关重要的作用。
本文将从食材的化学成分、食物烹饪的化学过程以及食物储存的化学方法等方面对餐厅化学知识进行总结。
一、食材的化学成分食材是餐厅菜肴的原材料,不同的食材含有不同的化学成分,这些成分直接影响着菜肴的口感、色泽和营养价值。
1. 蛋白质在食材中,蛋白质是起着构建和修复细胞、提供能量的重要成分。
烹饪过程中,蛋白质会发生变性、凝固和变色等化学变化,比如煮蛋、烤肉等过程中,蛋白质的含量和结构都会发生改变,直接影响着菜肴的口感。
2. 脂肪脂肪是食材中的重要能量来源,也是菜肴的风味和口感的关键因素。
烹饪过程中,脂肪会发生氧化、水解等化学反应,会产生丰富的风味物质,如玫瑰酞、苯甲醛等,为菜肴增添独特的香味。
3. 碳水化合物碳水化合物是食材中的主要能量来源,也是维持体力和大脑运转的重要物质。
在高温下,碳水化合物会发生糊化和焦化等化学反应,影响着菜肴的口感和色泽。
4. 维生素和矿物质维生素和矿物质是食材中的微量营养素,对人体健康起着至关重要的作用。
在烹饪过程中,维生素和矿物质会因为高温和长时间加热而损失,因此在菜肴加工时需要特别注意保护这些营养素。
5. 香料和调味料香料和调味料是为了增加菜肴的风味和香气而添加的,它们含有丰富的挥发性化合物,如香豆素、葛缬酮等,这些化合物会在高温下挥发出来,为菜肴增添独特的香味。
二、食物烹饪的化学过程1. 热传导热传导是烹饪过程中的重要现象,它是由热量在食材中的传递和扩散所导致的。
在烹饪中,食材的温度变化和内部结构的改变都受到热传导的影响,比如炖菜、煮饭、烤肉等过程中,食材的内部温度会逐渐上升,直接影响着菜肴的口感和熟度。
2. 氧化反应氧化反应是指食材中的脂肪、蛋白质和碳水化合物与氧气发生的化学反应。
在高温下,食材中的脂肪会氧化生成不饱和脂肪酸和醛等物质,蛋白质会发生氧化,生成亚硝基物质,碳水化合物会发生焦化、褐化等反应,这些化学反应直接影响着菜肴的风味和色泽。
烹饪包含的化学原理有哪些1.炸油条、油饼时,向面团里常加入小苏打和明矾明矾[KAl(SO4)2·12H2O]在面点中常与小苏打(NaHCO3)一并用作膨松剂,高温油炸的过程中由于Al3+和CO32-发生双水解反应,产生二氧化碳气体,使油条膨发。
反应方程式如下:6NaHCO3+2KAl(SO4)2=3Na2SO4+K2SO4+2Al(OH)3↓+6CO2↑利用明矾与小苏打共同作用,可以降低小苏打的碱性,反应较缓慢,反应过程中产生的二氧化碳可全部得到利用,不至于使部分二氧化碳跑掉,使面团得到充分膨发。
但明矾不能加得过量,否则会给面点带来不良口感。
油条经放置冷却,二氧化碳逐渐逸出,冷却后的成品就会出现“塌陷”,软瘪;生成的氢氧化铝是胃舒平的主要成分,它能中和胃中产生过多的胃酸(盐酸)以保护胃壁粘膜,因此患有胃病的人,常吃油条有好处。
2.石灰水用于鲜蛋的消毒、防腐鲜蛋放在石灰水中,蛋内呼出二氧化碳、空气中的二氧化碳能与氢氧化钙反应:Ca(OH)2+CO2=Ca CO3↓+H2O生成的难溶性碳酸钙微粒沉积在蛋壳的表面,堵塞了蛋壳表面的气孔,阻止了外界维生物的入侵,使蛋的呼吸作用下降,而且气孔堵塞,向外边排出的二氧化碳减少,二氧化碳便在蛋内积存。
二氧化碳是酸性氧化物,使蛋白酸度升高,从而阻止了蛋内微生物的作用,鲜蛋就得到了保护。
3.硝酸钠、亚硝酸钠用于肉制品上色硝酸钠加热时能分解生成亚硝酸钠,并放出氧气,反应方程式为:2NaNO3=2NaNO2+O2↑在动植物体内硝酸钠很容易转化为亚硝酸钠。
亚硝酸钠在酸性条件下可生成亚硝酸:NO2-+H+=HNO2亚硝酸是一种弱酸,它很不稳定,仅存在于稀溶液中,微热甚至冷时,即按下式分解:2HNO2=NO2↑+NO↑+H2O当亚硝酸钠加入肉中能与肉内有机酸反应生成亚硝酸。
亚硝酸分解生成一氧化氮,它能与肌肉中的色素结合成桃红色的化合物,加热后仍保持鲜红色,所以烹饪中常用NaNO2作发剂。
烹饪化学【全本(二)引言概述:烹饪化学是研究烹饪过程中发生的化学反应和物质变化的学科。
通过理解烹饪化学,我们可以更好地掌握烹饪技巧和调整食物的口感、色香味。
本文将从食材选择、加热方式、调味品、食物变色和营养保持5个大点阐述烹饪化学的相关知识。
一、食材选择1. 了解食材的化学成分:不同食材的蛋白质、碳水化合物、脂肪等成分含量不同,烹饪前要了解其特性。
2. 食材的烹饪反应:不同食材烹饪时会发生褐变、水解、氧化等反应,可以根据这些反应调整烹饪方式和时间。
3. 食材的组织结构:食材的纤维、胶原蛋白等组织结构决定了其口感和食用方式,正确处理食材的结构能提升食物口感。
二、加热方式1. 热传导和热辐射:不同加热方式的传热机制不同,了解传热机制可以选择合适的加热方式。
2. 煎、炒、烤的化学反应:高温烹饪时,食材的氧化、美拉德反应等会增加食物的风味和色泽。
3. 蒸、炖的化学反应:低温烹饪时,食材的蛋白质水解等会增加食物的嫩滑口感。
三、调味品1. 食物中的味觉:食物的味道由甜、酸、苦、咸等味觉的刺激共同构成,不同调味品对味觉的激发不同。
2. 调味品的化学反应:酸碱中和、氧化还原等化学反应会改变食物的味道和口感,合理搭配调味品能提升食物的口感。
3. 调味品对食材的影响:某些调味品会改变食材的纹理、口感和颜色,需要根据食材特性选择合适的调味品。
四、食物变色1. 食物的色素:了解食物中的色素来源和反应,可以预防食物变色。
2. 酶的作用:某些酶在加热过程中会使食物变色,合理处理酶的活性可以控制食材的变色。
3. 其他化学反应:氧化、还原等化学反应也会导致食物变色,采取适当的烹饪方法和添加抗氧化剂可以减少变色。
五、营养保持1. 热敏感营养物质:热敏感的维生素、酶等营养物质在烹饪过程中容易被破坏,短时间、低温烹饪可以减少营养损失。
2. 食材的溶解和释放:烹饪过程中,食材中的营养物质会溶解和释放,合理掌握烹饪时间可以最大限度地保留营养。
烹饪化学学习总结烹饪化学总结1水分活度:一定温度下样品中水分蒸汽压与纯水蒸汽压的比值。
2蛋白质系数:用6.25来计算蛋白质的量。
3氨基酸等电点:氨基酸在溶液中静电荷为零时的PH值。
4蛋白质等电点:在某一PH值下,某蛋白质所需的静电荷为零,此时,该溶液的PH值称为该蛋白质的等电点。
在等电点时,蛋白质可能会沉淀下来,这叫等电沉淀。
5蛋白质的水化作用:蛋白质与水相互作用而发生的结合作用,也叫蛋白质的水合作用。
6蛋白质的变性:指蛋白质结构的改变,但不伴随一级结构中肽链的断裂,从而导致原有的性质和功能发生部分或全部改变。
7盐溶:在水中加入盐离子,浓度低时许多蛋白质分子表面电荷增减,水化作用增强,溶解度增大,叫盐溶作用。
8盐析:担当溶液浓度增高时,盐的亲水性反而抵消了蛋白质的水化作用,蛋白质称为无水化层的憎水胶体颗粒,彼此间又能进一步聚集而沉淀下来,这叫盐析作用。
9内相:溶剂;外相:溶液。
水包油乳化液(O/W型)10影响蛋白质起泡性质的因素:(1)P H:等电点时不理起泡(2)盐:NACL提高蛋白质的起泡性,但会使泡沫的稳定性降低,Ca2+能提高(3)糖:会抑制蛋白质的起泡,能提高蛋白质泡沫的稳定性(4)脂:对蛋白质的起泡和泡沫的稳定性均不利(5)温度:适度的热处理可以改进蛋白质的起泡性能11蛋白质的水解过程:蛋白质——胨——多肽——ɑ-氨基酸12肌肉中的蛋白质依其构成的位置可以分为以下三类(1)肌纤维蛋白(又分为肌球蛋白和肌动蛋白、肌动球蛋白)它与新鲜肌肉的收缩,肌肉死后僵硬和食用肉的持水性、紧密度有关。
(2)肌浆可溶蛋白,肉汁中的蛋白主要就是它。
(3)结缔组织蛋白(包括胶原蛋白和弹性蛋白)。
13面筋蛋白:小麦谷蛋白和小麦胶蛋白14糖类的分类:单糖,低聚糖,多糖(高聚糖)。
15单糖:葡萄糖、果糖、半乳糖低聚糖:麦芽糖(两个葡萄糖)、蔗糖(葡萄糖和果糖)、乳糖多糖:淀粉、纤维素、半纤维素和果胶。
16焦糖化作用:低分子糖在没有氨基化合物存在下,加热至其熔点以上时,会变成黑褐色的深色物质并产生特别的香气,这种作用称为焦糖化作用。
烹饪中的化学知识有哪些 ⾷物在化学中的奇妙反应,烹饪中的每⼀种⽕候,每⼀种调料,每⼀种⾷物的搭配,都可以在混合调⽐中发⽣剧烈也或者是微妙的变化。
那么你知道有哪些烹饪过程的化学知识吗?以下是店铺为你整理的烹饪中的化学知识,希望能帮到你。
烹饪中的化学知识 ⾷物中的蛋⽩质、脂肪、淀粉都是不太容易溶解于⽔的,这就给⼈体的消化和吸收带来了困难。
但是,⾷物经过烧煮以后,吸收了⽔分,并受热膨胀、分裂,变成了可溶解于⽔的物质,在⼈体的肠胃中就容易发⽣化学反应,从⽽为⼈体所吸收。
例如,淀粉颗粒不溶解于冷⽔,但在温⽔中它却会吸⽔膨胀、破裂,变成糊状,然后与⽔反应。
这样⼀来,很⼤的淀粉分⼦就会分解成为许许多多的⼩分⼦――糖类,为⼈体所吸收。
另外,蛋⽩质与⽔作⽤,会⽣成各种具有鲜美味道的氨基酸。
这些氨基酸不仅味美,⽽且易被⼈体吸收。
⼈们常⽤1-2个⼩时的时间来把⾁煮熟焖烂,就是为了促使蛋⽩质分解,使它更易于被⼈体吸收。
温度对烹煮⾷物的影响也很⼤。
⼀般地说,温度升⾼,可以加快反应的速率。
例如,炖煮⾷物的温度约为100℃(这是因为⽔的沸点是lOO℃),炒、炸的最⾼温度约为200-300℃(油的沸点⽐⽔⾼)。
油炒⽐油炸的温度略低⼀点,但⽐炖煮的温度要⾼许多。
所以,把⾁煮熟焖烂所花的时间,要⽐炒、炸所花的时间多上好⼏倍。
锅中的温度与炒拌也有关系。
炒拌可以使⾷物受热均匀,但过分炒拌会使锅中的温度降低,⽽且炒拌多了,⾷物与空⽓中的氧接触的机会也较多,⾷物中的维⽣素C易被氧化⽽遭到破坏。
所以炒拌⼀下后加锅盖是必要的,⼀可以防⽌降低锅温,⼆则可以防⽌维⽣素氧化⽽降低营养价值。
炒⾁⽚时,若⾁⽚中的⽔分失去过多,会使蛋⽩质凝固、变硬,不易为⼈体消化、吸收。
所以有经验的⼈在炒⾁⽚前,就会在⾁⽚中调⼊⼀些淀粉,使⾁⽚在烹炒过程中不致失⽔过多,炒出来的⾁⽚也会很鲜嫩。
烧煮⾷物时,加盐、酱油等调味品的时间与⾷物中的化学变化也有关系。
⾷物中的蛋⽩质本⾝具有胶体的性质,遇盐等物质就会发⽣化学作⽤。
烹饪包含的化学原理有哪些烹饪的时候,我们只是知道可以运用火来进行烹制,产生了物理反应,殊不知,原来也是可以产生出化学原理的,那么你知道有哪些化学原理吗?以下是店铺为你整理的烹饪包含的化学原理,希望能帮到你。
烹饪包含的化学原理1.炸油条、油饼时,向面团里常加入小苏打和明矾明矾[KAl(SO4)2·12H2O]在面点中常与小苏打(NaHCO3)一并用作膨松剂,高温油炸的过程中由于Al3+和CO32-发生双水解反应,产生二氧化碳气体,使油条膨发。
反应方程式如下:6NaHCO3+2KAl(SO4)2=3Na2SO4+K2SO4+2Al(OH)3↓+6CO2↑利用明矾与小苏打共同作用,可以降低小苏打的碱性,反应较缓慢,反应过程中产生的二氧化碳可全部得到利用,不至于使部分二氧化碳跑掉,使面团得到充分膨发。
但明矾不能加得过量,否则会给面点带来不良口感。
油条经放置冷却,二氧化碳逐渐逸出,冷却后的成品就会出现“塌陷”,软瘪;生成的氢氧化铝是胃舒平的主要成分,它能中和胃中产生过多的胃酸(盐酸)以保护胃壁粘膜,因此患有胃病的人,常吃油条有好处。
2.石灰水用于鲜蛋的消毒、防腐鲜蛋放在石灰水中,蛋内呼出二氧化碳、空气中的二氧化碳能与氢氧化钙反应:Ca(OH)2+CO2=CaCO3↓+H2O生成的难溶性碳酸钙微粒沉积在蛋壳的表面,堵塞了蛋壳表面的气孔,阻止了外界维生物的入侵,使蛋的呼吸作用下降,而且气孔堵塞,向外边排出的二氧化碳减少,二氧化碳便在蛋内积存。
二氧化碳是酸性氧化物,使蛋白酸度升高,从而阻止了蛋内微生物的作用,鲜蛋就得到了保护。
3.硝酸钠、亚硝酸钠用于肉制品上色硝酸钠加热时能分解生成亚硝酸钠,并放出氧气,反应方程式为:?2NaNO3=2NaNO2+O2↑在动植物体内硝酸钠很容易转化为亚硝酸钠。
亚硝酸钠在酸性条件下可生成亚硝酸:NO2-+H+=HNO2亚硝酸是一种弱酸,它很不稳定,仅存在于稀溶液中,微热甚至冷时,即按下式分解:2HNO2=NO2↑+NO↑+H2O当亚硝酸钠加入肉中能与肉内有机酸反应生成亚硝酸。
引言:烹饪是人类文明演进的重要组成部分,而化学则是烹饪背后的科学支撑。
烹饪与化学密不可分,从食材选择到食物味觉的形成,都离不开化学的参与。
本文将深入探讨烹饪与化学的关系,从5个大点着手,分别是食材与化学反应、加热过程中的化学变化、香气与味觉的化学基础、催化剂在烹饪中的应用和调味品的化学组成。
概述:烹饪涉及到食材的选择、处理和加工过程,化学反应不可避免地发生在这个过程中。
化学变化可以改变食材的组成和性质,产生出丰富多样的食物口感和味道。
同时,烹饪过程中温度的变化也会引发化学反应,并且香气和味道的产生也与化学反应密切相关。
催化剂在烹饪过程中发挥重要作用,而调味品则是由各种化学物质组成的。
接下来将详细阐述这些内容。
正文内容:1.食材与化学反应1.1食材的组成和结构1.2食材处理的化学反应1.3食材的变色和变质机理1.4食材的储存和保鲜化学方法1.5食材的营养价值与化学成分分析2.加热过程中的化学变化2.1加热对食材的影响2.2锅底油烟的形成机理2.3烤焦食物中的化学反应2.4炒菜中的蛋白质破坏与变性2.5煮沸对食材中营养成分的影响3.香气与味觉的化学基础3.1香气的化学成分与感知机制3.2食物的味觉感知与化学反应3.3食物的酸碱平衡与味觉的影响3.4食物的烟熏和醋制对味觉的影响3.5食材搭配与化学反应对味道的改变4.催化剂在烹饪中的应用4.1酶的应用与催化作用4.2烹饪过程中的加酸和加碱反应4.3蛋白质酶解与嫩化原理4.4菜肴色泽的催化作用4.5食材降解与催化剂的关系5.调味品的化学组成5.1盐的溶解与味觉增强5.2酱油和酱的发酵过程5.3味精与味觉刺激机制5.4辣椒与辛辣味觉的化学基础5.5柠檬与酸味的化学反应总结:烹饪与化学的关系在各个方面都表现出深入的联系。
从食材的选择、加热过程、香气与味觉的形成、催化剂的应用到调味品的化学组成,都离不开化学的参与。
通过深入了解烹饪与化学的关系,我们可以更好地掌握烹饪的技巧和食物的口感,让美食更加美味可口。
科学原理一点通:烹饪中的化学反应食物的加工过程,蕴含着各种各样的化学变化。
正是因为这些化学变化,才让食物焕发出了各种各样的风味和不同层次的口感。
一、糊化反应米饭是怎样从一粒粒坚硬的大米变成晶莹剔透的米饭的呢?这就不得不提烹饪中常见的一种化学反应——糊化反应。
大米中含有大量的天然淀粉,即β-淀粉。
在未加热时,淀粉分子的排列整齐有序,呈现一种晶体结构,不溶于水,淀粉酶难以分解。
因此,我们把水和大米放入锅中,在不加热的情况下,大米永远也不会变成米饭。
可是当淀粉与水共热时,淀粉粒吸水膨胀直至细胞壁破裂,晶体结构被破坏,分子排列变得混乱无规则,易被淀粉酶分解,最终成为α-淀粉,而大米也在这个过程中变成了米饭二、美拉德反应美拉德反应在烹饪中也很常见,比如烧烤就是美拉德反应的典型代表。
美拉德反应,简单来说就是蛋白质和碳水化合物受热发生反应,生成呋喃、吡嗪、噻吩、噻唑等香味物质,我们在烤肉时闻到的香气就来源于此肉类中富含蛋白质,而烧烤、煎炸时的温度较高,因而在此类烹饪中,美拉德反应会更剧烈,香味物质倍增。
不过,美拉德反应也会带来一些有害的副产品,如丙烯酰胺等有机物。
丙烯酰胺是世界卫生组织国际癌症研究机构认定的2A类致癌物,具有一定的毒性和致癌性,因此不管烧烤和煎炸食物有多美味,也不能贪多。
三、酯化反应酯化反应也称“生香反应”,是酸类和醇类物质发生的化学反应,会生成具有香气的酯类化合物。
有些酒类之所以“越陈越香”,就是因为其中富含的醇类和有机酸发生了酯化反应,形成了风味物质。
但是,这个过程是十分漫长的,有时甚至需要十几年的时间。
当然,日常烹饪过程中无需等待这么久,因为高温条件可以加速酯化反应的过程。
我们在烹制鱼类时,常常会加入料酒和醋,料酒中的醇类和醋中的酸类物质会在加热作用下,生成一定量的酯,挥发出的酯类能带走具有腥味的有机物,同时自然增香,这就使我们能在短时间内完成一道色香味俱全的红烧鱼。
烹饪过程中还有很多其它化学反应,如降解反应、中和反应等,这些化学反应使我们的食物增添了风味,满足了我们多样化的味蕾需求,同时也丰富了我们的美食文化。