圆的参数方程2
- 格式:ppt
- 大小:314.50 KB
- 文档页数:9
2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程[对应学生用书P24][自主学习]1.有向线段的数量如果P ,M 是l 上的两点,P 到M 的方向与直线的正方向一致,那么PM 取正值,否则取负值.我们称这个数值为有向线段PM u u u r的数量.2.直线参数方程的两种形式(1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为:⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).其中M (x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M 的位移,可以用有向线段PM u u u r的数量来表示.(2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy 21+λ(λ为参数,λ≠-1).其中M (x ,y )为直线上的任意一点,参数λ的几何意义是:动点M 分有向线段QP u u u r的数量比QM MP.①当λ>0时,M 为内分点;②当λ<0且λ≠-1时,M 为外分点; ③当λ=0时,点M 与Q 重合.[合作探究]1.如何引入参数求过定点P (x 0,y 0)且与平面向量a =(a ,b )⎝⎛⎭⎪⎫或斜率为b a平行的直线的参数方程?提示:在直线l 上任取一点M (x ,y ),因为PM u u u r ∥a ,由两向量共线的充要条件以及PMu u u r=(x -x 0,y -y 0),可得x -x 0a =y -y 0b ,设这个比值为t ,即:x -x 0a =y -y 0b=t ,则有:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t ∈R ).2.问题1中得到的参数方程中参数何时与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t ∈R )中参数t 具有相同的几何意义?提示:当a 2+b 2=1时.[对应学生用书P24]直线参数方程的确定[例1] (1)写出直线l 的参数方程;(2)求直线l 与直线x -y +1=0的交点.[思路点拨] 本题考查如何根据已知条件确定直线的参数方程及运算求解能力,解答此题需要将条件代入⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α得到直线的参数方程,然后与x -y +1=0联立可求得交点.[精解详析] (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos 120°,y =4+t sin 120°(t 为参数),即⎩⎪⎨⎪⎧ x =3-12t ,y =4+32t (t 为参数).(2)把⎩⎪⎨⎪⎧x =3-12t ,y =4+32t 代入x -y +1=0,得3-12t -4-32t +1=0,得t =0.把t =0代入⎩⎪⎨⎪⎧x =3-12t ,y =4+32t ,得两直线的交点为(3,4).1.已知直线经过的定点与其倾斜角,求参数方程利用⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).2.已知直线过两点,求参数方程利用⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy21+λλ为参数且λ≠-1.3.已知直线经过的定点与其方向向量a =(a ,b )(或斜率ba),则其参数方程可为:⎩⎪⎨⎪⎧x =x 0+ta ,y =y 0+tb(t 为参数).1.已知两点A (1,3),B (3,1)和直线l :y =x ,求过点A ,B 的直线的参数方程,并求它与直线l 的交点M 分AB 的比.解:设直线AB 与l 的交点M (x ,y ),且AMMB=λ,则直线AB 的参数方程为⎩⎪⎨⎪⎧x =1+3λ1+λ,y =3+λ1+λ(λ为参数且λ≠-1).①把①代入y =x 得1+3λ1+λ=3+λ1+λ,得λ=1,所以点M 分AB 的比为1∶1.利用直线参数方程中参数的几何意义解决距离问题[例2] 写出经过点M 0(-2,3),倾斜角为4的直线l 的参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.[思路点拨] 本题考查直线参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的应用,特别是参数几何意义的应用.解答此题需先求出直线上与点M 0相距为2的点对应的参数t ,然后代入参数方程求此点的坐标.[精解详析] 直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-2+tcos 3π4,y =3+t sin 3π4(t 为参数).①设直线l 上与已知点M 0相距为2的点为M 点,M 点对应的参数为t ,则|M 0M |=|t |=2, ∴t =±2.将t 的值代入①式:当t =2时,M 点在M 0点上方,其坐标为(-2-2,3+2); 当t =-2时,M 点在M 0点下方,其坐标为(-2+2,3-2).1.过定点P (x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),|t |的几何意义是有向线段PM u u u r的长度,即P 与M 间的距离.2.过定点M 0(x 0,y 0),斜率为ba 的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (a ,b 为常数,t为参数).当a 2+b 2=1时,|t |的几何意义是有向线段0M M u u u u u r 的长度,当a 2+b 2≠1时,|t |的几何意义是0M M u u u u u r的长度的1a 2+b 2.2.过点A (1,-5)的直线l 1的参数方程为⎩⎨⎧x =1+t ,y =-5+3t(t 为参数),它与方程为x-y -23=0的直线l 2相交于一点P ,求点A 与点P 之间的距离.解:将直线l 1的参数方程化为⎩⎪⎨⎪⎧x =1+122t ,y =-5+322t(t 为参数).⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1且32>0,令t ′=2t ,则将t ′代入上述方程得直线l 1的参数方程的标准式为⎩⎪⎨⎪⎧x =1+12t ′,y =-5+32t ′(t ′为参数).代入x -y -23=0得⎝ ⎛⎭⎪⎫1+12t ′-⎝ ⎛⎭⎪⎫-5+32t ′-23=0,解得t ′=43, ∴|AP |=|t ′|=4 3.直线与圆锥曲线的位置关系[例3] 已知直线l 过点P (1,0),倾斜角为3,直线l 与椭圆23+y 2=1相交于A ,B 两点,设线段AB 的中点为M .(1)求P ,M 两点间的距离; (2)求线段AB 的长|AB |.[思路点拨] 本题考查直线的参数方程在解决直线与圆锥曲线相交中的中点、弦长等问题中的应用,解答此题需要求出直线的形如⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的方程,然后利用参数的几何意义求解.[精解详析] (1)∵直线l 过点P (1,0),倾斜角为π3,cos α=12,sin α=32.∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数).①∵直线l 和椭圆相交,将直线的参数方程代入椭圆方程 并整理得5t 2+2t -4=0,Δ=4+4×5×4>0.设这个二次方程的两个实根为t 1,t 2.由根与系数的关系得:t 1+t 2=-25,t 1t 2=-45,由M 为AB 的中点,根据t 的几何意义, 得|PM |=|t 1+t 22|=15. (2)|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=8425=2215.1.在解决直线与圆锥曲线相交关系的问题中,若涉及到线段中点、弦长、交点坐标等问题,利用直线参数方程中参数t 的几何意义求解,比利用直线l 的普通方程来解决更为方便.2.在求直线l 与曲线C :f (x ,y )=0的交点间的距离时,把直线l 的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α代入f (x ,y )=0,可以得到一个关于t 的方程f (x 0+t cos α,y 0+t sin α)=0.假设该方程的解为t 1,t 2,对应的直线l 与曲线C 的交点为A ,B ,那么由参数t 的几何意义可得|AB |=|t 1-t 2|.(1)弦AB 的长|AB |=|t 1-t 2|. (2)线段AB 的中点M 对应的参数t =t 1+t 22(解题时可以作为基本结论使用).3.(江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解:将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.本课时常考查直线参数方程的确定与应用,同时考查运算、转化及求解能力,高考、模拟常与极坐标方程及圆锥曲线的参数方程交汇命题.[考题印证](湖南高考)在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧x =2s +1,y =s (s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t 为参数)平行,则常数a 的值为________.[命题立意] 本题主要考查对参数方程的理解、两直线的位置关系,以及平面直角坐标系下由两直线的位置关系确定参数值的方法.[自主尝试] 先把两直线的参数方程化成普通方程.直线l 1:x -2y -1=0,直线l 2:2x -ay -a =0.因为两直线平行,所以1×(-a )=-2×2,故a =4,经检验,符合题意.[答案] 4[对应学生用书P26]一、选择题1.已知直线l 过点A (1,5),倾斜角为π3,P 是l 上一动点,若以PA u u r =t 为参数,则直线l 的参数方程是( )A.⎩⎪⎨⎪⎧ x =1+12t ,y =5-32tB.⎩⎪⎨⎪⎧ x =1-12t ,y =5+32tC.⎩⎪⎨⎪⎧x =1+12t ,y =5+32tD.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t解析:选D ∵PA u u r =t ,∴AP u u u r=-t .则参数方程为⎩⎪⎨⎪⎧x =1+-t cos π3,y =5+-tsin π3,即⎩⎪⎨⎪⎧x =1-12t ,y =5-32t .故选D.2.直线⎩⎪⎨⎪⎧x =3+t sin 20°,y =-t cos 20°(t 为参数)的倾斜角是( )A .20°B .70°C .110°D .160°解析:选C 法一:将原方程改写成⎩⎪⎨⎪⎧x -3=t sin 20°,-y =t cos 20°,消去t ,得y =tan 110°(x -3),所以直线的倾斜角为110°.法二:将原参数方程化为⎩⎪⎨⎪⎧x =3+-t cos 110°,y =-t sin 110°,令-t =t ′,则⎩⎪⎨⎪⎧x =3+t ′cos 110°,y =t ′sin 110 °,所以直线的倾斜角为110°. 3.直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点P (-2,3)的距离等于2的点的坐标是( )A .(-4,5)B .(-3,4)C .(-3,4)或(-1,2)D .(-4,5)或(0,1)解析:选C 设直线上的点Q (-2-2t,3+2t )与点P (-2,3)的距离等于2, 即d =-2-2t +22+3+2t -32= 2.解得t =±22.当t =22时,⎩⎪⎨⎪⎧x =-2-2×22=-3,y =3+2×22=4,∴Q (-3,4).当t =-22时,⎩⎪⎨⎪⎧x =-2-2×⎝ ⎛⎭⎪⎫-22=-1,y =3+2×⎝ ⎛⎭⎪⎫-22=2,∴Q (-1,2).综上,符合题意的点的坐标为(-3,4)或(-1,2).4.直线l 经过点M 0(1,5),倾斜角为π3,且交直线x -y -2=0于点M ,则|MM 0|等于( )A.3+1 B .6(3+1) C .6+ 3D .63+1解析:选B 由题意可得直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =5+32t (t 为参数),代入直线方程x -y -2=0,得1+12t -⎝ ⎛⎭⎪⎫5+32t -2=0,解得t =-6(3+1).根据参数t 的几何意义可知|MM 0|=6(3+1). 二、填空题5.过P (-4,0),倾斜角为5π6的直线的参数方程为________. 解析:∵直线l 通过P (-4,0),倾斜角α=5π6,所以直线的参数方程为⎩⎪⎨⎪⎧x =-4+t cos5π6,y =0+t sin 5π6,即⎩⎪⎨⎪⎧ x =-4-32t ,y =t 2.答案:⎩⎪⎨⎪⎧x =-4-32t ,y =12t6.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t (t 为参数)与直线4x +ky =1垂直,则常数k =________. 解析:直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t的斜率为-32,∴-4k ×⎝ ⎛⎭⎪⎫-32=-1,k =-6.答案:-67.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin θ,y =-2+t cos θ(t 为参数),其中角θ的范围是⎝ ⎛⎭⎪⎫π2,π,则直线l 的倾斜角是________.解析:将原参数方程改写成⎩⎪⎨⎪⎧x -1=t sin θ,y +2=t cos θ,消去参数t ,得y +2=(x -1)tan ⎝ ⎛⎭⎪⎫3π2-θ,由θ∈⎝ ⎛⎭⎪⎫π2,π和倾斜角的范围可知直线l 的倾斜角为3π2-θ. 答案:3π2-θ8.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=1有两个交点A ,B ,若点P 的坐标为(2,-1),则|PA |·|PB |=________.解析:把直线的参数方程代入圆的方程,得⎝ ⎛⎭⎪⎫2-12t 2+⎝⎛⎭⎪⎫-1+12t 2=1, 即t 2-6t +8=0,解得t 1=2,t 2=4,∴A (1,0),B (0,1).∴|PA |=12+12=2,|PB |=22+22=2 2.∴|PA |·|PB |=2×22=4.答案:4三、解答题9.已知P 为半圆C :x 2+y 2=1(0≤y ≤1)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3. (1)以O 为极点,x 轴的正半轴为极轴建立坐标系,求点M 的极坐标;(2)求直线AM 的参数方程.解:(1)由已知,M 点的极角为π3,且M 点的极径等于π3, 故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3. (2)M 点的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0),故直线AM 的参数方程为⎩⎪⎨⎪⎧ x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t (t 为参数). 10.已知直线l 经过点P (1,1),倾斜角α=π6. (1)写出直线l 的参数方程; (2)设l 与圆x 2+y 2=4相交于点A 和点B ,求点P 到A ,B 两点的距离之积. 解:(1)因为直线l 过P (1,1),且倾斜角α=π6,所以直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+32t ,y =1+12t (t 为参数).(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数分别为t 1,t 2.将直线l 的参数方程代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫1+12t 2=4, 整理,得t 2+(3+1)t -2=0.因为t 1,t 2是方程t 2+(3+1)t -2=0的根,所以t 1t 2=-2.故|PA |·|PB |=|t 1t 2|=2.所以点P 到A ,B 两点的距离之积为2. 11.已知圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1,F 2是圆锥曲线的左、右焦点. (1)求经过点F 1垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.解:(1)圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ化为普通方程是x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =0-31-0=-3,于是经过点F 1垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧ x =-1+t cos30°,y =0+t sin30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t (t 为参数). (2)法一:直线AF 2的斜率k =0-31-0=-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则根据正弦定理得ρsin60°=1sin 120°-θ, 即ρsin(120°-θ)=sin60°, 即ρsin θ+3ρcos θ= 3. 法二:直线AF 2的直角坐标方程是y =-3(x -1),将⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ代入得直线AF 2的极坐标方程:ρsin θ=-3ρcos θ+3,即ρsin θ+3ρcos θ= 3.。
2.2.2 圆的参数方程[对应学生用书P28][读教材·填要点]如图,质点以匀角速度ω做圆周运动,圆心在原点,半径为R ,记t 为时间,运动开始时t =0,质点位于点A 处,在时刻t ,质点位于点M (x ,y )处,θ=ωt ,θ为Ox 轴正向到向径OM u u u u r 所成的角,则圆的参数方程为⎩⎪⎨⎪⎧x =R cos ωt ,y =R sin ωt(t ≥0),也可写成⎩⎪⎨⎪⎧x =R cos θ,y =R sin θ(0≤θ≤2π).若圆心在点M 0(x 0,y 0)处,半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =x 0+R cos θ,y =y 0+R sin θ(0≤θ≤2π).[小问题·大思维]1.方程⎩⎪⎨⎪⎧x =R cos θ,y =R sin θ(0≤θ≤2π)是以坐标原点为圆心,以R 为半径的圆的参数方程,能否直接由圆的普通方程转化得出?提示:以坐标原点为圆心,以R 为半径的圆的标准方程为x 2+y 2=R 2,即⎝ ⎛⎭⎪⎫x R 2+⎝ ⎛⎭⎪⎫y R 2=1.令⎩⎪⎨⎪⎧x R =cos θ,y R =sin θ,则⎩⎪⎨⎪⎧x =R cos θ,y =R sin θ.2.参数方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(0≤θ≤π)表示什么曲线?提示:表示圆心为(0,1),半径为2的圆的上半部分即半圆(包括端点).[对应学生用书P29]求圆的参数方程[例1] 点M 在圆(x -r )2+y 2=r 2(r >0)上,O 为原点,x 轴的正半轴绕原点旋转到OM 形成的角为φ.以φ为参数,求圆的参数方程.[思路点拨] 本题考查圆的参数方程的求法.解答此题需要借助图形分析圆上点M (x ,y )的坐标与φ之间的关系,然后写出参数方程.[精解详析] 如图,设圆心为O ′,连接O ′M .①当M 在x 轴上方时, ∠MO ′x =2φ. ∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.②当M 在x 轴下方时, ∠MO ′x =2φ,∴⎩⎪⎨⎪⎧x =r +r cos -2φ,y =-r sin -2φ.即⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.③当M 在x 轴上时, 对应φ=0或φ=±π2.综上得圆的参数方程为⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ,-π2≤φ≤π2.(1)由于选取的参数不同,圆有不同的参数方程.一般地,同一条曲线,可以选取不同的变数为参数,因此得到的参数方程也可以有不同的形式,形式不同的参数方程,它们表示的曲线却可以是相同的.另外在建立曲线的参数方程时,要注明参数及参数的取值范围.(2)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题如果把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ,φ的意义就改变了.1.设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是________. 解析:把y =tx 代入x 2+y 2-4y =0, 得x =4t 1+t 2,y =4t21+t2,∴参数方程为⎩⎪⎨⎪⎧x =4t1+t2,y =4t21+t 2.答案:⎩⎪⎨⎪⎧x =4t 1+t 2,y =4t21+t2圆的参数方程的应用[例2] (福建高考)已知直线l的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. [思路点拨] (1)化参数方程为普通方程.(2)利用圆心到直线的距离d ≤4可求.[精解详析] (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.解决此类问题的关键是化圆的参数方程为普通方程后再求解.2. 设点M (x ,y )在圆x 2+y 2=1上移动,求点Q (x (x +y ),y (x +y ))的轨迹的参数方程. 解:设M (cos θ,sin θ)(0≤θ<2π),点Q (x 1,y 1),则⎩⎪⎨⎪⎧x 1=cos θcos θ+sin θ,y 1=sin θcos θ+sin θ,0≤θ≤2π,即为所求的参数方程.[例3] 已知点P (x ,y )是圆⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ0≤θ≤2π上的动点.(1)求3x +y 的取值范围;(2)若x +y +a ≥0恒成立,求实数a 的取值范围.[思路点拨] 本题考查圆的参数方程的求法及不等式的恒成立问题.解决本题需要正确求出圆x 2+y 2=2y 的参数方程,然后利用参数方程求解.[精解详析] (1)∵P 在圆⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ上,∴3x +y =3cos θ+sin θ+1=2sin(θ+π3)+1.∴-2+1≤3x +y ≤2+1,即3x +y 的取值范围为 [-1,3].(2)x +y +a =cos θ+sin θ+1+a ≥0, ∴a ≥-(cos θ+sin θ)-1.又-(cos θ+sin θ)-1=-2sin(θ+π4)-1≤2-1,∴a ≥2-1,即a 的取值范围为[2-1,+∞).(1)解决此类问题的关键是根据圆的参数方程写出点的坐标,并正确确定参数的取值范围.(2)利用圆的参数方程求参数或代数式的取值范围的实质是利用正、余弦函数的有界性.3.将参数方程⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(0≤θ≤2π)转化为直角坐标方程是________________,该曲线上的点与定点A (-1,-1)的距离的最小值为________.解析:易得直角坐标方程是(x -1)2+y 2=1,所求距离的最小值应为圆心到点A 的距离减去半径,易求得为5-1.答案:(x -1)2+y 2=1 5-1[对应学生用书P30]一、选择题1.圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ0≤θ≤2π.则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)解析:选D 圆的普通方程为(x -2)2+y 2=4. 故圆心坐标为(2,0).2.若直线2x -y -3+c =0与曲线⎩⎨⎧x =5cos θ,y =5sin θ(0≤θ≤2π)相切,则实数c等于( )A .2或-8B .6或-4C .-2或8D .4或-6解析:选C 将曲线⎩⎨⎧x =5cos θ,y =5sin θ(0≤θ≤2π)化为普通方程为x 2+y 2=5,由直线2x -y -3+c =0与圆x 2+y 2=5相切,可知|-3+c |5=5,解得c =-2或8.3.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α0≤α≤2π上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A 设P (2+cos α,sin α),代入得 (2+cos α-5)2+(sin α+4)2=25+sin 2α+cos 2α-6cos α+8sin α =26+10sin(α-φ)(tan φ=34,φ为锐角).∴最大值为36.4.已知曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(0≤θ≤2π)和直线l :⎩⎪⎨⎪⎧x =t ,y =t +b (t 为参数,b为实数),若曲线C 上恰有3个点到直线l 的距离等于1,则b =( )A. 2 B .- 2 C .0D .± 2解析:选D 将曲线C 和直线l 的参数方程分别化为普通方程为x 2+y 2=4和y =x +b ,依题意,若要使圆上有3个点到直线l 的距离为1,只要满足圆心到直线的距离为1即可,得到|b |2=1,解得b =± 2.二、填空题5.把圆x 2+y 2+2x -4y +1=0化为参数方程为________.解析:圆x 2+y 2+2x -4y +1=0的标准方程是(x +1)2+(y -2)2=4,圆心为(-1,2),半径为2,故参数方程为⎩⎪⎨⎪⎧x =-1+2cos θ,y =2+2sin θ(0≤θ≤2π).答案:⎩⎪⎨⎪⎧x =-1+2cos θ,y =2+2sin θ(0≤θ≤2π)6.已知圆C :⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ与直线x +y +a =0有公共点,则实数a 的取值范围为________.解析:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵-1≤s in ⎝ ⎛⎭⎪⎫θ+π4≤1,∴1-2≤a ≤1+ 2.答案:[1-2,1+2]7.直线⎩⎪⎨⎪⎧x =t cos θ,y =t sin θ(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos α,y =2sin α(0≤α≤2π)相切,则θ=________.解析:直线为y =x tan θ,圆为(x -4)2+y 2=4,作出图形,相切时,易知倾斜角为π6或5π6. 答案:π6或5π68.已知动圆x 2+y 2-2ax cos θ-2by sin θ=0(a ,b 是正常数,且a ≠b ,θ为参数),则圆心的轨迹的参数方程为________.解析:设P (x ,y )为动圆的圆心, 由x 2+y 2-2ax cos θ-2by sin θ=0, 得(x -a cos θ)2+(y -b sin θ)2=a 2cos 2θ+b 2sin 2θ.∴⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ.答案:⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ三、解答题9.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1. 设x -1=cos θ,y =sin θ,则参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(0≤θ≤2π).10.已知实数x ,y 满足x 2+(y -1)2=1,求t =x +y 的最大值. 解:方程x 2+(y -1)2=1表示以(0,1)为圆心,以1为半径的圆.∴其参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ.∴t =x +y =cos θ+sin θ+1 =2sin(θ+π4)+1.∴当sin(θ+π4)=1时,t max =2+1.11.已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t 2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A 、B 两点, 求|AB |及|AM |·|BM |.解:l 的参数方程为⎩⎪⎨⎪⎧ x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′是参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.∵Δ>0,可设t 1′、t 2′是方程的两根,由根与系数关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,∴|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=t 1′+t 2′2-4t 1′t 2′=14.。
1.圆的标准方程1、已知圆心为C(4b),半径为r,如何求的圆的方程?运用上节课求曲线方程的方法,从圆的定义出发,正确地推导出:(x-a)2+(y-b)2=r2这个方程叫做圆的标准方程2、圆的标准方程:(x-a)2 +(y-b)2 =r2若圆心在坐标原点上,这时a = b = O,则圆的方程就是x2+ /=r23、圆的标准方程的两个基本要素:圆心坐标和半径圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要•三个量确定了且厂>0,圆的方程就给定了。
这就是说要确定圆的方程,必须具备三个独立的条件,确定可以根据条件,利用待定系数法来解决三、讲解范例:例1求以C(l,3)为圆心,并且和直线3x-4y-7 = 0相切的圆的方程例2已知圆的方程x2+ y2=r2,求经过圆上一点M(x o,yo)的切线方程例3.求过点M(3,l),且及圆(x-l)2 + y2 =4相切的直线/的方程例4・一圆过原点O和点P(l,3),圆心在直线)=x+2上,求此圆的方程例5.已知一圆及y轴相切,在直线y = x上截得的弦AB长为2",圆心在直线x-3y = 0上,求此圆的方程.圆的一般方程1.圆的一般方程将标准方程(x-a)2+(y-b)2=r2展开,整理,得 X + y2一2ax- 2by + a2 +b2 -r2 = 0 f可见,任何一个圆的方程都可以写成口 +尸+氐+ £),+尸=0|的形式。
① 反过来,形如①的方程的曲线是否一定是圆呢?将①配方得:(x +与+ (>- +孑=D土严.. ②把方程②和圆的标准方程进行比较,可以看出:(1)当D2+E2-4F>0时,方程①表示以为圆心,为半径的圆;(2)当D2 + E2-4F = 0时,方程①表示一个点;(3)当D2 + E2-4F<0时,方程①不表示任何图形.结论:当D2+E2-4F>0时,方程①表示一个圆,此时,我们把方程①叫做圆的一般方程.2.圆的一般方程形式上的特点:(1)疋和〉卫的系数相同,且不等于o; (2)没有小这样的二次项. 以上两点是二元二次方程A.r2 + + Cy2 + Dx +Ey + F = 0表示圆的必要条件,但不是充分条件.充要条件是?(A二C H O, B二0, D2 +E2 -4FA>0 ) 说明:1、要求圆的一般方程,只要用待定系数法求出三个系数D、£、F 就可以了.2、圆的一般方程及圆的标准方程各有什么优点?(圆的标准方程:有利于作图。
圆的参数方程2
圆的参数方程2
一、概念
参数方程表示圆的几何特征,是由两个有理函数组成的系统,即:x=rcosθ
y=rsinθ
其中x和y是圆上的任意一点坐标,r是半径,θ(取值范围是0到2π)是极角,可用以定义从x轴正向转动到到该点的角度。
二、特点
1.圆的参数方程在直角坐标系中是一对互相交错的曲线,它由一组相同的点组成,这些点都在同一个圆内且离圆心恒定的距离。
2.圆的参数方程既有定义域的要求,又有值域的要求,定义域一般为0到2π,表示极角从0度(即X轴正向)逆时针增加至360°,值域范围为圆心到椭圆的最长半径之间的距离。
3.圆的参数方程可以用来求解圆上任意一点的坐标,只需知道极角θ即可,如果知道椭圆上的任意一点的坐标,可以很容易的求出极角。
4.圆的参数方程也扩展到椭圆和抛物线等其他几何图形,只要将上面参数的极角范围和曲线的最长半径改变即可。
三、参数方程
x = a cosθ
y = b sinθ
其中x和y是圆上任意一点的坐标,a和b是半径,θ(取值范围是0到2π)是极角。
用标准形式表示圆的参数方程是:
(x–h)2+(y–k)2=r2
其中h和k是圆心的坐标,r是半径。
当然,可以通过将圆心和圆上任意一点的坐标求出半径。
圆的参数方程及应用关于圆的一般方程 (x a)2 ( y b)2R 2 来说,圆的方程还有此外一种表达x a Rcos 形式( 为参数),在解决有些问题时,合理的选择圆方程的表达y b Rsin形式,能给解决问题带来方便,本文浅谈圆的参数方程再解题中的应用。
一、求最值例 1 已知点( x ,y )在圆 x 2 y 2 1上,求 x 2 2xy 3y 2 的最大值和最小值。
【解】圆 x 2y 2 1的参数方程为:x cos 。
y sin则 x 2 2xy 3 y 2 = cos 2 2sin cos3sin 2= 1 cos2sin 2 31cos22 sin 2 cos2= 2 2 sin(22 2k3 (k ∈Z )时, x 22xy 3 y 2的最大值为: 22 ;k8时, x 2 2xy3y 2 的最小值为 22 。
【评论】解某些与圆的方程相关的条件制问y题,可应用圆的参数方程转变为三角函数问题的) ,则4( k ∈Z )8方法解决。
B二、求轨迹OAxC例 2 在圆 x 2y 24 上有定点 A (2,0),及图 1两个动点 B 、C ,且 A 、B 、C 按逆时针方向摆列,∠BAC= ,求△ABC 的重心 G (x , y )的轨迹方程。
3,得∠BOC= 2 4),则 B(2cos θ,2sin【解】由∠BAC= ,设∠ABO= θ( 0 3 3 3θ), C(2cos(θ+ 2 ),2sin(θ+ 2)),由重心坐标公式并化简,得:3 3x 22)cos(5,知 0≤x< 1,333,由y2sin()33333消去θ得:( x2) 2y24(0≤x<1=。
39【评论】用圆的几何性质,∠ BOC=2∠BAC=120 °,再以∠ABO= θ为参数,求出轨迹的参数方程,在消参后,要注意x 的范围的限制。
三、求范围例 3 已知点 P(x,y)是圆x2( y 1)21上随意一点,欲使不等式x+y+c≥0 恒建立,求 c 的取值范围。
§2 直线和圆锥曲线的参数方程2.1 直线的参数方程 2.2 圆的参数方程1.直线的参数方程(1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为 ⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)① 其中M (x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M 的位移,可以用有向线段PM→的数量来表示. (2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为 ⎩⎪⎨⎪⎧x =x 1+λx 21+λ,y =y 1+λy 21+λ(λ为参数,λ≠-1). 其中M (x ,y )为直线上的任意一点,参数λ的几何意义是动点M 分有向线段QP →的数量比QM MP .当λ>0时,M 为内分点;当λ<0且λ≠-1时,M 为外分点; 当λ=0时,点M 与Q 重合. 2.圆的参数方程(1)圆心在原点、半径为r 的圆的参数方程⎩⎨⎧x =r cos α,y =r sin α(α为参数).参数α的几何意义是OP 与x 轴正方向的夹角.(2)去掉圆与x 轴负半轴交点,圆心在原点、半径为r 的圆的参数方程.⎩⎪⎨⎪⎧x =(1-k 2)r 1+k 2,y =2kr 1+k 2(k 为参数)参数k 的几何意义是直线AP 的斜率.【思维导图】【知能要点】 1.直线的参数方程. 2.直线的参数方程的应用. 3.圆的参数方程及应用.题型一 直线的参数方程直线的参数方程⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α (α为参数)中,α,x 0,y 0都是常数,对于同一直线,选取的参数不同,会得到不同的参数方程.对于直线普通方程y =2x +1,如果令x =t ,可得到参数方程⎩⎨⎧x =t ,y =2t +1 (t 为参数);如果令x =t2,可得到参数方程⎩⎪⎨⎪⎧x =t 2,y =t +1(t 为参数).这样的参数方程中的t 不具有一定的几何意义,但是在实际应用中有时能够简化某些运算.例如,动点M 做匀速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,点M 从A 点(1,1)开始运动,求点M 的轨迹的参数方程.点M 的轨迹的参数方程可以直接写为⎩⎨⎧x =1+9t ,y =1+12t (t 为参数).【例1】 设直线的参数方程为⎩⎪⎨⎪⎧x =-4+22t ,y =22t(t 为参数),点P 在直线上,且与点M 0(-4,0)的距离为2,若该直线的参数方程改写成⎩⎨⎧x =-4+t ,y =t (t 为参数),则在这个方程中点P 对应的t 值为________. 解析 由|PM 0|=2知t =±2,代入第一个参数方程,得点P 的坐标分别为(-3,1)或(-5,-1),再把点P 的坐标代入第二个参数方程可得t =1或t =-1. 答案 ±1【反思感悟】 直线参数方程的标准形式中的参数具有相应的几何意义,本题正是使用了其几何意义,简化了运算,这也正是直线参数方程标准式的优越性所在.1.已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)和点N (-2,6)的距离.解 由直线方程3x -4y +1=0可知,直线的斜率为34,设直线的倾斜角为α,则tan α=34,sin α=35,cos α=45.又点P (1,1)在直线l 上,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =1+35t(t 为参数). 因为3×5-4×4+1=0,所以点M 在直线l 上. 由1+45t =5,得t =5,即点P 到点M 的距离为5.因为点N 不在直线l 上,故根据两点之间的距离公式,可得|PN |=(1+2)2+(1-6)2=34.【例2】 已知直线l 经过点P (1,1),倾斜角α=π6, (1)写出直线l 的参数方程;(2)设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积.解(1)直线的参数方程是⎩⎪⎨⎪⎧x =1+32t ,y =1+12t(t 是参数).(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A ,B 的坐标分别为A ⎝ ⎛⎭⎪⎫1+32t 1,1+12t 1,B ⎝⎛⎭⎪⎫1+32t 2,1+12t 2.以直线l 的参数方程代入圆的方程x 2+y 2=4, 整理得到t 2+(3+1)t -2=0.①因为t 1和t 2是方程①的解,从而t 1t 2=-2. 所以|P A |·|PB |=|t 1t 2|=|-2|=2.【反思感悟】 本题P 到A 、B 两点的距离就是参数方程中t 的两个值,可以充分利用参数的几何意义.2.已知直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t (t 为参数).(1)分别求t =0,2,-2时对应的点M (x ,y ); (2)求直线l 的倾斜角;(3)求直线l 上的点M (-33,0)对应的参数t ,并说明t 的几何意义.解(1)由直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t(t 为参数)知当t =0,2,-2时,分别对应直线l 上的点(-3,2),(0,3),(-23,1).(2)法一 化直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t(t 为参数)为普通方程为y -2=33(x +3),其中k =tan α=33,0≤α<π. ∴直线l 的倾斜角α=π6.法二由于直线l :⎩⎪⎨⎪⎧x =-3+t cos π6,y =2+t sin π6(t 为参数),这是过点M 0(-3,2),且倾斜角α=π6的直线,故π6为所求. (3)由上述可知直线l 的单位方向向量 e =⎝ ⎛⎭⎪⎫cos π6,sin π6=⎝ ⎛⎭⎪⎫32,12. ∵M 0(-3,2),M (-33,0),∴M 0M →=(-23,-2)=-4⎝ ⎛⎭⎪⎫32,12=-4e , ∴点M 对应的参数t =-4,几何意义为|M 0M →|=4, 且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方).题型二 直线参数方程的应用利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.【例3】 过点P ⎝ ⎛⎭⎪⎫102,0作倾斜角为α的直线与曲线x 2+12y 2=1交于点M ,N ,求|PM |·|PN |的最小值及相应的α的值. 解设直线为⎩⎨⎧x =102+t cos α,y =t sin α(t 为参数),代入曲线并整理得(1+11sin 2α)t 2+(10cos α)t +32=0. 则|PM |·|PN |=|t 1t 2|=321+11sin 2 α.所以当sin 2 α=1时,即α=π2,|PM |·|PN |的最小值为18,此时α=π2.【反思感悟】 利用直线的参数方程中参数的几何意义,将最值问题转化为三角函数的值域,利用三角函数的有界性解决.3.已知曲线的参数方程⎩⎨⎧x =3cos θ,y =2sin θ(θ为参数),求曲线上一点P 到直线⎩⎨⎧x =2-3t ,y =2+2t(t 为参数)的最短距离. 解 P (3cos θ,2sin θ)直线:2x +3y -10=0 d =|6cos θ+6sin θ-10|13=|62sin ⎝ ⎛⎭⎪⎫θ+π4-10|1362sin ⎝ ⎛⎭⎪⎫θ+π4-10∈[-62-10,62-10]∴|62sin ⎝ ⎛⎭⎪⎫θ+π4-10|13∈⎣⎢⎡⎦⎥⎤10-6213,10+6213 ∴d min =10-6213.【例4】 如图所示,过不在椭圆x 2a 2+y 2b 2=1上的任一点P 作两条直线l 1,l 2分别交椭圆于A ,B 和C ,D 四点,若l 1,l 2的倾斜角为α,β且满足α+β=π.求证:A ,B ,C ,D 四点共圆. 证明 设P (x 0,y 0),直线l 1:⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α (t 为参数),直线l 2:⎩⎨⎧x =x 0+p cos β,y =y 0+p sin β (p 为参数),分别代入椭圆方程得(b 2cos 2 α+a 2sin 2 α)t 2+2(b 2x 0cos α+a 2y 0sin α)t +b 2x 20+a 2y 20-a 2b 2=0; (b 2cos 2 β+a 2sin 2 β)p 2+2(b 2x 0cos β+a 2y 0sin β)p +b 2x 20+a 2y 20-a 2b 2=0.∵α+β=π,∴cos 2 α=cos 2 β,sin 2 α=sin 2 β,∴t 1t 2=p 1p 2,即|P A |·|PB |=|PC |·|PD |.由平面几何知识知,A ,B ,C ,D 四点共圆. 【反思感悟】 本题利用平面几何知识,要证四点A ,B ,C ,D 共圆,只需证|P A |·|PB |=|PC |·|PD |,又转化为距离问题,利用参数的几何意义计算即可.4.直线l 通过P 0(-4,0),倾斜角α=π6,l 与圆x 2+y 2=7相交于A ,B 两点. (1)求弦长|AB |;(2)过P 0作圆的切线,求切线长; (3)求|P 0A |和|P 0B |的长; (4)求交点A ,B 的坐标.解 ∵直线l 通过P 0(-4,0),倾斜角α=π6, 所以可设直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =t 2,代入圆方程,得⎝ ⎛⎭⎪⎫-4+32t 2+⎝ ⎛⎭⎪⎫12t 2=7,整理得t 2-43t +9=0.(1)设A ,B 对应的参数分别为t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1t 2=9, ∴|AB |=|t 2-t 1|=(t 1+t 2)2-4t 1t 2=2 3. (2)设过P 0的切线为P 0T ,切点为T , 则|P 0T |2=|P 0A |·|P 0B |=|t 1t 2|=9, ∴切线长|P 0T |=3.(3)解方程t 2-43t +9=0,得t 1=33,t 2=3, ∴|P 0A |=33,|P 0B |= 3.(4)将t 1=33,t 2=3代入直线参数方程⎩⎪⎨⎪⎧x =-4+32t ,y =t 2,得A 点坐标为⎝ ⎛⎭⎪⎫12,332,B 点坐标为⎝ ⎛⎭⎪⎫-52,32. 题型三 圆的参数方程及其应用如果取半径绕原点O 逆时针旋转的转过的角度θ为参数,圆x 2+y 2=r 2对应的参数方程为⎩⎨⎧x =r cos θ,y =r sin θ.同理,圆(x -x 0)2+(y -y 0)2=r 2对应的参数方程为⎩⎨⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).圆的参数方程对于需要将圆上点的两个坐标分别表示,代入计算的问题比较方便. 【例5】 圆的直径AB 上有两点C 、D ,且|AB |=10,|AC |=|BD |=4,P 为圆上一点,求|PC |+|PD |的最大值.分析 本题应考虑数形结合的方法,因此需要先建立平面直角坐标系.将P 点坐标用圆的参数方程的形式表示出来,θ为参数,那么|PC |+|PD |就可以用只含有θ的式子来表示,再利用三角函数等相关知识计算出最大值.解 以AB 所在直线为x 轴,以线段AB 的中点为原点建立平面直角坐标系.因为|AB |=10,所以圆的参数方程为⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数).因为|AC |=|BD |=4,所以C ,D 两点的坐标为C (-1,0),D (1,0).因为点P 在圆上,所以可设点P 的坐标为(5cos θ,5sin θ). 所以|PC |+|PD |=(5cos θ+1)2+(5sin θ)2 +(5cos θ-1)2+(5sin θ)2 =26+10cos θ+26-10cos θ =(26+10cos θ+26-10cos θ)2 =52+2262-100cos 2 θ.当cos θ=0时,(|PC |+|PD |)max =52+52=226. ∴|PC |+|PD |的最大值为226.【反思感悟】 解题时将所求式子和图形联系起来,利用圆的参数方程表示P 点坐标,结合三角函数的值域进行计算.5.已知实数x ,y 满足(x -1)2+(y -1)2=9,求x 2+y 2的最大值和最小值.解 由已知,可把点(x ,y )视为圆(x -1)2+(y -1)2=9上的点,设⎩⎨⎧x =1+3cos θ,y =1+3sin θ(θ为参数).则x 2+y 2=(1+3cos θ)2+(1+3sin θ)2 =11+6(sin θ+cos θ)=11+62sin ⎝ ⎛⎭⎪⎫θ+π4∵-1≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,∴11-62≤x 2+y 2≤11+6 2. ∴x 2+y 2的最大值为11+62, 最小值为11-6 2.1.求直线l 1:⎩⎨⎧x =1+t ,y =-5+3t (t 为参数)和直线l 2:x -y -23=0的交点P 的坐标,及点P 与Q (1,-5)的距离.解 将⎩⎨⎧x =1+t ,y =-5+3t 代入x -y -23=0,得t =23,∴P (1+23,1),而Q (1,-5), 得|PQ |=(23)2+62=4 3.2.已知直线l 的参数方程为⎩⎨⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.解 (1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.3.已知椭圆的中心在原点,焦点在y 轴上且长轴长为4,短轴长为2,直线l 的参数方程为⎩⎨⎧x =t ,y =m +2t (t 为参数).当m 为何值时,直线l 被椭圆截得的弦长为6?解 椭圆方程为y 24+x 2=1,化直线参数方程⎩⎨⎧x =t ,y =m +2t 为⎩⎪⎨⎪⎧x =55t ′,y =m +255t ′ (t ′为参数). 代入椭圆方程得⎝ ⎛⎭⎪⎫m +255t ′2+4⎝ ⎛⎭⎪⎫55t ′2=4 ⇔8t ′2+45mt ′+5m 2-20=0.当Δ=80m 2-160m 2+640=640-80m 2>0, 即-22<m <22, 方程有两不等实根t ′1、t ′2,则弦长为|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=640-80m 28,依题意知640-80m 28=6,解得m =±455.[P 30思考交流]1.经过两点Q (1,1),P (4,3)的直线的参数方程.如果应用共线向量的充要条件来求,方程及参数的含义分别是什么?答 在直线PQ 上任取一点M (x ,y ),PM→=(x -1,y -1),QM →=(x -4,y -3),∵P 、Q 、M 三点共线,∴PM→∥QM →,∴PM →=tQM →,⎩⎪⎨⎪⎧x -1=t (x -4),y -1=t (y -3),化简为⎩⎪⎨⎪⎧x =1-4t 1-t,y =1-3t 1-t,此即为过P 、Q 两点的直线的参数方程.参数t 的含义是有向线段PM→、QM →的比值.2.比较直线的参数方程与普通方程体会各自的优势.答 直线的普通方程直观地反映了变量x、y 之间的关系,方程是唯一的. 直线的参数方程中反映了变量x 、y 分别随参数的变化而变化的规律.方程是不唯一的,随参数的选取而有所不同.[P 33思考交流]给定参数方程⎩⎨⎧x =a +r cos α,y =b +r sin α其中a 、b 是常数. 讨论下列问题:(1)如果r 是常数,α是参数,那么参数方程表示的曲线是什么?(2)如果α是常数,r 是参数,那么参数方程表示的曲线是什么?答 (1)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α⇒⎩⎪⎨⎪⎧x -a =r cos α,y -b =r sin α=====消掉参数α>(x -a )2+(y -b )2=r 2. 其中r 为常数,表示以(a ,b )为圆心,r 为半径的圆.(2)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α⇒⎩⎪⎨⎪⎧x -a =r cos α,y -b =r sin α=====消掉参数t >x -a y -b =tan α.整理得x -tan α·y +b ·tan α-a =0,其中a 、b 、tan α为常数.方程为过点(a ,b ),斜率为1tan α的直线.【规律方法总结】1.利用直线的参数方程⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(α为参数)中参数的几何意义,在解决直线与曲线交点问题时,可以方便地求出相应的距离.2.直线的参数方程有不同的形式,可以允许参数t 没有明显的几何意义,在直线与圆锥曲线的问题中,利用参数方程有时可以简化计算.一、选择题1.若直线的参数方程为⎩⎨⎧x =1+2t ,y =2-3t(t 为参数),则直线的斜率为( ) A.23 B.-23C.32D.-32 解析 k =y -2x -1=-3t 2t =-32. 答案 D2.曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析 消去参数θ,将参数方程化为普通方程.曲线可化为(x +1)2+(y -2)2=1,其对称中心为圆心(-1,2),该点在直线y =-2x 上,故选B.答案 B3.直线⎩⎪⎨⎪⎧x =1+12t ,y =-33+32t(t 为参数)和圆x 2+y 2=16交于A ,B 两点,则AB 的中点坐标为( )A.(3,-3)B.(-3,3)C.(3,-3)D.(3,-3)解析 ⎝ ⎛⎭⎪⎫1+12t 2+⎝⎛⎭⎪⎫-33+32t 2=16, 得t 2-8t +12=0,t 1+t 2=8,t 1+t 22=4, 中点为⎩⎪⎨⎪⎧x =1+12×4,y =-33+32×4,⇒⎩⎪⎨⎪⎧x =3,y =- 3. 答案 D4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.14B.214C. 2D.2 2解析 直线l 的参数方程⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数)化为直角坐标方程是y =x -4,圆C 的极坐标方程ρ=4cos θ化为直角坐标方程是x 2+y 2-4x =0.圆C 的圆心(2,0)到直线x -y -4=0的距离为d =22= 2.又圆C 的半径r =2,因此直线l 被圆C 截得的弦长为2r 2-d 2=2 2. 故选D.答案 D5.直线⎩⎨⎧x =t cos α,y =t sin α (t 为参数)与圆⎩⎨⎧x =4+2cos θ,y =2sin θ(θ为参数)相切,则直线的倾斜角为( )A.π6或5π6B.π4或5π6C.π3或2π3D.-π6或-5π6 解析 直线方程为y =tan α·x ,圆为:(x -4)2+y 2=4,利用图形可知直线的倾斜角为π6或56π.答案 A二、填空题6.在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t(t 为参数)的普通方程为________. 解析 ∵x =2+22t ,∴22t =x -2,代入y =1+22t ,得y =x -1,即x -y -1=0.答案 x -y -1=07.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________. 解析 直线为x +y -1=0,圆心到直线的距离d =12=22,弦长d =2 22-⎝ ⎛⎭⎪⎫222=14. 答案 148.经过点P (1,0),斜率为34的直线和抛物线y 2=x 交于A 、B 两点,若线段AB 中点为M ,则M 的坐标为________.解析直线的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =35t (t 是参数),代入抛物线方程得9t 2-20t -25=0.∴中点M 的相应参数为t =12×209=109.∴点M 的坐标是⎝ ⎛⎭⎪⎫179,23. 答案 ⎝ ⎛⎭⎪⎫179,23 9.在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t -1t ,y =t +1t (t 为参数),l 与C 相交于A ,B 两点,则|AB |=________.解析 化极坐标方程为直角坐标方程,化参数方程为普通方程,联立直线l 和曲线C 的方程,求出交点A ,B 的坐标,利用两点间的距离公式求解.由ρ(sin θ-3cos θ)=0,得ρsin θ=3ρcos θ,则y =3x .由⎩⎪⎨⎪⎧x =t -1t ,y =t +1t ,得y 2-x 2=4. 由⎩⎪⎨⎪⎧y =3x ,y 2-x 2=4,可得⎩⎪⎨⎪⎧x =22,y =322或⎩⎪⎨⎪⎧x =-22,y =-322,不妨设A ⎝ ⎛⎭⎪⎫22,322,则B ⎝ ⎛⎭⎪⎫-22,-322, 故|AB |=⎝ ⎛⎭⎪⎫-22-222+⎝ ⎛⎭⎪⎫-322-3222=2 5. 答案 2 5三、解答题10.直线过点A (1,3),且与向量(2,-4)共线.(1)写出该直线的参数方程;(2)求点P (-2,-1)到此直线的距离.解 (1)设直线上任意一点坐标为(x ,y ),则(x ,y )=(1,3)+t (2,-4). ∴直线的参数方程为⎩⎨⎧x =1+2t ,y =3-4t . (2)将参数方程化为普通方程为2x +y -5=0,则|-4-1-5|5=25, ∴点P (-2,-1)到此直线的距离是2 5.11.经过点A ⎝ ⎛⎭⎪⎫-3,-32,倾斜角为α的直线l 与圆x 2+y 2=25相交于B ,C 两点. (1)求弦BC 的长;(2)当A 恰为BC 的中点时,求直线BC 的方程;(3)当|BC |=8时,求直线BC 的方程;(4)当α变化时,求动弦BC 的中点M 的轨迹方程.解 取AP =t 为参数(P 为l 上的动点),则l 的参数方程为⎩⎪⎨⎪⎧x =-3+t cos α,y =-32+t sin α,代入x 2+y 2=25,整理,得t 2-3(2cos α+sin α)t -554=0.∵Δ=9(2cos α+sin α)2+55>0恒成立.∴方程必有相异两实根t 1,t 2,且t 1+t 2=3(2cos α+sin α),t 1·t 2=-554.(1)|BC |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =9(2cos α+sin α)2+55.(2)∵A 为BC 中点,∴t 1+t 2=0,即2cos α+sin α=0,∴tan α=-2.故直线BC 的方程为y +32=-2(x +3),即4x +2y +15=0.(3)∵|BC |=9(2cos α+sin α)2+55=8, ∴(2cos α+sin α)2=1,∴cos α=0或tan α=-34.∴直线BC 的方程是x =-3或3x +4y +15=0.(4)∵BC 的中点M 对应的参数是t =t 1+t 22=32(2cos α+sin α),∴点M 的轨迹方程为⎩⎪⎨⎪⎧x =-3+32cos α(2cos α+sin α),y =-32+32sin α(2cos α+sin α)(0≤α<π), ∴⎩⎪⎨⎪⎧x +32=32⎝ ⎛⎭⎪⎫cos 2α+12sin 2α,y +34=32⎝ ⎛⎭⎪⎫sin 2α-12cos 2α.∴⎝ ⎛⎭⎪⎫x +322+⎝ ⎛⎭⎪⎫y +342=4516.即点M 的轨迹是以⎝ ⎛⎭⎪⎫-32,-34为圆心,以354为半径的圆.。