通用版2019版高考数学(文)二轮复习:专题检测(十三) 直线与圆(含解析)
- 格式:doc
- 大小:130.00 KB
- 文档页数:7
高中数学必修2——直线与圆复习知识点一、直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为 ()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
专题直线与圆()【自主热身,归纳总结】、在平面直角坐标系中,已知过点(,-)的圆与直线+=相切,且圆心在直线=-上,则圆的标准方程为.【答案】: (-)+(+)=解法(几何法) 点(,-)在直线+=上,故点是切点.过点(,-)与直线+-=垂直的直线方程为-=,由解得所以圆心(,-).又==,所以圆的标准方程为(-)+(+)=.、在平面直角坐标系中,直线+-=被圆(-)+(+)=截得的弦长为.【答案】:.【解析】圆心为(,-),半径=.圆心到直线的距离==,所以弦长为==.、若直线与圆始终有公共点,则实数的取值范围是.【答案】:≤≤.【解析】因为,所以由题意得:,化简得即≤≤.、在平面直角坐标系中,以点为圆心且与直线()相切的所有圆中,半径最大的圆的标准方程为.【答案】:(-)+=.【解析】由直线---=得(-)-(+)=,故直线过点(,-).当切线与过(,),(,-)两点的直线垂直时,圆的半径最大,此时有==,故所求圆的标准方程为(-)+=.、圆心在抛物线=上,并且和该抛物线的准线及轴都相切的圆的标准方程为.【答案】: (±)+=思路分析求圆的方程就是要确定它的圆心与半径,根据圆与抛物线的准线以及与轴都相切,得到圆心的一个等式,再根据圆心在抛物线上,得到另一个等式,从而可求出圆心的坐标,由此可得半径.因为圆心在抛物线=上,所以设圆心为(,),则=.又圆与抛物线的准线及轴都相切,故+==,由此解得=±,=,=,所以所求圆的方程为(±)+=.解后反思凡涉及抛物线上点到焦点的距离或到准线的距离时,一般运用定义转化为到准线的距离或到焦点的距离来进行处理,本题中充分运用抛物线定义实施转化,其关键在于求圆心的坐标.、在平面直角坐标系中,已知圆:(-)+(-)=,圆:(-)+(+)=,若圆心在轴上的圆同时平分圆和圆的圆周,则圆的方程是.、. 在平面直角坐标系中,已知过点()的直线与圆(+)+(-)=相切,且与直线+-=垂直,则实数=. 【答案】:思路分析可用过圆上一点的切线方程求解;也可用垂直条件,设切线方程(-)-(-)=,再令圆心到切线的距离等于半径.因为点在圆上,所以切线方程为(+)(+)+(-)(-)=,即--=.由两直线的法向量(,-)与()垂直,得-=,即=.思想根源以圆(-)+(-)=上一点(,)为切点的切线方程为(-)(-)+(-)(-)=.、若直线:=+和直线:=+将圆(-)+(-)=分成长度相等的四段弧,则+=.。
专题限时集训(九) 直线与圆[专题通关练] (建议用时:30分钟)1.(2019·江阴模拟)点P 是直线x +y -2=0上的动点,点Q 是圆x 2+y 2=1上的动点,则线段PQ 长的最小值为( )A.2-1 B .1 C.2+1D .2A [根据题意,圆x 2+y 2=1的圆心为(0,0),半径r =1,圆心(0,0)到直线x +y -2=0的距离d =|2|2=2,则线段PQ 长的最小值为2-1,故选A.]2.直线l 1:mx -2y +1=0,l 2:x -(m -1)y -1=0,则“m =2”是“l 1∥l 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件C [由l 1∥l 2得-m (m -1)=1×(-2),得m =2或m =-1,经验证,当m =-1时,直线l 1与l 2重合,不合题意.所以“m =2”是“l 1∥l 2”的充要条件,故选C.]3.圆x 2-4x +y 2=0与圆x 2+y 2+4x +3=0的公切线共有( ) A .1条 B .2条 C .3条D .4条D [根据题意,圆x 2-4x +y 2=0,即(x -2)2+y 2=4,其圆心坐标为(2,0),半径为2; 圆x 2+y 2+4x +3=0,即圆(x +2)2+y 2=1,其圆心坐标为(-2,0),半径为1; 则两圆的圆心距为4,两圆半径和为3,因为4>3,所以两圆的位置关系是外离,故两圆的公切线共4条.故选D.]4.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6B .-π3或π3C .-π6或π6D.π6A [由题意可知,圆心P (2,3),半径r =2, ∴圆心P 到直线y =kx +3的距离d =|2k |1+k2,由d 2+⎝ ⎛⎭⎪⎫2322=r 2,可得4k 21+k 2+3=4,解得k =±33.设直线的倾斜角为α,则tan α=±33,又α∈[0,π), ∴α=π6或5π6.]5.在平面直角坐标系xOy 中,以(-2,0)为圆心且与直线(3m +1)x +(1-2m )y -5=0(m ∈R )相切的所有圆中,面积最大的圆的标准方程是( )A .(x +2)2+y 2=16 B .(x +2)2+y 2=20 C .(x +2)2+y 2=25D .(x +2)2+y 2=36C [将直线(3m +1)x +(1-2m )y -5=0变形为(3x -2y )m +(x +y -5)=0.由⎩⎪⎨⎪⎧3x -2y =0,x +y -5=0,得⎩⎪⎨⎪⎧x =2,y =3.即直线恒过定点M (2,3).设圆心为P ,即P (-2,0),由题意可知, 当圆的半径r =|MP |时,圆的面积最大,此时|MP |2=r 2=25. 即圆的标准方程为(x +2)2+y 2=25.]6.若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是________.x -y -3=0 [记题中圆的圆心为O ,则O (1,0),因为P (2,-1)是弦AB 的中点,所以直线AB 与直线OP 垂直,易知直线OP 的斜率为-1,所以直线AB 的斜率为1,故直线AB 的方程为x -y -3=0.]7.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________.102 [联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为 |-5|a 2+4a 2=5a(a >0).故222-⎝ ⎛⎭⎪⎫5a 2=22,解得a 2=52,因为a >0,所以a =102.]8.设P 为直线3x -4y +11=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值为________.3 [圆的标准方程为(x -1)2+(y -1)2=1,圆心为C (1,1),半径为r =1,根据对称性可知,四边形PACB 的面积为2S △APC =2×12|PA |r =|PA |=|PC |2-r 2,要使四边形PACB 的面积最小,则只需|PC |最小,最小值为圆心到直线l :3x -4y +11=0的距离d =|3-4+11|32+-42=105=2. 所以四边形PACB 面积的最小值为|PC |2min -r 2=4-1= 3.][能力提升练] (建议用时:20分钟)9.实数x ,y 满足x 2+y 2+2x =0,则yx -1的取值范围是( )A .[-3,3]B .(-∞,-3]∪[3,+∞) C.⎣⎢⎡⎦⎥⎤-33,33 D.⎝ ⎛⎦⎥⎤-∞,-33∪⎣⎢⎡⎭⎪⎫33,+∞ C [设yx -1=t ,,则tx -y -t =0与圆(x +1)2+y 2=1有交点,∴圆心(-1,0)到直线tx-y -t =0的距离d =|-t -t |t 2+1≤1,解得-33≤t ≤33.故选C.]10.(2019·赣州模拟)已知动直线y =kx -1+k (k ∈R )与圆C :x 2+y 2-2x +4y -4=0(圆心为C )交于点A 、B ,则弦AB 最短时,△ABC 的面积为 ( )A .3B .6 C. 5D .2 5D [根据题意,圆C :x 2+y 2-2x +4y -4=0可化为(x -1)2+(y +2)2=9,其圆心为(1,-2),半径r =3.动直线y =kx -1+k ,即y +1=k (x +1),恒过定点P (-1,-1),又由(-1-1)2+(-1+2)2<9,可知点P (-1,-1)在圆C 的内部,动直线y =kx -1+k (k ∈R )与圆C :x 2+y 2-2x +4y -4=0(圆心为C )交于点A 、B ,当P 为AB 的中点即CP 与AB 垂直时,弦AB 最短,此时|CP |=5,弦AB 的长度为2×r 2-|CP |2=4,此时,△ABC 的面积S =12×|CP |×|AB |=12×4×5=2 5.故选D.]11.若圆C :x 2+⎝ ⎛⎭⎪⎫y +12m 2=n 的圆心为椭圆M :x 2+my 2=1的一个焦点,且圆C 经过椭圆M 的另一个焦点,则圆C 的标准方程为________.x 2+(y +1)2=4 [∵圆C 的圆心为⎝⎛⎭⎪⎫0,-12m ,∴1m -1=12m ,解得m =12.又圆C 经过M 的另一个焦点,则圆C 经过点(0,1),从而n =4,故圆C 的标准方程为x 2+(y +1)2=4.]12.(2019·九江二模)已知圆E 经过M (-1,0),N (0,1),P ⎝ ⎛⎭⎪⎫12,-32三点.(1)求圆E 的方程;(2)若过点C (2,2)作圆E 的两条切线,切点分别是A ,B ,求直线AB 的方程. [解](1)根据题意,设圆E 的圆心E 坐标为(a ,b ),半径为r ,则有⎩⎪⎨⎪⎧a +12+b 2=r 2,a 2+b -12=r 2,⎝ ⎛⎭⎪⎫a -122+⎝ ⎛⎭⎪⎫b +322=r 2,解得⎩⎪⎨⎪⎧a =0,b =0,r =1,则圆E 的方程为x 2+y 2=1.(2)根据题意,过点C (2,2)作圆E 的两条切线,切点分别是A ,B , 设以C 为圆心,CA 为半径的圆为圆C ,其半径为R , 则有R =|CA |=|OC |2-r 2=7, 则圆C 的方程为(x -2)2+(y -2)2=7, 即x 2+y 2-4x -4y +1=0,又由直线AB 为圆E 与圆C 的公共弦所在的直线,则有⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2-4x -4y +1=0,解得2x +2y -1=0,则AB 的方程为:2x +2y -1=0.题号 内容押题依据1点到直线的距离公式,数形由动态的观点,分析直线与圆的位置关系,并通过数结合思想 形结合的思想及方程思想确定方程的具体位置,体现了高考的最新动向2直线与圆的位置关系,平面向量,轨迹问题,根与系数的关系用代数的方法研究直线与圆的位置关系可以巧妙的将函数与方程,根与系数的关系等知识交汇在一起,考查考生的运算能力和等价转化能力【押题1】 已知直线l :x -2y +4=0,圆C :(x -1)2+(y +5)2=80,那么圆C 上到l 的距离为5的点一共有( )A .1个B .2个C .3个D .4个C [由圆C :(x -1)2+(y +5)2=80,可得圆心C (1,-5),半径R =45, 又圆心C (1,-5)到直线x -2y +4=0的距离d =|1-2×-5+4|12+-22=155=35, 如图所示,由图象可知,点A ,B ,D 到直线x -2y +4=0的距离都为5,所以圆C 上到l 的距离为5的点一共3个,故选C.]【押题2】 已知圆C :(x -2)2+(y -2)2=16,点A (10,0). (1)设点P 是圆C 上的一个动点,求AP 的中点Q 的轨迹方程; (2)直线l :kx -y -10k =0与圆C 交于M ,N ,求AM →·AN →的值. [解](1)设Q (x ,y ),P (x 0,y 0),则(x 0-2)2+(y 0-2)2=16, 由x =x 0+102,y =y 0+02,解得x 0=2x -10,y 0=2y .代入圆的方程可得:(2x -10-2)2+(2y -2)2=16, 即(x -6)2+(y -1)2=4.∴AP 的中点Q 的轨迹方程为:(x -6)2+(y -1)2=4.(2)直线l :kx -y -10k =0与圆C 交于M (x 1,y 1),N (x 2,y 2), 把直线l 的方程代入圆的方程可得:(x -2)2+(kx -10k -2)2=16, 化为:(1+k 2)x 2-(20k 2+4k +4)x +100k 2+40k -12=0.Δ>0.∴x 1x 2=100k 2+40k -121+k 2,x 1+x 2=20k 2+4k +41+k2. ∴AM →·AN →=(x 1-10,y 1)(x 2-10,y 2)=(x 1-10)(x 2-10)+y 1y 2=(x 1-10)(x 2-10)+(kx 1-10k )(kx 2-10k )=(1+k 2)x 1x 2-(10k 2+10)(x 1+x 2)+100+100k 2=(1+k 2)100k 2+40k -121+k 2-(10k 2+10)20k 2+4k +41+k2+100+100k 2=48.。
一.基础题组1.【2009江西,文16】设直线系:cos (2)sin 1(02)M x y θθθπ+-=≤≤,对于下列四个A .存在一个圆与所有直线相交B .存在一个圆与所有直线不相交C .存在一个圆与所有直线相切D .M 中的直线所能围成的正三角形面积都相等其中真2.【2018江西,文10】直线3y kx =+与圆22(2)(3)4x y -+-=相交于,M N 两点,若MN ≥k 的取值范围是( )A .3,04⎡⎤-⎢⎥⎣⎦B .33⎡⎤⎢⎥⎣⎦C .⎡⎣D .2,03⎡⎤-⎢⎥⎣⎦[:3.【2018江西,文14】若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆C 的方程是 .二.能力题组1.【2007江西,文12】设椭圆22221(0)x y a b a b+=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=上B.必在圆222x y +=外[: C.必在圆222x y +=内 D.以上三种情形都有可能2.【2012江西,文14】过直线x+y-=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是__________.[:三.拔高题组1.【2018江西,文10】如右图,OA=2(单位:m ),OB=1(单位:m),OA 与OB 的夹角为6π,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交与点C.甲.乙两质点同时从点O 出发,甲先以速度1(单位:ms )沿线段OB 行至点B ,再以速度3(单位:ms )沿圆弧BDC 行至点C 后停止,乙以速率2(单位:m/s )沿线段OA 行至A 点后停止.设t 时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S (t )(S (0)=0),则函数y=S (t )的图像大致是( )[:2.【2018江西,文10】如图.已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤x≤1,单位:s)的函数y=f (t)的图像大致为()[:。
(全国通用版)2019版高考数学一轮复习第十三单元直线与圆高考达标检测(三十六)直线、圆的位置关系命题3角度——判位置、求切线、解弦长理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学一轮复习第十三单元直线与圆高考达标检测(三十六)直线、圆的位置关系命题3角度——判位置、求切线、解弦长理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学一轮复习第十三单元直线与圆高考达标检测(三十六)直线、圆的位置关系命题3角度——判位置、求切线、解弦长理的全部内容。
高考达标检测(三十六)直线、圆的位置关系命题3角度——判位置、求切线、解弦长一、选择题1.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2错误!,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离解析:选B 由题知圆M的标准方程为x2+(y-a)2=a2(a>0),圆心(0,a)到直线x+y=0的距离d=错误!,所以2错误!=2错误!,解得a=2。
圆M,圆N的圆心距|MN|=错误!,两圆半径之差为1,半径之和为3,故两圆相交.2.若直线l:y=kx+1(k<0)与圆C:x2+4x+y2-2y+3=0相切,则直线l与圆D:(x -2)2+y2=3的位置关系是()A.相交B.相切C.相离D.不确定解析:选A 因为圆C的标准方程为(x+2)2+(y-1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l与圆C相切.所以错误!=错误!,解得k=±1,因为k<0,所以k=-1,所以直线l的方程为x+y-1=0。
专题10 直线与圆的应用1、【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】22(1)4x y -+=【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =−1,以F 为圆心,且与l 相切的圆的方程为(x −1)2+y 2=22,即为22(1)4x y -+=.2、【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.3、【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x轴的上方,求得32P ⎛- ⎝⎭,所以212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得32P ⎛- ⎝⎭,所以212PFk ==.本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁.4、【2018年高考全国I 卷文数】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为()2214x y ++=,所以圆的圆心为()0,1-,且半径是2,根据点到直线的距离公式可以求得d ==结合圆中的特殊三角形,可知AB==该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形,即半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形,利用勾股定理求得弦长.5、【2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】2220x y x +-=【解析】设圆的方程为220x y Dx Ey F ++++=,圆经过三点(0,0),(1,1),(2,0),则01104020F D E F D F =⎧⎪++++=⎨⎪+++=⎩,解得200D E F =-⎧⎪=⎨⎪=⎩,则圆的方程为2220x y x +-=. 6、【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x轴的上方,求得3,22P ⎛- ⎝⎭,所以212PFk ==方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛- ⎝⎭,所以212PF k ==.本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁.7、【2018年高考全国I 卷文数】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为()2214x y ++=,所以圆的圆心为()0,1-,且半径是2,根据点到直线的距离公式可以求得d ==结合圆中的特殊三角形,可知AB ==8、【2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】2220x y x +-=【解析】设圆的方程为220x y Dx Ey F ++++=,圆经过三点(0,0),(1,1),(2,0),则01104020F D E F D F =⎧⎪++++=⎨⎪+++=⎩,解得200D E F =-⎧⎪=⎨⎪=⎩,则圆的方程为2220x y x +-=. 求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.9、【2018年高考全国Ⅲ卷文数】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则AB =.点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1d ==故点P到直线20x y ++=的距离2d 的范围为,则[]2212,62ABP S AB d ==∈△. 故答案为A.本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.先求出A ,B 两点坐标得到AB ,再计算圆心到直线的距离,得到点P 到直线距离的范围,由面积公式计算即可.10、【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a . 故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x .因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.一、圆的有关概念和方程1、定义:在平面上到定点的距离等于定长的点的轨迹是圆2、圆的标准方程:设圆心的坐标(),C a b ,半径为r ,则圆的标准方程为:()()222x a y b r -+-=3、圆的一般方程:圆方程为220x y Dx Ey F ++++= (1)22,x y 的系数相同(2)方程中无xy 项(3)对于,,D E F 的取值要求:2240D E F +->4、确定圆的方程的方法和步骤;确定圆的方程主要方法是待定系数法,大致步骤为 (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F 代入标准方程或一般方程. 5.点与圆的位置关系 点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. 二、直线与圆的位置关系1、直线与圆位置关系的判定:相切,相交,相离,位置关系的判定有两种方式:(1)几何性质:通过判断圆心到直线距离与半径的大小得到直线与圆位置关系,设圆的半径为r ,圆心到直线的距离为d ,则:① 当r d >时,直线与圆相交② 当r d =时,直线与圆相切③ 当r d <时,直线与圆相离(2)代数性质:可通过判断直线与圆的交点个数得到直线与圆位置关系,即联立直线与圆的方程,再判断解的个数。
第二讲大题考法—-直线与圆题型(一)直线与圆的位置关系主要考查直线与圆的位置关系以及复杂背景下直线、圆的方程.[典例感悟][例1]如图,在Rt△ABC中,∠A为直角,AB边所在直线的方程为x-3y-6=0,点T(-1,1)在直线AC上,BC中点为M(2,0).(1)求BC边所在直线的方程;(2)若动圆P过点N(-2,0),且与Rt△ABC的外接圆相交所得公共弦长为4,求动圆P中半径最小的圆方程.[解](1)因为AB边所在直线的方程为x-3y-6=0,AC与AB垂直,所以直线AC的斜率为-3.故AC边所在直线的方程为y-1=-3(x+1),即3x+y+2=0。
设C为(x0,-3x0-2),因为M为BC中点,所以B(4-x0,3x0+2).点B代入x-3y-6=0,解得x0=-错误!,所以C错误!.所以BC所在直线方程为x+7y-2=0.(2)因为Rt△ABC斜边中点为M(2,0),所以M为Rt△ABC外接圆的圆心.又AM=22,从而Rt△ABC外接圆的方程为(x-2)2+y2=8。
设P(a,b),因为动圆P过点N,所以该圆的半径r=错误!,圆方程为(x-a)2+(y-b)2=r2。
由于⊙P与⊙M相交,则公共弦所在直线m的方程为(4-2a)x-2by+a2+b2-r2+4=0.因为公共弦长为4,⊙M半径为2错误!,所以M(2,0)到m的距离d=2,即错误!=2,化简得b2=3a2-4a,所以r=a+22+b2=错误!。
当a=0时,r最小值为2,此时b=0,圆的方程为x2+y2=4。
[方法技巧]解决有关直线与圆位置关系的问题的方法(1)直线与圆的方程求解通常用的待定系数法,由于直线方程和圆的方程均有不同形式,故要根据所给几何条件灵活使用方程.(2)对直线与直线的位置关系的相关问题要用好直线基本量之一斜率,要注意优先考虑斜率不存在的情况.(3)直线与圆的位置关系以及圆与圆的位置关系在处理时几何法优先,有时也需要用代数法即解方程组.[演练冲关]已知以点C 错误!(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为坐标原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. 解:(1)证明:因为圆C 过原点O ,所以OC 2=t 2+错误!. 设圆C 的方程是(x -t )2+错误!2=t 2+错误!, 令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,所以S △OAB =12OA ·OB =错误!×错误!×|2t |=4,即△OAB 的面积为定值. (2)因为OM =ON ,CM =CN , 所以OC 垂直平分线段MN 。
一、选择题1. 【2019高考北京文第7题】已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4 【答案】B考点:本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力.2. 【2019高考北京,文2】圆心为()1,1且过原点的圆的方程是( ) A .()()22111x y -+-= B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-= 【答案】D【解析】由题意可得圆的半径为r =()()22112x y -+-=,故选D .【考点定位】圆的标准方程.【名师点晴】本题主要考查的是圆的标准方程,属于容易题.解题时一定要抓住重要字眼“过原点”,否则很容易出现错误.解本题需要掌握的知识点是圆的标准方程,即圆心(),a b ,半径为r 的圆的标准方程是()()222x a y b r -+-=.3.【 2019湖南文6】若圆221:1C x y +=与圆222:680C x y x y m +--+=相外切,则m =( ).21A .19B .9C .11D -【答案】C【解析】因为()()22226803425x y x y m x y m +--+=⇒-+-=-,所以250m ->25m ⇒<且圆2C 的圆心为()3,4,,根据圆与圆外切的判定(圆心距离等于半径和)可得1=+9m ⇒=,故选C.【考点定位】圆与圆之间的外切关系与判断【名师点睛】本题主要考查了圆与圆的位置关系,解决问题的关键是根据条件得到圆的半径及圆心坐标,然后根据两圆满足的几何关系进行列式计算即可.4. 【2019全国2,文12】设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C )⎡⎣ (D )⎡⎢⎣ 【答案】A【考点定位】直线与圆的位置关系【名师点睛】本题考查直线与圆的位置关系,属于中档题,直线与直线设出角的求法,数形结合是快速解得本题的策略之一. 5. 【2019四川,9文】设,过定点的动直线和过定点的动直线交于点,则的取值范围是( )A 、B 、C 、D 、【答案】B 【解析】试题分析:易得.设,则消去得:,所以点P在以AB 为直径的圆上,,所以,令||10sin ,||10cos PA PB θθ==,则||||)4PA PB πθθθ+=+=+.因为||0,||0PA PB ≥≥,所以02πθ≤≤.sin()14πθ≤+≤||||PA PB ≤+≤.选B. 法二、因为两直线的斜率互为负倒数,所以,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换. 【名师点睛】在几何意义上表示P 点到与的距离之和,解题的关键是找P点的轨迹和轨迹方程;也可以使用代数方法,首先表示出,这样就转化为函数求最值问题了.6. 【2019高考四川,文10】设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) 【答案】D当t =0时,若r ≥5,满足条件的直线只有1条,不合题意,若0<r <5,则斜率不存在的直线有2条,此时只需对应非零的t 的直线恰有2条即可. 当t ≠0时,将m =3-2t 2代入△=16t 2+16m ,可得3-t 2>0,即0<t 2<3 又由圆心到直线的距离等于半径,可得d =r==由0<t 2<3,可得r ∈(2,4).选D【考点定位】本题考查直线、圆及抛物线等基本概念,考查直线与圆、直线与抛物线的位置关系、参数取值范围等综合问题,考查数形结合和分类与整合的思想,考查学生分析问题和处理问题的能力.【名师点睛】本题实质是考查弦的中垂线过定点问题,注意到弦的斜率不可能为0,但有可能不存在,故将直线方程设为x =ty +m ,可以避免忘掉对斜率不存在情况的讨论.在对r 的讨论中,要注意图形的对称性,斜率存在时,直线必定是成对出现,因此,斜率不存在(t =0)时也必须要有两条直线满足条件.再根据方程的判别式找到另外两条直线存在对应的r 取值范围即可.属于难题.7.【2019年.浙江卷.文5】已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值为( )A.2-B. 4-C. 6-D.8- 【答案】B考点:直线与圆相交,点到直线的距离公式的运用,容易题.【名师点睛】本题主要考查直线与圆相交的弦长问题,解决问题的关键点在讨论有关直线与圆的相交弦问题时,如能充分利用好平面几何中的垂径定理,并在相应的直角三角形中计算,往往能事半功倍.8. 【2019,安徽文6】过点(P 的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( )A.]60π,(B.]30π,( C.]60[π, D.]30[π,【答案】D . 【解析】试题分析:如下图,要使过点P 的直线l 与圆有公共点,则直线l 在PA 与PB 之间,因为1sin 2α=,所以6πα=,则23AOB πα∠==,所以直线l 的倾斜角的取值范围为]30[π,.故选D.考点:1.直线的倾斜角;2.直线与圆的相交问题.【名师点睛】研究直线与圆的相交问题,应牢牢记住三长关系,即半弦长2l、弦心距d 和半径长r 之间形成的数量关系为222()2l d r +=.但在具体做题过程中,常利用数形结合的方程进行求解,通过图形会很快了解具体的量的关系.另外,直线的倾斜角和斜率之间的关系也是重要考点,告知斜率的范围要能求出倾斜角的范围,反之一样.当90α=,斜率不存在. 9. 【2019高考安徽,文8】直线3x +4y =b 与圆222210x y x y +--+=相切,则b =( ) (A )-2或12 (B )2或-12 (C )-2或-12 (D )2或12 【答案】D【考点定位】本题主要考查利用圆的一般方程求圆的圆心和半径,直线与圆的位置关系,以及点到直线的距离公式的应用.【名师点睛】在解决直线与圆的位置关系问题时,有两种方法;方法一是代数法:将直线方程与圆的方程联立,消元,得到关于x (或y )的一元二次方程,通过判断0;0;0<∆=∆>∆来确定直线与圆的位置关系;方法二是几何法:主要是利用圆心到直线的距离公式求出圆心到直线的距离d ,然后再将d 与圆的半径r 进行判断,若r d >则相离;若r d =则相切;若r d <则相交;本题考查考生的综合分析能力和运算能力.12.【2019上海,文18】 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解 【答案】B【解析】由题意,直线1y kx =+一定不过原点O ,,P Q 是直线1y kx =+上不同的两点,则OP 与OQ 不平行,因此12210a b a b -≠,所以二元一次方程组112211a x b y a x b y +=⎧⎨+=⎩一定有唯一解.选B.【考点】向量的平行与二元一次方程组的解.【名师点睛】可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y 的二元一次方程组:ax by cdx ey f +=⎧⎨+=⎩,当a/d≠b/e 时,该方程组有一组解。
第1讲 直线与圆选题明细表知识点·方法巩固提高A巩固提高B直线及其方程1,4,10两条直线的位置关系2,84,9,15点到直线的距离16圆的方程3,5,1413直线与圆、圆与6,9,11,15,162,6,11,12圆的位置关系圆的弦长131,5,10,14综合问题7,12,173,7,8,16巩固提高A一、选择题1.过点(2,1)且倾斜角比直线y=-x-1的倾斜角小的直线方程是( A )(A)x=2(B)y=1(C)x=1(D)y=2解析:因为直线y=-x-1的斜率为-1,则倾斜角为,依题意,所求直线的倾斜角为-=,所以斜率不存在,所以过点(2,1)的直线方程为x=2.2.(2017·金丽衢十二校)设两直线l1:(3+m)x+4y=5-3m与l2:2x+(5+m)y=8,则“l1∥l2”是“m<-1”的( A )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件解析:若l1∥l2,则(3+m)(5+m)=4×2,解得m=-7或m=-1,当m=-1时,两直线重合,当m=-7时l1∥l2,所以“l1∥l2”是“m<-1”的充分不必要条件.故选A.3.方程|y|-1=表示的曲线是( D )(A)一个椭圆(B)一个圆(C)两个圆(D)两个半圆解析:由题意知|y|-1≥0,则y≥1或y≤-1,当y≥1时,原方程可化为(x-1) 2+(y-1)2=1(y≥1),其表示以(1,1)为圆心、1为半径、直线y=1上方的半圆;当y≤-1时,原方程可化为(x-1)2+(y+1)2=1(y≤-1),其表示以(1,-1)为圆心、1为半径、直线y=-1下方的半圆.所以方程|y|-1=表示的曲线是两个半圆,选D.4.直线l过点P(-1,2)且与以点M(-3,-2),N(4,0)为端点的线段恒相交,则l的斜率取值范围是( D )(A)[-,5](B)[-,0)∪(0,2](C)(-∞,-)∪[5,+∞)(D)(-∞,-]∪[2,+∞)解析:如图,因为P(-1,2),M(-3,-2),N(4,0),所以k PM==2,k PN= =-.由图可知,使直线l与线段MN相交的l的斜率取值范围是(-∞,-]∪[2,+∞).故选D.5.抛物线y2=4x与过其焦点且垂直于x轴的直线相交于A,B两点,其准线与x轴的交点为M,则过M,A,B三点的圆的标准方程是( D )(A)x2+y2=5 (B)(x-1)2+y2=1(C)(x-1)2+y2=2(D)(x-1)2+y2=4解析:由抛物线方程及题意知A(1,2),B(1,-2),M(-1,0),设所求圆的方程为x2+y2+Dx+Ey+F=0,所以解得从而所求方程为x2+y2-2x-3=0,即圆的标准方程为(x-1)2+y2=4.故选D.6.直线x-2y-3=0与圆C:(x-2)2+(y+3)2=9交于E,F两点,则△ECF的面积为( B )(A)(B)2 (C)(D)解析:由已知可得圆心到直线的距离为d=,所以|EF|=4,所以S△ECF=×4×=2.故选B.7.已知平面上两点A(-a,0),B(a,0)(a>0),若圆C:(x-3)2+(y-4)2=1上存在点P,使得∠APB=90°,则a的取值范围是( C )(A)[3,6](B)[3,7](C)[4,6](D)[0,7]解析:因为圆C:(x-3)2+(y-4)2=1,所以圆心C(3,4),半径r=1;设点P(m,n)在圆C上,则=(a+m,n),=(m-a,n);因为∠APB=90°,所以⊥,所以(m+a)(m-a)+n2=0,即a2=m2+n2,又|OP|=,|OP|的最大值是|OC|+r=5+1=6,最小值是|OC|-r=5-1=4,所以a的取值范围是[4,6].故选C.8.已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为( C )(A)5(B)4(C)2(D)1解析:由题意得a2b+[-(a2+1)]=0,所以b=,所以|ab|=|a×|=|a+|=|a|+||≥2.当且仅当|a|=1时等号成立.故选C.二、填空题9.直线l:x=my+2与圆M:x2+2x+y2+2y=0相切,则m的值等于 .解析:圆心M(-1,-1),圆半径为.由直线与圆相切得d==,得m=-7或m=1.答案:-7或110.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为 .解析:若直线过原点,则直线方程为3x+2y=0;若直线不过原点,则斜率为1,方程为y+3=x-2,即为x-y-5=0,故所求直线方程为3x+2y=0或x-y-5=0.答案:3x+2y=0或x-y-5=011.动直线l:y=kx-k+1(k∈R)经过的定点坐标为 ,若l和圆C:x2+y2=r2恒有公共点,则半径r的最小值是 .解析:当x=1时,y恒为1,故定点为(1,1),要直线和圆恒有公共点,则需(1,1)在圆内,即12+12≤r2,r≥.答案:(1,1) 12.当方程x2+y2+kx+2y+k2=0所表示的圆的面积取最大值时,直线y=(k-1) x+2的倾斜角α= .解析:由题意可知,圆的半径r==≤1,当半径r取最大值时,圆的面积最大,此时k=0,r=1,所以直线方程为y=-x+2,则有tan α=-1,又α∈[0,π),故α=.答案:13.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为2,则a= .解析:两圆方程作差易知弦所在的直线方程为y=,如图,由已知得|AC|=,|OA|=2,所以|OC|==1,所以a=1.答案:114.C的圆心在y轴正半轴上,且与x轴相切,被双曲线x2-=1的渐近线截得的弦长为,则圆C的方程为 .解析:依题意得,题中的双曲线的一条渐近线的斜率为,倾斜角为60°,结合图形(图略)可知,所求的圆C的圆心坐标是(0,1)、半径是1,因此其方程是x2+(y-1)2=1.答案:x2+(y-1)2=115.直线y=-x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m的取值范围是 .解析:当直线经过点(0,1)时,直线与圆有两个不同的交点,且另一个交点在第一象限,此时m=1;当直线与圆相切时,圆心到直线的距离d==1,解得m=(切点在第一象限),所以要使直线与圆在第一象限内有两个不同的交点,则1<m<.答案:(1,)16.当正实数m变化时,斜率不为0的定直线始终与圆(x-2m)2+(y+m)2=m2相切,则直线的方程为 .解析:设定直线的方程为y=kx+b,则=m,即(3k2+4k)m2+2b(2k+1) m+b2=0,因为该等式对任意m>0成立,故3k2+4k=0,2b(2k+1)=0,b2=0,即k=-,b=0,则直线的方程为y=-x.答案:y=-x三、解答题17.已知点G(5,4),圆C1:(x-1)2+(y-4)2=25,过点G的动直线l与圆C1相交于E,F两点,线段EF的中点为C,且C在圆C2上.(1)若直线mx+ny-1=0(mn>0)经过点G,求mn的最大值;(2)求圆C2的方程;(3)若过点A(1,0)的直线l1与圆C2相交于P,Q两点,线段PQ的中点为M.l1与l2:x+2y+2=0的交点为N,求证:|AM|·|AN|为定值.解:(1)因为点G(5,4)在直线mx+ny-1=0上,所以5m+4n=1,5m+4n≥2(当且仅当5m=4n时取等号),所以1≥80mn,即mn≤,所以(mn)max=.(2)由已知得圆C1的圆心为(1,4),半径为5,设C(x,y),则=(x-1,y-4),=(5-x,4-y),由题设知·=0,所以(x-1)(5-x)+(y-4)(4-y)=0,即(x-3)2+(y-4)2=4,所以C2的方程是(x-3)2+(y-4)2=4.(3)证明:当直线l1的斜率不存在时,直线l1与圆C2相切,当直线l1的斜率为0时,直线l1与圆C2相离,故设直线l1的方程为kx-y-k=0(k≠0).由直线l1与圆C2相交,得<2,解得k>.由得N(,-),又直线C2M与l1垂直,由得M(,),所以|AM|·|AN|=·=··=6(定值).巩固提高B一、选择题1.若过点M(1,1)的直线l与圆(x-2)2+y2=4相交于两点A,B,且M为弦AB的中点,则|AB|为( A )(A)2 (B)4 (C) (D)2解析:圆心坐标为(2,0),半径为2,因为[]2+()2=22,所以|AB|=2.故选A.2.已知圆x2+y2=4与直线x+y-t=0,则“t=2”是“直线与圆相切”的( A )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件解析:由已知,令=2,所以t=±2.故选A.3.若圆C1:x2+y2+2ax+a2-4=0(a∈R)与圆C2:x2+y2-2by+b2-1=0(b∈R)恰有三条公切线,则a+b的最大值为( D )(A)-3(B)-3 (C)3(D)3解析:由已知得两圆外切,则|C1C2|=r1+r2,C1(-a,0),C2(0,b),所以a2+b2=9,因为()2≤,所以a+b≤3.故选D.4.已知点A在直线x+2y-1=0上,点B在直线x+2y+3=0上,线段AB的中点为P(x0,y0),且满足y0>x0+2,则的取值范围为( A )(A)(-,-)(B)(-∞,-](C)(-,-](D)(-,0)解析:设A(x1,y1),=k,则y0=kx0,因为AB的中点为P(x0,y0),所以B(2x0-x1,2y0-y1).因为A,B分别在直线x+2y-1=0和x+2y+3=0上,所以x1+2y1-1=0,2x0-x1+2(2y0-y1)+3=0,所以2x0+4y0+2=0,即x0+2y0+1=0.因为y0=kx0,所以x0+2kx0+1=0,即x0=-.又y0>x0+2,所以kx0>x0+2,即(k-1)x0>2,即(k-1)(-)>2,即<0,解得-<k<-.故选A.5.已知△ABC的三个顶点的坐标分别为A(-2,3),B(-2,-1),C(6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则圆的方程为( D )(A)x2+y2=1(B)x2+y2=4(C)x2+y2=(D)x2+y2=1或x2+y2=37解析:如图所示,因为A(-2,3),B(-2,-1),C(6,-1).所以过A,C的直线方程为=,化为一般式为x+2y-4=0.点O到直线x+2y-4=0的距离d==>1,又|OA|==,|OB|==,|OC|==.所以以原点为圆心的圆若与三角形ABC有唯一的公共点,则公共点为(0,-1)或(6,-1),所以圆的半径分别为1或,则圆的方程为x2+y2=1或x2+y2=37.6.已知圆C:(x-1)2+(y-2)2=2与y轴在第二象限所围成区域的面积为S,直线y=2x+b分圆C的内部为两部分,其中一部分的面积也为S,则b等于( D )(A)(B)±(C)-(D)±解析:圆心(1,2)到y轴的距离为1,由题意知,圆心(1,2)到直线y=2x+b的距离也为1,即=1,解得b=±.故选D.7.已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上两个不同点,P是圆x2+y2+kx=0上的动点,如果M,N关于直线x-y-1=0对称,那么△PAB面积的最大值是( C )(A)3-(B)4(C)3+(D)6解析:依题意得圆x2+y2+kx=0的圆心(-,0)位于直线x-y-1=0上,于是有--1=0,即k=-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB|=2,直线AB的方程是+=1,即x-y+2=0,圆心(1,0)到直线AB的距离等于=,点P到直线AB的距离的最大值是+1,所以△PAB面积的最大值为×2×=3+,故选C.8.过点P(-3,0)作直线2ax+(a+b)y+2b=0(a,b不同时为零)的垂线,垂足为M,已知点N(2,3),则当a,b变化时,|MN|的取值范围是( A )(A)[5-,5+](B)[5-,5](C)[5,5+](D)[0,5+]解析:直线2ax+(a+b)y+2b=0,整理为a(2x+y)+b(y+2)=0,从而可得直线过定点Q(1,-2),如图,∠PMQ=90°或者M与P,Q之一重合,PQ=2,故点M在以PQ为直径的圆上运动,设该圆的圆心为F,则线段MN确定的范围为|FN|-≤|MN|≤|FN|+,所以|MN|的取值范围是[5-,5+].故选A.二、填空题9.若m>0,n>0,点(-m,n)关于直线x+y-1=0的对称点在直线x-y+2=0上,那么+的最小值等于 .解析:设点(-m,n)关于直线x+y-1=0的对称点为(a,b),则解得则(-m,n)关于直线x+y-1=0的对称点为(1-n,1+m),则1-n-(1+m)+2=0,即m+n=2.于是+=(m+n)(+)=×(5++)≥×(5+2×2)=,当且仅当m=,n=时等号成立.答案:10.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x-4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为 .解析:由l:kx+y+4=0(k∈R)是圆C:x2+y2+4x-4y+6=0的一条对称轴知,其必过圆心(-2,2),因此k=3,则过点A(0,k)斜率为1的直线m的方程为y=x+3,圆心到其距离d==,所以弦长等于2=2=.答案:11.已知圆C1:x2+y2=4和圆C2:(x-2)2+(y-2)2=4,若点P(a,b)(a>0,b>0)在两圆的公共弦上,则+的最小值为 .解析:由题意,两圆的方程相减,可得公共弦方程为x+y=2,因为点P(a,b)(a>0,b>0)在两圆的公共弦上,所以a+b=2,所以+=(+)(a+b)=(10++)≥(10+6)=8,当且仅当b=3a=时,取等号,+的最小值为8.答案:812.过x轴上一点P向圆C:x2+(y-2)2=1作切线,切点分别为A,B,则△PAB 面积的最小值是 .解析:因为圆的方程为x2+(y-2)2=1,所以圆心C(0,2),半径r为1,设点P(a,0),则|PC|=,|PA|=|PB|=,sin∠APB=2×=,所以S△PAB=|PA|·|PB|sin∠APB=,令=t,t≥,所以S△PAB==在[,+∞)上单调递增,所以当t=时,△PAB面积有最小值为.答案:13.已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为 .解析:设所求圆的半径为r,依题意得,抛物线y2=4x的焦点坐标是(1,0),则圆C的圆心坐标是(0,1),圆心到直线4x-3y-2=0的距离d==1,则r2=d2+()2=10,故圆C的方程为x2+(y-1)2=10.答案:x2+(y-1)2=1014.过点P(1,)作圆O:x2+y2=1的两条切线,切点分别为A和B,则弦长|AB|= .解析:如图所示,因为PA,PB分别为圆O:x2+y2=1的切线,所以OA⊥AP,|AB|=2|AC|.因为P(1,),O(0,0),所以|OP|==2,又因为|OA|=1,所以∠AOP=60°,所以|AB|=2|AC|=2|AO|sin ∠AOP=.答案:15.已知曲线-=1与直线y=2x+m有两个交点,则m的取值范围是 .解析:当x≥0,y≥0时,得曲线-=1.当x>0,y<0时,得曲线+=1.当x<0,y<0时,得曲线-+=1.当x<0,y>0时,得曲线--=1.得-=1的大致图象如图所示,当y=2x+m过(-2,0)时,m=4,过(2,0)时,m=-4,所以若有两个交点,可得m>4或m<-4.答案:(-∞,-4)∪(4,+∞)三、解答题16.(2017·全国Ⅲ卷)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B 两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.(1)证明:设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=.故x1x2==4.因此OA的斜率与OB的斜率之积为·==-1,所以OA⊥OB.故坐标原点O在圆M上.(2)解:由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为(,-),圆M的半径为,圆M的方程为(x-)2+(y+)2=.。
第19练 直线与圆[小题提速练][明晰考情] 1.命题角度: 求直线(圆)的方程、点到直线的距离、直线与圆的位置关系判断、简单的弦长与切线问题.2.题目难度:中低档难度.考点一 直线的方程方法技巧 (1)解决直线方程问题,要充分利用数形结合思想,养成边读题边画图分析的习惯.(2)求直线方程时应根据条件选择合适的方程形式利用待定系数法求解,同时要考虑直线斜率不存在的情况是否符合题意.(3)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.1.设a ∈R ,则“a =-2”是直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案 A解析 当a =-2时,l 1:-2x +2y -1=0,l 2:x -y +4=0,显然l 1∥l 2. 当l 1∥l 2时,由a (a +1)=2且a +1≠-8, 得a =1或a =-2,所以a =-2是l 1∥l 2的充分不必要条件.2.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值为( ) A.0或-12B.12或-6 C.-12或12D.0或12答案 B解析 依题意,得|3m +5|m 2+1=|-m +7|m 2+1. 所以|3m +5|=|m -7|, 所以(3m +5)2=(m -7)2, 所以8m 2+44m -24=0, 所以2m 2+11m -6=0, 所以m =12或m =-6.3.过点P (2,3)的直线l 与x 轴,y 轴正半轴分别交于A ,B 两点,O 为坐标原点,则S △OAB 的最小值为________. 答案 12解析 依题意,设直线l 的方程为x a +yb =1(a >0,b >0).∵点P (2,3)在直线l 上,∴2a +3b=1,则ab =3a +2b ≥26ab , 故ab ≥24,当且仅当3a =2b (即a =4,b =6)时取等号. 因此S △AOB =12ab ≥12,即S △AOB 的最小值为12.4.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________. 答案 x +2y -3=0解析 当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大. ∵A (1,1),B (0,-1),∴k AB =-1-10-1=2,∴两平行直线的斜率k =-12.∴直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.考点二 圆的方程方法技巧 (1)直接法求圆的方程:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法求圆的方程:设圆的标准方程或圆的一般方程,依据已知条件列出方程组,确定系数后得到圆的方程.5.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的标准方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2答案 B解析 设圆心坐标为(a ,-a ),则|a -(-a )|2=|a -(-a )-4|2,即|a |=|a -2|, 解得a =1,故圆心坐标为(1,-1),半径r =22=2,故圆的标准方程为(x -1)2+(y +1)2=2. 6.圆心在曲线y =2x (x >0)上,且与直线2x +y +1=0相切的面积最小的圆的方程为( )A.(x -1)2+(y -2)2=5B.(x -2)2+(y -1)2=5C.(x -1)2+(y -2)2=25D.(x -2)2+(y -1)2=25答案 A解析 y =2x 的导数y ′=-2x 2,令-2x 2=-2,得x =1(舍负),平行于直线2x +y +1=0的曲线y =2x (x >0)的切线的切点的横坐标为1,代入曲线方程,得切点坐标为(1,2),以该点为圆心且与直线2x +y +1=0相切的圆的面积最小,此时圆的半径为55= 5.故所求圆的方程为(x -1)2+(y -2)2=5.7.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________.答案 (x -2)2+y 2=9解析 ∵圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0. 则圆心C 到直线2x -y =0的距离d =|2a -0|5=455,解得a =2.∴圆C 的半径r =|CM |=(2-0)2+(0-5)2=3,因此圆C 的方程为(x -2)2+y 2=9.8.圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得的弦长为23,则圆C 的标准方程为________. 答案 (x -2)2+(y -1)2=4解析 设圆心⎝⎛⎭⎫a ,a2(a >0),半径为a . 由勾股定理得(3)2+⎝⎛⎭⎫a 22=a 2,解得a =2. 所以圆心为(2,1),半径为2,所以圆C 的标准方程为(x -2)2+(y -1)2=4. 考点三 点、直线、圆的位置关系方法技巧 (1)研究点、直线、圆的位置关系最常用的解题方法为几何法,将代数问题几何化,利用数形结合思想解题.(2)与弦长l 有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d ,及半弦长l 2,构成直角三角形的三边,利用其关系来处理.9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为( ) A.-53B.53C.35D.-35答案 A解析 点P (-3,1)关于x 轴的对称点为P ′(-3,-1),由题意得直线P ′Q 与圆x 2+y 2=1相切,因为P ′Q :x -(a +3)y -a =0,所以由|-a |1+(a +3)2=1,得a =-53.10.已知圆M :x 2+y 2-2ay =0()a >0截直线x +y =0所得线段的长度是22,则圆M 与圆N :。
2019年高考数学小题精练+B 卷及解析:专题(13)直线与圆及解析 专题(13)直线与圆1.已知圆的方程为224240x y x y +-+-=,则圆的半径为( )A . 3B . 9C .D . 3±【答案】A2.已知圆C : ()()2224x a y -+-=(0a >)及直线: 30x y -+=,当直线被C 截得的弦长为a = ( )A .B . 2-C . 1D . 1+【答案】C【解析】由题意,得24+=,解得1a =-,又因为0a >,所以1a =-;故选C . 3.已知圆心,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是( )A .B .C .D .【答案】B【解析】由题意可设圆的直径两端点坐标为,由圆心坐标可得,可求得,可得圆的方程为即.故选B .4.过点,且倾斜角为的直线与圆相切于点,且,则的面积是( )A .B .C . 1D . 2 【答案】B【解析】在直角三角形AOB 中 ,选B .5.若直线与圆有公共点,则实数的取值范围是 ( )A .B .C .D .【答案】C6.直线与圆相交于两点,则弦的长度等于( )A .B .C .D .【答案】B 【解析】圆心到直线,的距离,由勾股定理可知,,即,故选B . 7.已知圆的圆心在直线上,且与直线平行,则的方程是( )A .B .C .D .【答案】A 【解析】设直线为,代入点 得 .故选A .点睛:两条直线平行的设法,斜率相等,只需要截距不同.8.直线10x ky -+=(k R ∈)与圆224220x y x y ++-+=的位置关系为( ) A . 相交 B . 相切 C . 相离 D . 与k 的值有在 【答案】A【解析】由于直线10x ky -+=恒过定点()1,0P -,且()1,0P -在圆224220x y x y ++-+=内,故圆与直线10x ky -+=的相交,应选答案A .9.曲线y =1+与直线y =k (x -2)+4有两个交点,则实数k 的取值范围是( )A .B . (,+∞)C . (,]D . (,]【答案】C 【解析】由题设可化为过定点的动直线与半圆有两个交点,如图,圆心到直线的距离是,又,结合图形可知:当,即,应选答案C .10.若曲线)0(0622>=-+y x y x 与直线)2(+=x k y 有交点,则k 的取值范围是( ) A .)0,43[-B .]34,0(C .]43,0(D .]43,43[-【答案】C考点:直线与圆的位置关系.11.若一次函数y kx b =+,y 随x 的增大而减小,当31x -≤≤时,19y ≤≤,则它的解析式为( ) A .27y x =+ B .23y x =-+C .27y x =+或23y x =-+D .以上都不对 【答案】B 【解析】试题分析:∵一次函数y kx b =+,当31x -≤≤时,19y ≤≤,且y 随x 的增大而减小,∴当3x =-时,9y =;当1x =时,1y =,∴391k b k b -+=⎧⎨+=⎩,解得23k b =-⎧⎨=⎩.∴一次函数的解析式为23y x =-+.故选B . 考点:函数解析式.12.已知直线)0,0(06>>=-+b a by ax 被圆04222=--+y x y x 截得的弦长为52,则ab 的最大值 是( )A .25B .4C .29 D .9【答案】C考点:1.圆的一般方程化为标准方程;2.基本不等式.专题14 直线与圆1.已知直线的倾斜角为,直线经过,两点,且直线与垂直,则实数的值为( )A . -2B . -3C . -4D . -5 【答案】D 【解析】∵,∴,故选D .2.设A ,B 为x 轴上的两点,点P 的横坐标为2且PA PB =,若直线PA 的方程为10x y -+=,则直线PB 的方程为( )A . 270x y +-=B . 210x y --=C . 240x y -+=D . 50x y +-= 【答案】D3.方程()()()14222140k x k y k +--+-=表示的直线必经过点( ) A . ()2,2 B . ()2,2- C . 1211,55⎛⎫ ⎪⎝⎭ D . 3422,55⎛⎫⎪⎝⎭【答案】C【解析】方程()()()14222140k x k y k +--+-=,化为(x ﹣2y+2)+k (4x+2y ﹣14)=0解220{42140x yx y+=+=﹣﹣,得125{115xy==,∴直线必经过点1211,55⎛⎫⎪⎝⎭故选C.点睛:过定点的直线系A1x+B1y+C1+λ(A2x+B2y+C2)=0表示通过两直线l1∶A1x+B1y+C1=0与l2∶A2x+B2y+C2=0交点的直线系,而这交点即为直线系所通过的定点.4.已知圆心,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A.B.C.D.【答案】B5.过点,且倾斜角为的直线与圆相切于点,且,则的面积是( )A. B.C. 1 D. 2【答案】B【解析】在直角三角形AOB 中,选B.6.若直线与圆有公共点,则实数的取值范围是 ( )A.B.C.D.【答案】C【解析】圆的圆心,半径为,直线与圆有公共点,则,,解得实数的取值范围是,故选C.7.直线与圆相交于两点,则弦的长度等于( )A.B.C.D.【答案】B 【解析】圆心到直线,的距离,由勾股定理可知,,即,故选B .8.已知圆C :(a<0)的圆心在直线 上,且圆C 上的点到直线的距离的最大值为,则的值为( )A . 1B . 2C . 3D . 4 【答案】C 【解析】圆的方程为,圆心为①,圆C 上的点到直线的距离的最大值为②由①②得,a<0,故得, =3.点睛:圆上的点到直线的距离的最大值,就是圆心到直线的距离加半径;再就是二元化一元的应用.9.已知直线10ax y +-=与圆()()22:11C x y a -++=相交于A,B 两点,且ABC ∆为等腰直角三角形,则实数a 的值为 A .1 B .1- C .117-或 D .11-或 【答案】D10.过点引直线与曲线y =A B 、两点,O 为坐标原点,当AOB ∆的面积取最大值时,直线的斜率等于( )A B . C .D . 【答案】B 【解析】试题分析:因y =表示以O 为圆心,半径为的上半圆.又AOB S AOB ∠=∆sin 21,故090=∠AOB 时, AOB ∆的面积取最大值,此时圆心O 到直线)2(-=x k y 的距离21=d ,即211|2|2=+k k ,也即132=k ,解之得33±=k ,应选B . 考点:直线与圆的位置关系及运用.11.若直线()100,0ax by a b -+=>>平分圆22:2410C x y x y ++-+=的周长,则ab 的取值范围是( )A .1,8⎛⎤-∞ ⎥⎝⎦ B .10,8⎛⎤ ⎥⎝⎦ C .10,4⎛⎤ ⎥⎝⎦D . 1,4⎡⎫+∞⎪⎢⎣⎭【答案】B考点:直线与圆的位置关系.12.在平面直角坐标系xOy 中, 以()1,1C 为圆心的圆与x 轴和y 轴分别相切于,A B 两点, 点,M N 分别在线段,OA OB 上, 若,MN 与圆C 相切, 则MN 的最小值为( )A .B .2.2+D .2 【答案】D 【解析】试题分析:因为()1,1C 为圆心的圆与x 轴和y 轴分别相切于,A B 两点, 点,M N 分别在线段,OA OB 上, 若,MN 与圆C 相切,设切点为Q ,所以AM BN QM QN MN +=+=,设MNO θ∠=,则()cos sin ,21cos sin OM ON MN MN OA OB MN θθθθ+=++==++,21cos sin MN θθ==≥=++2,故选D .x考点:1、圆的几何性质;2、数形结合思想及三角函数求最值.。
专题强化练十三直线与圆一、选择题1.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-43B.-34 C.3D.2解析:圆x2+y2-2x-8y+13=0化为标准方程为(x-1)2+(y-4)2=4,则圆心为(1,4),由题意得d=|a+4-1|a2+1=1,解得a=-43.答案:A2.(2018·安徽合肥二模)已知圆C:(x-6)2+(y-8)2=4,O为坐标原点,则以OC为直径的圆的方程为()A.(x-3)2+(y+4)2=100B.(x+3)2+(y-4)2=100C.(x-3)2+(y-4)2=25D.(x+3)2+(y-4)2=25解析:圆C的圆心的坐标C(6,8),则OC的中点坐标为E(3,4),则所求圆的半径|OE|=32+42=5,则以OC为直径的圆的方程为(x-3)2+(y-4)2=25.答案:C3.(2018·昆明诊断)已知命题p:“m=-1”,命题q:“直线x-y=0与直线x+m2y=0互相垂直”,则命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要解析:“直线x-y=0与直线x+m2y=0互相垂直”的充要条件是1×1+(-1)·m2=0⇔m=±1.所以命题p是命题q的充分不必要条件.答案:A4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0解析:依题意知,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点.因为圆心(1,0)与切点(3,1)连线的斜率为12,所以切线的斜率k =-2,故圆的切线方程为y-1=-2(x -3),即2x +y -7=0.答案:B5.(2018·广东深圳二模)已知点P (1,m )在椭圆x 24+y 2=1的外部,则直线y=2mx +3与圆x 2+y 2=1的位置关系为( )A .相离B .相交C .相切D .相交或相切解析:由点P (1,m )在椭圆x 24+y 2=1的外部,得m 2>34,则圆x 2+y 2=1的圆心(0,0)到直线y -2mx -3=0的距离d =|-3|1+4m 2<32<1,所以直线y =2mx +3与圆x 2+y 2=1相交.答案:B6.(2018·湖南六校联考)在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上,若圆C 上存在点M ,使|MA |=2|MO |,则圆心C 的横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤0,125 B .[0,1] C.⎣⎢⎡⎦⎥⎤1,125 D.⎣⎢⎡⎦⎥⎤0,125 解析:设点M (x ,y ),由|MA |=2|MO |, 所以x 2+(y -3)2=2x 2+y 2,化简得x 2+(y +1)2=4.所以点M 的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D .又因为点M 在圆C 上,所以圆C 与圆D 的关系为相交或相切,所以1≤|CD |≤3,设圆心C 的坐标为(a ,2a -4),所以|CD |=a 2+(2a -3)2,所以1≤a 2+(2a -3)2≤9,解得0≤a ≤125.答案:A二、填空题7.(2018·河南郑州一模)如果直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行,则a =________.解析:因为直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行,即直线ax +2y +3a =0与直线3x +(a -1)y -(a -7)=0平行,所以a 3=2a -1≠3a -(a -7),解得a =3. 答案:38.(2018·青岛质检)已知抛物线y =ax 2(a >0)的准线为l ,若l 与圆C :(x -3)2+y 2=1相交所得弦长为3,则a =________.解析:由y =ax 2,得x 2=y a ,所以准线l 的方程为y =-14a .又l 与圆C :(x -3)2+y 2=1相交的弦长为 3.所以⎝ ⎛⎭⎪⎫-14a 2+⎝ ⎛⎭⎪⎫322=1,则a =12. 答案:129.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线l :y =a (x -3)被圆C 截得的弦长最短时,直线l 方程为________.解析:圆C 的标准方程为(x -4)2+(y -1)2=9,所以圆C 的圆心C (4,1),半径r =3.又直线l :y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短.因此a ·k CP =a ·1-04-3=-1,所以a =-1.故所求直线l 的方程为y =-(x -3),即x +y -3=0.答案:x +y -3=0三、解答题10.已知圆C :x 2+y 2+2x -4y +3=0,从圆C 外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求使|PM |取得最小值时点P 的坐标.解:圆C 的方程为(x +1)2+(y -2)2=2,所以圆心C (-1,2),半径r = 2.由|PM |=|PO |,得|PO |2=|PM |2=|PC |2-|CM |2,所以x 21+y 21=(x 1+1)2+(y 1-2)2-2.整理,得2x 1-4y 1+3=0,即点P 在直线2x -4y +3=0上,要使|PM |取最小值时,只要|PO |取最小值即可,当直线PO 垂直于直线2x -4y +3=0时,即直线PO 的方程为2x +y =0时,|PM |最小.解方程组⎩⎨⎧2x +y =0,2x -4y +3=0,得⎩⎪⎨⎪⎧x =-310,y =35.故使|PM |取得最小值时,点P 的坐标为⎝ ⎛⎭⎪⎫-310,35. 11.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程.解:圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5,(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切, 所以0<y 0<7,圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2. 设直线l 的方程为y =2x +m ,即2x -y +m =0,则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为|BC |=|OA |=22+42=25,又|MC |2=d 2+⎝ ⎛⎭⎪⎫|BC |22, 即25=(m +5)25+5,解得m =5或m =-15. 故直线l 的方程为2x -y +5=0或2x -y -15=0.。
直线与圆A 组—-大题保分练1.已知圆O :x 2+y 2=4交y 轴正半轴于点A ,点B ,C 是圆O 上异于点A 的两个动点.(1)若B 与A 关于原点O 对称,直线AC 和直线BC 分别交直线y =4于点M ,N ,求线段MN 长度的最小值;(2)若直线AC 和直线AB 的斜率之积为1,求证:直线BC 与x 轴垂直.解:(1)由题意,直线AC 和直线BC 的斜率一定存在且不为0,且A (0,2),B (0,-2),AC ⊥BC . 设直线AC 的斜率为k ,则直线BC 的斜率为-错误!,所以直线AC 的方程为y =kx +2,直线BC 的方程为y =-1kx -2, 故它们与直线y =4的交点分别为M 错误!,N (-6k,4).所以MN =错误!≥4错误!,当且仅当k =±错误!时取等号,所以线段MN 长度的最小值为4错误!.(2)证明:易知直线AC 和直线AB 的斜率一定存在且不为0,设直线AC 的方程为y =kx +2,则直线AB 的方程为y =错误!x +2.由{ y =kx +2,x 2+y 2=4解得C 错误!,同理可得B 错误!.因为B ,C 两点的横坐标相等,所以BC ⊥x 轴.2.已知圆x 2+y 2-4x +2y -3=0和圆外一点M (4,-8).(1)过M 作直线交圆于A ,B 两点,若|AB |=4,求直线AB 的方程;(2)过M 作圆的切线,切点分别为C ,D ,求切线长及CD 所在直线的方程.解:(1)圆即(x -2)2+(y +1)2=8,圆心为P (2,-1),半径r =22。
①若割线斜率存在,设AB :y +8=k (x -4),即kx -y -4k -8=0,设AB 的中点为N ,则|PN |=错误!=错误!,由|PN |2+错误!2=r 2,得k =-错误!, AB :45x +28y +44=0.②若割线斜率不存在,AB :x =4,代入圆方程得y 2+2y -3=0,y 1=1,y 2=-3符合题意.综上,直线AB 的方程为45x +28y +44=0或x =4。
10 直线与圆1.[2018·八一中学]已知直线l :20ax y a +--=在x 轴和y 轴上的截距相等,则a 的值是( ) A .1B .1-C .2或1D .2-或12.[2018·宜昌期末]若点102⎛⎫⎪⎝⎭,到直线():300l x y m m ++=>m =( )A .7B .172C .14D .173.[2018·宣威五中]若直线l 过点()12-,且与直线2340x y -+=垂直,则l 的方程为( ) A .3210x y +-= B .2310x y +-= C .3210x y ++=D .2310x y --=4.[2018·成都外国语]已知直线310x y -+=的倾斜角为α,则1sin 22α=( )A .310 B .35C .310-D .1105.[2018·黑龙江实验]点()23A -,关于直线1y x =-+的对称点为( ) A .()3,2-B .()4,1-C .()5,0D .()3,16.[2018·大庆实验]若直线20ax y a --=与以()3,1A ,()1,2B 为端点的线段没有公共点,则实数a 的取值范围是( )A .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭UB .11,2⎛⎫- ⎪⎝⎭C .()(),21,-∞-+∞UD .()2,1-7.[2018·洪都中学]已知直线l :y x m =+与曲线x 则实数m 的取值范围是( ) A .⎡-⎣ B .(1-⎤⎦C .⎡⎣D .(⎤⎦8.[2018·航天中学]已知点()2,0A -,()0,2B ,点C 是圆2220x y x +-=上任意一点,则ABC △面积的最大值是( ) A .6B .8C .3D .39.[2018·哈尔滨三中]过点()1,3A -,()3,1B -,且圆心在直线210x y --=上的圆的标准方程为( ) A .()()22114x y +++=B .()()221116x y +++=一、选择题C .()22113x y -+=D .()2215x y -+=10.[2018·南昌质检]已知()0,4A -,()2,0B -,()0,2C 光线从点A 射出,经过线段BC (含线段端点)反射,恰好与圆()()22925x a y a -+-=相切,则( ) A.11a -≤≤ B.115a ≤≤C.115a ≤≤D.11a -≤≤ 11.[2018·湖北联考]已知圆22:4C x y +=,直线:l y x b =+.当实数[]0,6b ∈时,圆C 上恰有2个点到直线l 的距离为1的概率为( ) A.3B.2 C .12D .1312.[2018·雅安诊断]t ∀∈R ,[]t 表示不大于t 的最大整数,如[]0.990=,[]0.11-=-,且x ∀∈R ,()()2f x f x =+,[]1,1x ∀∈-,()[]()221,,4D x y x t y ⎧=-+≤⎨⎩[]}1,3t ∈-.若(),a b D ∈,则()f a b ≤的概率为() ABCD13.[2018·西城44中]已知直线()2350t x y -++=不通过第一象限,则实数t 的取值范围__________. 14.[2018·黄陵中学]已知直线l 的斜率为16,且和坐标轴围成的三角形的面积为3,则直线l 的方程为________________.15.[2018·益阳调研]分别在曲线ln y x =与直线26y x =+上各取一点M 与N ,则MN 的最小值为__________.16.[2018·南师附中]已知直线0x y b -+=与圆229x y +=交于不同的两点A ,B .若O 是坐标原点,且OA OB AB +uu r uu u r u r ,则实数b 的取值范围是________________.二、填空题1.【答案】D【解析】当0a =时,直线方程为2y =,显然不符合题意, 当0a ≠时,令0y =时,得到直线在x 轴上的截距是2aa+,令0x =时,得到直线在y 轴上的截距为2a +, 根据题意得22aa a+=+,解得2a =-或1a =,故选D . 2.【答案】B【解析】=3102m +=±,∵0m >,∴172m =.故选B . 3.【答案】A【解析】∵2340x y -+=的斜率23k =,∴32k '=-,由点斜式可得()3212y x -=-+,即所求直线方程为3210x y +-=,故选A . 4.【答案】A【解析】直线310x y -+=的倾斜角为α,∴tan 3α=,∴22211sin cos tan 33sin 22sin cos 22sin cos tan 19110a αααααααα=⋅====+++,故选A . 5.【答案】B【解析】设点()23A -,关于直线1y x =-+的对称点为(),P a b ,则()312AP b k a --==-,∴5a b -=,①,又线段AP 的中点23,22a b +-⎛⎫⎪⎝⎭在直线1y x =-+上,即32122b a -+=-+,整理得3a b +=,②, 联立①②解得4a =,1b =-.∴点()23A -,关于直线1y x =-+的对称点P 点的坐标为()4,1-,故选B . 6.【答案】D【解析】直线20ax y a --=可化为2y ax a =-,∵该直线过点()3,1A ,∴3120a a --=,解得1a =; 又∵该直线过点()1,2B ,∴220a a --=,解得2a =-;又直线20ax y a --=与线段AB 没有公共点,∴实数a 的取值范围是()2,1-.故选D . 7.【答案】B【解析】根据题意,可得曲线x =y x m =+表示平行于y x =的直线,其中m 表答案与解析一、选择题示在y 轴上的截距,作出图象,如图所示,从图中可知1l ,2l 之间的平行线与圆有两个交点,1l ,2l 在y 轴上的截距分别为1-,∴实数m 的取值范围是(1-⎤⎦,故选B .8.【答案】D【解析】∵AB 为定值,∴当C 到直线AB 距离最大时,ABC △面积取最大值, ∵点C 是圆2220x y x +-=,()2211x y -+=上任意一点,∴C 到直线AB 距离最大为圆心()1,0到直线AB :20x y -+=距离加半径1,112+=+,从而ABC △面积的最大值是1132⎫⨯=+⎪⎪⎝⎭D . 9.【答案】B【解析】过AB 的直线方程为2y x =-+,A 、B 的中点为()1,1,∴AB 的垂直平分线为y x =,∴圆心坐标为210y x x y =⎧⎨--=⎩,解得11x y =-⎧⎨=-⎩,即圆心坐标为()1,1--,半径为4r =,∴圆的方程为()()221116x y +++=;故选B . 10.【答案】D 【解析】如图,A 关于BC 对称点()6,2D -,要使反射光线与圆()()22925x a y a -+-=相切, 只需使得射线DB ,DC 与圆相切即可,而直线DB 的方程为220x y ++=,直线DC 为2y =.22a -,得1a =-,15,111a -≤≤.故选D . 11.【答案】A【解析】圆C 的圆心坐标为()0,0O ,半径为2,直线l 为:0x y b -+=.3=,即b =1,1=,即b 3个点到直线距离为1.∴当b ∈时,圆上恰有2个点到直线l 的距离为1.故选A .12.【答案】D【解析】由x ∀∈R ,()()2f x f x =+得函数()f x 的周期为2T =.函数()f x 的图像为如图所示的折线部分,事件()f a b ≤对应的区域为图中的阴影部分,1D .13.【解析】由题意得直线()2350t x y -++=恒过定点()0,5-,且斜率为()23t --, ∵直线()2350t x y -++=不通过第一象限,∴()230t --≤,解得 故实数t 的取值范围是14.【答案】660x y -+=或660x y --= 【解析】设直线l 的方程为1x y a b +=,∴132ab =,且16b a -=,解得6a =-,1b =或6a =,1b =-,∴直线l 的方程为16x y +=-或16xy -=,即660x y -+=或660x y --=.. 答案:660x y -+=或660x y --=. 15.【答案】(7ln 25+【解析】由()ln 0y x x =>,得1y x '=,令12x =,即12x =,1ln ln 22y ==-, 则曲线ln y x =上与直线26y x =+平行的切线的切点坐标为1,ln 22⎛⎫- ⎪⎝⎭,由点到直线的距离公式得(7ln 25d +==,即(7ln 25MN +=. 16.【答案】(-U 【解析】设AB 的中点为D ,则2OA OB OD +=uu r uu u r uuu r ,故OD ≥uuu r u r ,即2218OD AB ≥u u u r u u u r ,再由直线与圆的弦长公式可得:2AB =(d 为圆心到直线的距离), 又直线与圆相交故d r <3b <⇒-<根据2218OD AB ≥u u u r u u u r ,2AB ⎡=⎣uu u r 得23OD ≥uuu r ,二、填空题1由点到线的距离公式可得222b OD =uuu r ,即要232b b ≥⇒≥b ≤综合可得:b 的取值范围是(-U .。
强化训练(9)直线与圆1、下列条件中,能得到直线1:210l ax y +-=与直线()2 :14? 0l x a y +++=平行的是( )A. 1a =B. 1a =-C. 0a =D. 5a =2、直线()10xyab a b +=<在坐标系中的位置可能是( )A.B.C.D.3、已知两直线320ax y --=和()21510a x ay -+-=分别过定点,?A B ,则AB = ()B. 175 C. 135 D. 1154、在直线34270x y --=上到点()2,1P 距离最近的点的坐标是( )A. (5,3)-B. (9,0)C. ()1,6-D. 270,4⎛⎫- ⎪⎝⎭ 5、若()2,1P -为圆()22125x y -+=的弦AB 的中点,则直线AB 的方程是( ) A. 30x y --=B. 230x y +-=C. 10x y +-=D. 250x y --=6、圆2216x y +=上的点到直线30x y --=的距离的最大值为( )B. 42-C. 42+D. 07、圆221:4470C x y x y ++-+=与圆222:410130C x y x y +-++=的公切线的条数是( )A.1B.2C.3D.48、两圆2221:22210C x y ax ay a ++++-=与2222:22210C x y bx by b ++++-=的公共弦长的最大值为( )A. B. 2D. 19、在平面直角坐标系中, ,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A.45π B. 34πC. (6π-D. 54π 10、已知半径为1的动圆与圆22(5)(7)16x y -++=相切,则动圆圆心的轨迹方程是 ( )A. 22(5)(7)25x y -+-=B. 22(5)(7)17x y -++=或22(5)(7)25x y -++=C. 22(5)(7)9x y -++=D. 22(5)(7)25x y -++=或22(5)(7)9x y -++=11、过点()1,2--的直线l 被圆222210x y x y +--+=则直线l 的斜率为__________.12、过原点 O 作圆2268200x y x y +--+=的两条切线,设切点分别为P 、 Q ,则线段P Q 、的长为__________ 。
专题检测(十三) 直线与圆A 组——“6+3+3”考点落实练一、选择题1.“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 因为两直线平行,所以斜率相等,即-2a =-b 2,可得ab =4,又当a =1,b =4时,满足ab =4,但是两直线重合,故选C.2.已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3)D.⎝⎛⎭⎫1,32 解析:选C 直线l 1的斜率k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以直线l 2的斜率k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2),联立⎩⎪⎨⎪⎧y =33(x +2),y =-3(x -2),解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).3.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离解析:选B 圆M :x 2+y 2-2ay =0(a >0)可化为x 2+(y -a )2=a 2,由题意,M (0,a )到直线x +y =0的距离d =a 2,所以a 2=a 22+2,解得a =2.所以圆M :x 2+(y -2)2=4,所以两圆的圆心距为2,半径和为3,半径差为1,故两圆相交.4.(2018·全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:选A 设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距离为d , 则圆心C (2,0),r =2,所以圆心C 到直线x +y +2=0的距离为|2+2|2=22,由已知条件可得|AB |=22,所以△ABP 面积的最大值为12|AB |·d max =6,△ABP 面积的最小值为12|AB |·d min =2.综上,△ABP 面积的取值范围是[2,6].5.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则实数a 的取值范围为( ) A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .[-32,3 2 ]解析:选A 由圆的方程可知圆心为(0,0),半径为2.因为圆O 上到直线l 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <r +1=2+1,即d =|-a |12+12=|a |2<3,解得a ∈(-32,32).6.在平面直角坐标系中,O 为坐标原点,直线x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM ―→=OA ―→+OB ―→,若点M 在圆C 上,则实数k 的值为( )A .-2B .-1C .0D .1解析:选C 法一:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -ky +1=0,x 2+y 2=4得(k 2+1)y 2-2ky -3=0,则Δ=4k 2+12(k 2+1)>0,y 1+y 2=2k k 2+1,x 1+x 2=k (y 1+y 2)-2=-2k 2+1,因为OM ―→=OA ―→+OB ―→,故M ⎝⎛⎭⎫-2k 2+1,2k k 2+1,又点M 在圆C 上,故4(k 2+1)2+4k 2(k 2+1)2=4,解得k =0.法二:由直线与圆相交于A ,B 两点,OM ―→=OA ―→+OB ―→,且点M 在圆C 上,得圆心C (0,0)到直线x -ky +1=0的距离为半径的一半,为1,即d =11+k 2=1,解得k =0.二、填空题7.已知直线l :x +my -3=0与圆C :x 2+y 2=4相切,则m =________.解析:因为圆C :x 2+y 2=4的圆心为(0,0),半径为2,直线l :x +my -3=0与圆C : x 2+y 2=4相切,所以2=31+m 2,解得m =±52 .答案:±528.过点C (3,4)作圆x 2+y 2=5的两条切线,切点分别为A ,B ,则点C 到直线AB 的距离为________. 解析:以OC 为直径的圆的方程为⎝⎛⎭⎫x -322+(y -2)2=⎝⎛⎭⎫522,AB 为圆C 与圆O :x 2+y 2=5的公共弦,所以AB 的方程为x 2+y 2-⎣⎡⎦⎤⎝⎛⎭⎫x -322+(y -2)2=5-254,化简得3x +4y -5=0,所以C 到直线AB 的距离d =|3×3+4×4-5|32+42=4.答案:49.(2018·贵阳适应性考试)已知直线l :ax -3y +12=0与圆M :x 2+y 2-4y =0相交于A ,B 两点,且∠AMB =π3,则实数a =________. 解析:直线l 的方程可变形为y =13ax +4,所以直线l 过定点(0,4),且该点在圆M 上.圆因为∠AMB =π3,所以的方程可变形为x 2+(y -2)2=4,所以圆心为M (0,2),半径为2.如图,△AMB 是等边三角形,且边长为2,高为3,即圆心M 到直线l 的距离为3,所以|-6+12|a 2+9=3,解得a =±3. 答案:±3 三、解答题10.已知圆(x -1)2+y 2=25,直线ax -y +5=0与圆相交于不同的两点A ,B . (1)求实数a 的取值范围;(2)若弦AB 的垂直平分线l 过点P (-2,4),求实数a 的值. 解:(1)把直线ax -y +5=0代入圆的方程, 消去y 整理,得(a 2+1)x 2+2(5a -1)x +1=0, 由于直线ax -y +5=0交圆于A ,B 两点, 故Δ=4(5a -1)2-4(a 2+1)>0, 即12a 2-5a >0,解得a >512或a <0,所以实数a 的取值范围是(-∞,0)∪⎝⎛⎭⎫512,+∞. (2)由于直线l 为弦AB 的垂直平分线,且直线AB 的斜率为a ,则直线l 的斜率为-1a , 所以直线l 的方程为y =-1a (x +2)+4,即x +ay +2-4a =0,由于l 垂直平分弦AB , 故圆心M (1,0)必在l 上,所以1+0+2-4a =0, 解得a =34,由于34∈⎝⎛⎭⎫512,+∞,所以a =34.11.已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点.(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解:(1)设圆A 的半径为R .因为圆A 与直线l 1:x +2y +7=0相切, 所以R =|-1+4+7|5=2 5.所以圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,易知x =-2符合题意; 当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0.由于|MN |=219,于是⎝ ⎛⎭⎪⎫|-k -2+2k |k 2+12+(19)2=20,解得k =34, 此时,直线l 的方程为3x -4y +6=0.所以所求直线l 的方程为x =-2或3x -4y +6=0.12.在平面直角坐标系xOy 中,直线x -y +1=0截以原点O 为圆心的圆所得的弦长为 6. (1)求圆O 的方程;(2)若直线l 与圆O 相切于第一象限,且直线l 与坐标轴交于点D ,E ,当线段DE 的长度最小时,求直线l 的方程.解:(1)因为点O 到直线x -y +1=0的距离为12, 所以圆O 的半径为⎝⎛⎭⎫122+⎝⎛⎭⎫622=2, 故圆O 的方程为x 2+y 2=2.(2)设直线l 的方程为x a +yb =1(a >0,b >0),即bx +ay -ab =0,由直线l 与圆O 相切,得|-ab |b 2+a2=2,即1a 2+1b 2=12,则|DE |2=a 2+b 2=2(a 2+b 2)⎝⎛⎭⎫1a 2+1b 2=4+2b 2a 2+2a 2b 2≥8,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.B 组——大题专攻补短练1.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的 3倍. (1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D两点.当CD 的斜率为-1时,求直线CD 的方程.解:(1)设曲线E 上任意一点的坐标为(x ,y ), 由题意得(x +1)2+y 2=3·(x -1)2+y 2,整理得x 2+y 2-4x +1=0,即(x -2)2+y 2=3为所求. (2)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0).设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P ,连接EP ,ED ,NP , 则直线EP :y =x -2. 设直线CD :y =-x +t ,由⎩⎪⎨⎪⎧y =x -2,y =-x +t ,解得点P ⎝⎛⎭⎫t +22,t -22, 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2,而|NP |2=⎝⎛⎭⎫t +22-12+⎝⎛⎭⎫t -222,|ED |2=3, |EP |2=⎝ ⎛⎭⎪⎫|2-t |22,所以⎝⎛⎭⎫t 22+⎝⎛⎭⎫t -222=3-(t -2)22,整理得t 2-3t =0, 解得t =0或t =3,所以直线CD 的方程为y =-x 或y =-x +3.2.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心 在l 上. (1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围. 解:(1)因为圆心在直线l :y =2x -4上,也在直线y =x -1上,所以解方程组⎩⎪⎨⎪⎧y =2x -4,y =x -1,得圆心C (3,2),又因为圆的半径为1,所以圆的方程为(x -3)2+(y -2)2=1,又因为点A (0,3),显然过点A ,圆C 的切线的斜率存在, 设所求的切线方程为y =kx +3,即kx -y +3=0, 所以|3k -2+3|k 2+12=1,解得k =0或k =-34,所以所求切线方程为y =3或y =-34x +3,即y -3=0或3x +4y -12=0.(2)因为圆C 的圆心在直线l :y =2x -4上,所以设圆心C 为(a,2a -4), 又因为圆C 的半径为1,则圆C 的方程为(x -a )2+(y -2a +4)2=1. 设M (x ,y ),又因为|MA |=2|MO |,则有 x 2+(y -3)2=2x 2+y 2,整理得x 2+(y +1)2=4,其表示圆心为(0,-1),半径为2的圆,设为圆D , 所以点M 既在圆C 上,又在圆D 上,即圆C 与圆D 有交点, 所以2-1≤a 2+(2a -4+1)2≤2+1,解得0≤a ≤125,所以圆心C 的横坐标a 的取值范围为⎣⎡⎦⎤0,125. 3.在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝⎛⎭⎫x 22,12, 可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎨⎧x =-m 2,y -12=x 2⎝⎛⎭⎫x -x 22,x 22+mx 2-2=0可得⎩⎨⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92. 故圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为k 1,k 2,k .当k 1k 2=3时,求k 的取值范围.解:(1)设动点P 的坐标为(x ,y ), 因为M (1,0),N (2,0),|PN |=2|PM |, 所以(x -2)2+y 2=2·(x -1)2+y 2.整理得,x 2+y 2=2.所以动点P 的轨迹C 的方程为x 2+y 2=2.(2)设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +b .由⎩⎪⎨⎪⎧x 2+y 2=2,y =kx +b消去y ,整理得(1+k 2)x 2+2bkx +b 2-2=0.(*) 由Δ=(2bk )2-4(1+k 2)(b 2-2)>0,得b 2<2+2k 2. ① 由根与系数的关系,得x 1+x 2=-2bk 1+k 2,x 1x 2=b 2-21+k 2. ②由k 1·k 2=y 1x 1·y 2x 2=kx 1+b x 1·kx 2+bx 2=3,得(kx 1+b )(kx 2+b )=3x 1x 2,即(k 2-3)x 1x 2+bk (x 1+x 2)+b 2=0. ③ 将②代入③,整理得b 2=3-k 2. ④ 由④得b 2=3-k 2≥0,解得-3≤k ≤ 3. ⑤ 由①和④,解得k <-33或k >33. ⑥ 要使k 1,k 2,k 有意义,则x 1≠0,x 2≠0, 所以0不是方程(*)的根,所以b 2-2≠0,即k ≠1且k ≠-1. ⑦ 由⑤⑥⑦,得k 的取值范围为[-3,-1)∪⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1∪(1, 3 ].。