天线知识带你了解天线的特性
- 格式:doc
- 大小:225.50 KB
- 文档页数:24
天线基础知识天线⼯作原理 天线是⼀种变换器,它把传输线上传播的导⾏波,变换成在⽆界媒介中传播的电磁波,或者进⾏相反的变换。
以下是由店铺整理关于天线知识的内容,希望⼤家喜欢! 天线的定义 我们知道,通信、雷达、导航、⼴播、电视等⽆线电设备,都是通过⽆线电波来传递信息的,都需要有⽆线电波的辐射和接收。
在⽆线电设备中,⽤来辐射和接收⽆线电波的装置称为天线。
天线为发射机或接收机与传播⽆线电波的媒质之间提供所需要的耦合。
天线和发射机、接收机⼀样,也是⽆线电设备的⼀个重要组成部分。
天线的功⽤ 天线辐射的是⽆线电波,接收的也是⽆线电波,然⽽发射机通过馈线送⼊天线的并不是⽆线电波,接收天线也不能把⽆线电波直接经馈线送⼊接收机,其中必须经过能量转换过程。
下⾯我们以⽆线电通信设备为例分析⼀下信号的传输过程,进⽽说明天线的能量转换作⽤。
天线能量转换原理⽰意图 在发射端,发射机产⽣的已调制的⾼频振荡电流(能量)经馈电设备输⼊发射天线(馈电设备可随频率和形式不同,直接传输电流波或电磁波),发射天线将⾼频电流或导波(能量)转变为⽆线电波—⾃由电磁波(能量)向周围空间辐射(见图1);在接收端,⽆线电波(能量)通过接收天线转变成⾼频电流或导波(能量)经馈电设备传送到接收机。
从上述过程可以看出,天线不但是辐射和接收⽆线电波的装置,同时也是⼀个能量转换器,是电路与空间的界⾯器件。
天线的⼯作原理 当导体上通以⾼频电流时,在其周围空间会产⽣电场与磁场。
按电磁场在空间的分布特性,可分为近区,中间区,远区。
设R为空间⼀点距导体的距离,在时的区域称近区,在该区内的电磁场与导体中电流,电压有紧密的联系。
在的区域称为远区,在该区域内电磁场能离开导体向空间传播,它的变化相对于导体上的电流电压就要滞后⼀段时间,此时传播出去的电磁波已不与导线上的电流、电压有直接的联系了,这区域的电磁场称为辐射场。
必须指出,当导线的长度 L 远⼩于波长λ时,辐射很微弱;导线的长度 L 增⼤到可与波长相⽐拟时,导线上的电流将⼤⼤增加,因⽽就能形成较强的辐射。
第一讲天线的基础知识表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。
1.1 天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。
天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。
天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。
匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。
在我们日常维护中,用的较多的是驻波比和回波损耗。
一般移动通信天线的输入阻抗为50Ω。
驻波比:它是行波系数的倒数,其值在1到无穷大之间。
驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。
在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。
过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。
回波损耗:它是反射系数绝对值的倒数,以分贝值表示。
回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越小表示匹配越好。
0表示全反射,无穷大表示完全匹配。
在移动通信系统中,一般要求回波损耗大于14dB。
1.2 天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。
当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。
由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。
因此,在移动通信系统中,一般均采用垂直极化的传播方式。
另外,随着新技术的发展,最近又出现了一种双极化天线。
就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。
天线和微波技术中的天线类型介绍天线是通信领域中广泛使用的一种设备,用于收发无线电波信号。
在微波技术中,天线的类型多种多样,每一种天线都有其独特的优点和适用场景。
本文将介绍几种常见的天线类型,在简要介绍其原理和特点的同时,还将探讨其在不同的应用领域中的应用。
一、偶极天线偶极天线是最基本和最常用的天线类型之一。
其结构简单,通常由一对互相对称的导体构成。
偶极天线主要用于接收和发射无线电波,其工作频率范围广泛,从几千赫兹到数百吉赫兹不等。
偶极天线的优点是易于制造,而且天线本身不需要进行特殊的解耦设计。
这使得它成为了无线通信和广播领域的理想选择。
二、方向性天线方向性天线是一种具有明确辐射方向的天线类型。
它主要通过限制天线在特定方向上的辐射能量,以便更好地集中信号。
方向性天线常用于无线通信系统中,用于增加信号传输的距离和强度。
基于不同的设计原理,方向性天线可以分为常见的两种类型:定向天线和定向性天线。
定向天线通过定向辐射辐射能量,以便将信号集中在特定区域内。
而定向性天线则可以通过电子调谐和信号处理技术,自动跟踪信号源的方向。
三、扩束天线扩束天线是一种通过集中信号辐射以提高天线增益的天线类型。
它主要通过在发射和接收器之间添加反射器和透镜等装置来实现辐束。
扩束天线的应用非常广泛,例如在雷达系统中用于提高目标探测和跟踪的准确性,或者在卫星通信系统中用于增加信号传输的距离和质量。
四、天线阵列天线阵列是由多个天线单元组成的天线系统。
它通过联合操作单个天线单元,以实现更大的增益、更高的信噪比和更好的指向性。
天线阵列的设计复杂度相对较高,但是其在无线通信、雷达、卫星通信和航空导航等领域中的应用价值巨大。
五、微带天线微带天线是一种以微带线和介质基片作为支撑结构的天线。
其结构紧凑、制造成本低廉,被广泛应用于卫星通信、无线电频段标签系统和手机通信等领域。
微带天线具有宽带性能、较好的辐射特性和方便的制造工艺,是当今天线设计的热点研究领域之一。
[转帖]短波通信中的天线选型短波通信中的天线选型EMC CHINA .COM 中国电磁兼容网短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。
短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。
短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。
近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。
由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。
在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。
下面简单介绍短波天线如何选型和几种常用的天线性能。
一、衡量天线性能因素天线是无线通信系统最基本部件,决定了通信系统的特性。
不同的天线有不同的辐射类型、极性、增益以及阻抗。
1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。
2.极性:极性定义了天线最大辐射方向 电气矢量的方向。
垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。
3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。
增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。
一般高增益天线的带宽较窄。
4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。
当驻波比(VSWR)1:1时没有反射波,电压反射比为1。
当VSWR大于1时,反射功率也随之增加。
发射天线给出的驻波比值是最大允许值。
例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。
VSWR为1.5:1时,损失4%功率,信号降低0.18dB。
二、几种常用的短波天线1.八木天线(YagiAntenna)八木天线在短波通信中 通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上 具有很强的方向性。
天线知识点总结天线是电子设备中最基本的元件之一,它能够将电磁波转换为电信号或者将电信号转换为电磁波,是广泛应用在通讯、雷达、导航、电视等领域的不可或缺的元器件。
本文将简要介绍一些天线的相关知识点。
1. 天线的基础理论 - 反射、辐射以及电磁波的特性天线的工作原理基于电磁波的传播特性及其与天线之间的相互作用。
天线通过反射、辐射等方式将电磁波与电信号进行转换,因此温度、介质、空气湿度等环境因素都会对天线的性能产生影响。
2. 天线的类型 - 主动、被动及扫描式天线天线可以根据其在电路中的位置和作用方式分为主动和被动两种类型。
主动天线通常带有放大器来增加信号强度,而被动天线则不带放大器。
此外,扫描式天线可以通过旋转、摆动等方式改变辐射方向,以实现扫描覆盖目标区域的效果。
3. 天线的指标 - 增益、方向性、VSWR、带宽等天线的性能可由其各种指标来描述,其中增益、方向性、VSWR、带宽等是较为重要的指标。
增益是天线的辐射能力,方向性是天线辐射能力随方向变化的能力,VSWR是天线对来自外部信号反射时的反射率指标,带宽则是天线能够工作的频率范围。
4. 天线的尺寸 - λ/2、λ/4、全波长天线等天线的尺寸与工作频率密切相关,常见的天线长度有λ/2、λ/4、全波长天线等。
λ/2天线通常用于VHF和UHF频段,λ/4天线适用于较低频段,全波长天线则通常用于HF 等较低频段。
5. 天线的应用 - 通讯、雷达、导航、电视等天线在通讯、雷达、导航、电视等领域都有广泛的应用。
不同应用场景对天线的要求不同,例如通讯领域需要天线具有良好的增益和方向性,而雷达和导航领域则需要具有较高的扫描速度和快速响应能力。
6. 天线的制作和测试 - PCB天线、红外按摩仪等天线的制作和测试涉及到复杂的技术和设备,常用的制作方法包括PCB天线、红外按摩仪等。
测试方法则通常包括VSWR测试、增益测试、方向性测试等。
7. 天线的未来发展趋势 - 新材料、智能化、多功能化等随着技术的不断进步,未来天线的发展趋势将会趋向于新材料、智能化、多功能化等方向。
常用卫星通信天线简介天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。
地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。
反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。
反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。
下文对一些常用的天线作简单介绍。
1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。
发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。
由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。
接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。
图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。
缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。
2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。
主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。
从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。
由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。
对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。
修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。
目前,大多数地球站采用的都是修正型卡塞格伦天线。
天线技术简介1、概述在无线电通信中,天线主要完成导行波(或高频电流)与空间电波能量之间的转换,是一个能量转换器,它有四项最基本的功能:1、天线是一个良好的“电磁开放系统”,它要能够与它的源或负载匹配;2、天线具有方向性特性;3、天线能发射或接收预定极化的电磁波;4、天线具有一定的工作频率范围。
天线的形式有很多,有多种不同的分类方法。
(1)按使用范畴分,有通信天线、雷达天线、广播天线、导航天线等;(2)按天线特性分,如按方向特性分,有定向天线、全向天线、强方向性天线、弱方向性天线;(3)从极化特性分,有线极化(垂直极化、水平极化)天线、圆极化天线;(4)从频带特性分,有窄带天线、宽带天线、超宽带天线;(5)按馈电方式分,有对称天线、非对称天线;(6)按天线上电流分,有行波天线、驻波天线;(7)按使用波段分,有超长波、长波、中波、短波、超短波、微波天线;(8)按外形分,有V型天线、菱形天线、环形天线、螺旋天线、鞭状天线、喇叭天线、抛物面天线等等。
(9)此外,新型天线还有相控阵天线、智能天线、有源天线和手机上常用的微带天线、振子天线、印刷振子天线。
2、天线参数发射天线与接收天线的作用是一个可逆的过程,同一副天线用作发射和用作接收的特性参数(如方向特性、极化特性、阻抗特性等等)是相同的,但是,特性参数的定义却根本不同,也就是说,收发互易性仅限于同一天线收发参数数值的相同,但工作方式与参数定义却是截然不同的。
比如,接收天线上的电流分布与它用作发射时的分布不同。
接收天线电参数是以来波对接收天线的作用(接收电流或感应电动势)为目标,而不像发射天线那样是以辐射场参数(电场强度或功率密度)为目标的。
天线的电参数主要有输入阻抗、辐射电阻、方向图、方向性系数、效率、增益系数、频带宽度和极化系数等等,下面,我们对其中最常用到的几项作简要介绍。
2.1 方向图天线的辐射电磁场在固定距离上随空间角坐标(θ,Φ)分布的图形,称为辐射方向图或辐射波瓣图,简称方向图。
天线基础知识与原理天线是将电磁波能量从传输线(如电缆)转移到自由空间(如空气)中的器件。
它是无线通信系统中至关重要的组成部分,用于发送和接收无线信号。
天线的设计和原理对通信系统的性能具有重要影响。
天线的基本原理是通过电流激励器件使其发射或接收电磁波。
当电流通过天线时,会在天线上产生电磁场。
根据电磁场分布的不同,天线可以被分为不同的类型。
例如,一根直立的导体(如铜线)可以作为零度天线或全向天线使用,这意味着它能够在水平方向上发射或接收相同的信号强度。
另一个例子是定向天线,它可以集中发射或接收能量到特定方向。
天线的性能由几个关键参数决定。
其中一个是频率响应,也称为带宽。
天线应该在指定的频率范围内能够有效地工作。
另一个参数是增益,表示天线相对于理想的点源天线的增加或减少的能量。
增益可以用于改善信号传输和接收的效果。
其他重要的参数包括波束宽度、极化方式、输入阻抗等。
天线设计的关键是通过调整天线的几何形状和尺寸来满足特定的需求。
一种常见的天线类型是偶极子天线。
它由两根平行的导体构成,通常以半波长的长度排列。
偶极子天线适用于宽带应用,可以在几个频段上工作。
另一种常见的天线类型是微带天线,它采用薄片状的天线元件,并用绝缘基板支持。
微带天线适用于小型设备和集成电路上的应用,可以在不同的频率范围内工作。
天线的工作原理与物理学中的电磁波理论相关。
根据麦克斯韦方程组,电磁波由电场和磁场组成,并以光速传播。
当电流通过天线时,会产生电场和磁场的变化,并以电磁波的形式辐射出去。
电场和磁场的分布取决于天线的几何形状和电流分布。
天线的电磁辐射主要通过两种机制实现:辐射和导波。
辐射是指电磁波以空间波的形式传播,可以远离天线和传输线。
导波是指电磁波沿着天线和传输线传播,类似于输送能量的导线。
在不同的频率范围内,两种机制的相对重要性会有所不同。
要理解天线的基础知识,还需要了解一些天线的相关概念。
例如,VSWR(电压驻波比)是用于衡量天线和传输线之间匹配的参数,主要影响信号的传输效率。
驻波天线知识点总结驻波天线是一种常见的天线类型,它利用驻波效应来增强天线的性能。
在无线通信和电磁波传输中,驻波天线的应用非常广泛,因此对驻波天线的了解和掌握是非常重要的。
在本文中,将对驻波天线的基本原理、特点、分类、应用等进行详细的总结和分析。
一、基本原理1. 驻波效应驻波效应是指当传输线上投入的信号波在传输线内部发生来回反射,并与原信号波相叠加产生干涉时,形成的电压和电流的空间分布图。
在天线中,驻波效应可以用来增强电磁波的辐射效果,提高天线的性能。
2. 天线设计驻波天线的设计原理是利用天线长度和传输线的长度之间的关系,使得信号波在传输线内部发生反射并与原信号相叠加形成驻波。
通过合理的设计,可以使得天线的辐射效果更加突出,从而实现较好的通信和传输效果。
3. 辐射特性驻波天线的辐射特性是指天线在发射和接收信号时的辐射模式和特征。
通过合理设计驻波天线的辐射特性,可以有效提高天线的性能,使其在通信和传输中具有更好的效果。
二、特点1. 增强辐射效果驻波天线能够利用驻波效应增强天线的辐射效果,使得天线的信号传输更加稳定、可靠。
2. 适应性强驻波天线能够通过合理的设计和调整,适应不同频率和波长的信号传输要求,具有较好的通用性和灵活性。
3. 安装调整方便由于驻波天线的原理比较简单,安装和调整较为方便,可以根据实际需求灵活布置和调整天线。
4. 成本低相比于其他天线类型,驻波天线的成本较低,并且维护和维修成本也较低,具有较好的经济性。
三、分类1. 侧面辐射驻波天线侧面辐射驻波天线是最常见的一种驻波天线类型,它的天线元件沿着传输线的方向布置,利用侧面辐射的方式进行信号传输。
2. 顶置天线顶置天线是一种特殊的驻波天线类型,其天线元件安装在天线顶端,通过特殊的设计使得顶置天线具有更好的辐射性能。
3. 振子天线振子天线是一种更为复杂的驻波天线类型,利用振子和整流器结构来实现信号的传输和接收,并且具有更好的抗干扰能力。
四、应用1. 通信领域在无线通信领域,驻波天线被广泛应用于手机、对讲机、卫星通信、微波通信等设备中,它能够通过较小的天线尺寸实现较好的传输效果。
天线基本知识天线基本知识1天线1.1 天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。
可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。
天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;* 电磁波的辐射导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。
如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。
必须指出,当导线的长度L 远小于波长λ 时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。
1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。
两臂长度相等的振子叫做对称振子。
每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。
另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。
1.3 天线方向性的讨论天线方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。
一、发射天线的作用广播电视发射台的主要设备包括了:信号源系统、发射机设备以及铁塔和天馈线系统。
在广播电视传输的各个环节中,天馈线系统是各环节中最终的主要设备之一,其作用是将广播电视信号以电磁波的形式向空间传送能量。
天线可以向周围辐射电磁波能量,在计算天线辐射场强时,天线的增益若能提高3dB,则相当于发射机有效功率提高一倍。
因此,使用较高增益的天线更具有较大的使用价值。
二、天线的发展1、1887年郝兹在验证电磁波存在时使用了双球发射天线和单环天线。
2、1897年出现了能实现5Km通信的大型长波天线。
3、1901年马可尼研制出第一付大型垂直极化天线实现3700Km远程通信。
4、20年代初中波天线兴起和发展,从T型、Г型和伞型天线到后来的拉线式或自立式铁塔天线。
凌风公司在2003年又率先研制出了自立式缩短型曲线式中波电小天线。
5、30年代雷达的出现推动了喇叭天线透镜天线介质天线、缝隙天线等超短波天线的诞生.1928年著名的八木天线研制成功并推广应用至今。
6、40-50年代:蝙蝠翼天线、带有反射板的各种半波振子天线、大功率缝隙天线迅速发展。
长、中、短天线基本定型。
7、随着科技的发展,高增益、宽频带、高分辨率、快速扫描的天线大量出现,相控天线取得了突破性发展,现代天线已有微带天线、有源相控天线、超导天线、四维天线等.更有向小型化、轻便、隐形化的发展趋势.三、天线问题求解的基本方法1、解析法:对形状极为简单的天线求得精确解。
2、近似解析法:变分法、微扰法、迭代法、几何光学法几何绕射法、物理绕射法等。
3、数值法:利用计算机进行运算,可用纯数值法,也可用矢量法。
但是,较为复杂的天线,仍然是用多次实验的方法优化出来的,某些电参数用经验公式或实验曲线计算.四、天线的主要参数1、天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值.天线与馈线的连接,最理想的情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波。
带你了解天线的特性今天给大家介绍一下天线方面的根本知识,使大家对天线有初步的了解。
下面先来了解几个概念。
共振:任何天线都谐振在一定的频率上,我们要接收哪个频率的信号,就希望天线谐振在那个频率上。
天线谐振是对天线最根本的要求,要不然,就没那么多讲究了,随便扔根线出去不也是天线嘛。
天线的谐振问题涉及到的主要数据是波长及其四分之一。
计算波长的公式很简单,300。
其中f的单位是,而得到的结果的单位是米。
1/4波长是称作根本振子,如偶极天线是一对根本振子,垂直天线是一根根本振子。
不过天线中的振子的长度并不正好是1/4波长,因为电波在导线中行进的速度及在真空中的不同,一般都要短一些,所以有一个缩短因子。
这个因子取决于材料。
带宽:这也是一个重要但容易被忽略的问题。
天线是有一定带宽的,这意味着虽然谐振频率是一个频率点,但是在这个频率点附近一定范围内,这付天线的性能都是差不多好的。
这个范围就是带宽。
我们当然希望一付天线的带宽能覆盖一定的范围,最好是我们所收听的整个播送波段。
要不然换个台还要换天线或者调天线也太麻烦了。
天线的带宽和天线的型式、构造、材料都有关系。
一般来说,振子所用管、线越粗,带宽越宽;天线增益越高,带宽越窄。
阻抗:天线可以看做是一个谐振回路。
一个谐振回路当然有其阻抗。
我们对阻抗的要求就是匹配:和天线相连的电路必须有及天线一样的阻抗。
和天线相连的是馈线,馈线的阻抗是确定的,所以我们希望天线的阻抗和馈线一样。
一般生产的馈线,主要是300欧姆、75欧姆和50欧姆三种阻抗,国外过去还有450欧姆和600欧姆阻抗的馈线。
根本偶极天线的阻抗是75欧姆左右,V型偶极天线是50欧姆左右,根本垂直天线阻抗 50欧姆。
其他天线一般阻抗都不是50或75欧姆,那么在把它们及馈线连接之前,需要有一定的手段来做阻抗变换。
平衡:对称的天线是平衡的,如偶极天线、八木天线,而同轴电缆是不平衡的,把这两者连接起来,就需要解决平衡不平衡转换的问题。
增益:天线是无源器件,但是天线是可以有增益的。
这个增益当然是相对增益,是相对于根本偶极天线而言的。
所用的天线,当然希望增益越高越好。
不过别忘了,增益高往往伴随着带宽窄。
方向性:不是所有的天线都有方向性的。
便携式收音机上的拉杆天线就没有方向性。
偶极天线有弱的方向性,八木等定向天线可以得到较好的方向性。
好的方向性意外着能够集中收集所需方向的电波,还有一个重要的能力就是能局部地减弱本地电台信号的影响。
但是定向天线并不是什么情况下都好。
当没有目标而等待的时候,定向天线就有可能使你错过天线反面的信号。
所以比较合理的方式,是用一个垂直天线和一付定向天线配合使用,用垂直天线等待,听到信号后,再用定向天线转过去对准了听。
仰角:天线的仰角是指电波的仰角,而并不是天线振子本身机械上的仰角。
仰角反映了天线接收哪个高度角来的电波最强。
对于F层传播,我们希望仰角低,可以传播地远,对于层,电波主要是从高处来,我们希望仰角高。
仰角的上下取决于天线型式和架设高度。
一般来说,垂直天线具有低仰角,其他天线的仰角随架设高度变化。
架设高度:天线有一个架设高度。
这个高度实际上是两个高度,一个高度我们考虑它的水平面高度,这个高度对于本地信号有些用,对于其实用处不大。
第二个常常被忽略的高度是地面高度,是指天线到电气地面的高度。
比方架设在钢筋水泥房顶的天线,虽然房子高有20米,但是天线距房顶只有1米,那么这付天线的高度只是1米。
天线的高度对不同的天线有不同的影响,一般会影响天线的阻抗和仰角。
通常我们认为天线的地面高度应在0.4个波长以上,才比较不受地面的影响。
驻波比:最后介绍这个最不被中国的爱好者熟悉的特征。
驻波比反映了天馈系统的匹配情况。
它是以天线作为发射天线时发射出去和反射回来的能量的比来衡量天线性能的。
驻波比是由天馈系统的阻抗决定的。
天线的阻抗及馈线的阻抗及接收机的阻抗一致,驻波比就小。
驻波比高的天馈系统,信号在馈线中的损失很大。
天调的作用:1、匹配阻抗,使天线系统〔天调+天线〕对于发射机来说是阻抗匹配,这样才能让天线系统中的天线电缆局部辐射效率最高2、谐振天线,按照电磁理论来讲天线阻抗,当X=0时视为天线谐振。
不自然谐振的天线使用天调后,天调通过加感或加容,使得中X=0。
3、加天调后的天线相对于自然谐振天线的电效率问题,将天线调谐到相对于发射机来说是阻抗匹配,靠的是天调内部的网络,有很大一局部功率在天调的L、C内“吞吐〞,不辐射电磁波。
由于L、C不是理想元件,会消耗一局部能量,因此天线越不自然谐振〔特别是等效辐射电阻偏离50欧越远〕,加天调后的电效率就越低。
1.1 天线的作用无线电发射机输出的射频信号功率,通过馈线〔电缆〕输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接下来〔仅仅接收很小很小一局部功率〕,并通过馈线送到无线电接收机。
可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。
天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
对于众多品种的天线,进展适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。
*电磁波的辐射导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力及导线的长度和形状有关。
如图1.1 a 所示,假设两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。
必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可及波长相比较时,导线上的电流将大大增加,因而就能形成较强的辐射。
1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。
两臂长度相等的振子叫做对称振子。
每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a 。
另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半曲折合振子,见图1.2 b。
1.4 天线的极化天线向周围空间辐射电磁波。
电磁波由电场和磁场构成。
人们规定:电场的方向就是天线极化方向。
一般使用的天线为单极化的。
下列图示出了两种根本的单极化的情况:垂直极化是最常用的;水平极化也是要被用到的。
1.4.1 双极化天线下列图示出了另两种单极化的情况:+45°极化及-45°极化,它们仅仅在特殊场合下使用。
这样,共有四种单极化了,见下列图。
把垂直极化和水平极化两种极化的天线组合在一起,或者,把+45°极化和-45°极化两种极化的天线组合在一起,就构成了一种新的天线双极化天线。
下列图示出了两个单极化天线安装在一起组成一付双极化天线,注意,双极化天线有两个接头。
双极化天线辐射〔或接收〕两个极化在空间相互正交〔垂直〕的波。
1.4.2 极化损失垂直极化波要用具有垂直极化特性的天线来接收,水平极化波要用具有水平极化特性的天线来接收。
右旋圆极化波要用具有右旋圆极化特性的天线来接收,而左旋圆极化波要用具有左旋圆极化特性的天线来接收。
当来波的极化方向及接收天线的极化方向不一致时,接收到的信号都会变小,也就是说,发生极化损失。
例如:当用+ 45°极化天线接收垂直极化或水平极化波时,或者,当用垂直极化天线接收+45°极化或-45°极化波时,等等情况下,都要产生极化损失。
用圆极化天线接收任一线极化波,或者,用线极化天线接收任一圆极化波,等等情况下,也必然发生极化损失只能接收到来波的一半能量。
当接收天线的极化方向及来波的极化方向完全正交时,例如用水平极化的接收天线接收垂直极化的来波,或用右旋圆极化的接收天线接收左旋圆极化的来波时,天线就完全接收不到来波的能量,这种情况下极化损失为最大,称极化完全隔离。
1.4.3 极化隔离理想的极化完全隔离是没有的。
馈送到一种极化的天线中去的信号多少总会有那么一点点在另外一种极化的天线中出现。
例如下列图所示的双极化天线中,设输入垂直极化天线的功率为10W,结果在水平极化天线的输出端测得的输出功率为10。
1.5 天线的输入阻抗定义:天线输入端信号电压及信号电流之比,称为天线的输入阻抗。
输入阻抗具有电阻分量和电抗分量,即 = + j 。
电抗分量的存在会减少天线从馈线对信号功率的提取,因此,必须使电抗分量尽可能为零,也就是应尽可能使天线的输入阻抗为纯电阻。
事实上,即使是设计、调试得很好的天线,其输入阻抗中总还含有一个小的电抗分量值。
输入阻抗及天线的构造、尺寸以及工作波长有关,半波对称振子是最重要的根本天线,其输入阻抗为 = 73.1+j42.5 〔欧〕。
当把其长度缩短〔3~5〕%时,就可以消除其中的电抗分量,使天线的输入阻抗为纯电阻,此时的输入阻抗为 = 73.1 〔欧〕,〔标称75 欧〕。
注意,严格的说,纯电阻性的天线输入阻抗只是对点频而言的。
顺便指出,半曲折合振子的输入阻抗为半波对称振子的四倍,即 = 280〔欧〕,〔标称300 欧〕。
有趣的是,对于任一天线,人们总可通过天线阻抗调试,在要求的工作频率范围内,使输入阻抗的虚部很小且实部相当接近50 欧,从而使得天线的输入阻抗为 = = 50 欧这是天线能及馈线处于良好的阻抗匹配所必须的。
1.6 天线的工作频率范围〔频带宽度〕无论是发射天线还是接收天线,它们总是在一定的频率范围〔频带宽度〕内工作的,天线的频带宽度有两种不同的定义一种是指:在驻波比≤1.5 条件下,天线的工作频带宽度;一种是指:天线增益下降3 分贝范围内的频带宽度。
在移动通信系统中,通常是按前一种定义的,具体的说,天线的频带宽度就是天线的驻波比不超过1.5 时,天线的工作频率范围。
一般说来,在工作频带宽度内的各个频率点上,天线性能是有差异的,但这种差异造成的性能下降是可以承受的。
1.7.1 板状天线无论是还是,板状天线是用得最为普遍的一类极为重要的基站天线。
这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。
板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。
1.7.1 a 基站板状天线根本技术指标例如频率范围824-960频带宽度70增益14 ~ 17极化垂直标称阻抗50电压驻波比≤前后比?25下倾角〔可调〕3 ~ 8°半功率波束宽度水平面60 ° ~ 120 °垂直面16 ° ~ 8 °垂直面上旁瓣抑制? -12互调≤1101.7.1 b 板状天线高增益的形成A. 采用多个半波振子排成一个垂直放置的直线阵单个半波振子垂直面方向图两个半波振子垂直面方向图四个半波振子垂直面方向图增益为 2.15 增益为 5.15 增益为 8.15单个半波振子两个半波振子四个半波振子B. 在直线阵的一侧加一块反射板〔以带反射板的二半波振子垂直阵为例〕两个半波振子两个半波振子〔带反射板〕〔带反射板〕垂直面方向图水平面方向图增益为 11 ~ 14两个半波振子〔带反射板〕两个半波振子〔带反射板〕在垂直面上的配置在水平面上的配置C. 为提高板状天线的增益,还可以进一步采用八个半波振子排阵前面已指出,四个半波振子排成一个垂直放置的直线阵的增益约为8 ;一侧加有一个反射板的四元式直线阵,即常规板状天线,其增益约为14 ~ 17 。