第6章 树1
- 格式:ppt
- 大小:471.50 KB
- 文档页数:83
第六章树一、选择题1.对于一棵具有n个结点的树,该树中所有结点的度数之和为________。
A. n-1 B. n C. n+1 D. (n+1)/22.设结点A 有3个兄弟结点且结点B为结点A的双亲结点,则结点B 的度数为________。
A. 3 B. 4 C.5 D. 13.根据二叉树的定义可知二叉树共有________种不同的形态。
A. 4 B. 5 C. 6 D. 74.在一棵树中,________没有前驱结点。
A. 分支结点B. 叶结点C. 树根结点D. 空结点5.设某棵二叉树中只有度数为0和度数为2的结点,且度数为0的结点数为 n,则这棵二叉中共有________个结点。
A. 2n B.n+1 C. 2n-1 D.2n+16.设某棵二叉树的高度为10,则该二叉树上叶子结点最多有________。
A. 20 B.256 C. 512 D.10247.一棵具有5层满二叉树中结点总数为________。
A. 31 B. 32 C.33 D.168. 如下图所示的4 棵二叉树,_______不是完全二叉树。
9.具有65个结点的完全二叉树的高度为________。
(根的层次号为1)A.8B.7C.6D.510.把一棵深度4的左单支二叉树改造成完全二叉树时,要增添个空结点。
A.10 B.8 C.6 D.411.设按照从上到下、从左到右的顺序从 1 开始对完全二叉树进行顺序编号,则编号为 i结点的左孩子结点的编号为________。
A. 2i+1 B. 2i C. i/2 D. 2i-112.首先访问结点的左子树,然后访问该结点,最后访问结点的右子树,这种遍历称为________。
A.前序遍历B.后序遍历C.中序遍历D.层次遍历13.已知一棵二叉树的前序遍历结果为 ABCDEF ,中序遍历结果为 CBAEDF,则后序遍历的结果为________。
A.CBEFDA B. FEDCBA C. CBEDFA D. 不定14.已知某二叉树的后序遍历序列是 dabec, 中序遍历序列是 debac,它的前序遍历序列是________。
第六章树(基础知识)选择题部分1.在线索化二叉树中,t所指结点没有左子树的充要条件是()答案(A)t-〉left==NULL (B)t-〉ltag==1(C)t-〉ltag=1且t-〉left=NULL (D).以上都不对2.二叉树按某种顺序线索化后,任一结点均有指向其前趋和后继的线索,这种说法答案(A)正确(B)错误3.二叉树的前序遍历序列中,任意一个结点均处在其子女结点的前面,这种说法()答案(A)正确(B)错误4.由于二叉树中每个结点的度最大为2,所以二叉树是一种特殊的树,这种说法答案(A)正确(B)错误5.设高度为h的二叉树上只有度为0和度为2的结点,则此类二叉树中所包含的结点数至少为()。
答案(A)2h (B)2h-1(C)2h+1(D)h+16.已知某二叉树的后序遍历序列是dabec。
中序遍历序列是debac,它的前序遍历序列是()。
答案(A)acbed (B)decab(C)deabc (D)cedba7.如果T2是由有序树T转换而来的二叉树,那么T中结点的前序就是T2中结点的()答案(A)前序(B)中序(C)后序D.层次序8.某二叉树的前序遍历结点访问顺序是abdgcefh,中序遍历的结点访问顺序是dgbaechf,则其后序遍历的结点访问顺序是()。
答案(A)bdgcefha (B)gdbecfha (C)bdgaechf (D)gdbehfca9.二叉树为二叉排序树的充分必要条件是其任一结点的值均大于其左孩子的值、小于其右孩子的值。
这种说法()答案(A)正确(B)错误10.按照二叉树的定义,具有3个结点的二叉树有()种。
答案(A)3(B)4(C)5(D)611.在一非空二叉树的中序遍历序列中,根结点的右边()答案(A)只有右子树上的所有结点(B)只有右子树上的部分结点(C)只有左子树上的部分结点(D)只有左子树上的所有结点12.树最适合用来表示()。
答案(A)有序数据元素(B)无序数据元素(C)元素之间具有分支层次关系的数据(D)元素之间无联系的数据13.任何一棵二叉树的叶结点在先序、中序和后序遍历序列中的相对次序()答案(A)不发生改变(B)发生改变(C)不能确定D.以上都不对14.实现任意二叉树的后序遍历的非递归算法而不使用栈结构,最佳方案是二叉树采用()存储结构。
数据结构练习第六章树一、选择题1.树最适合用来表示( )。
A.有序数据元素B.无序数据元素C.元素之间具有分支层次关系的数据D.元素之间无联系的数据2.二叉树的第k层的结点数最多为( ).A.2k-1 B.2K+1 C.2K-1 D. 2k-13.设哈夫曼树中的叶子结点总数为m,若用二叉链表作为存储结构,则该哈夫曼树中总共有()个空指针域。
A. 2m-1B. 2mC. 2m+1D. 4m4.设某棵二叉树的中序遍历序列为ABCD,前序遍历序列为CABD,则后序遍历该二叉树得到序列为()。
A. BADCB. BCDAC. CDABD. CBDA5.设某棵二叉树中有2000个结点,则该二叉树的最小高度为()。
A. 9B. 10C. 11D. 126.设一棵二叉树的深度为k,则该二叉树中最多有()个结点。
A. 2k-1 B .2k C. 2k-1 D. 2k-17.设某二叉树中度数为0的结点数为N0,度数为1的结点数为Nl,度数为2的结点数为N2,则下列等式成立的是()。
A. N0=N1+1 B. N=Nl+N2C. N=N2+1 D. N=2N1+l8.设一棵m叉树中度数为0的结点数为N0,度数为1的结点数为Nl,……,度数为m的结点数为Nm,则N=()。
A. Nl +N2+……+Nm B. l+N2+2N3+3N4+……+(m-1)NmC. N2+2N3+3N4+……+(m-1)Nm D. 2Nl+3N2+……+(m+1)Nm9.设一组权值集合W={2,3,4,5,6},则由该权值集合构造的哈夫曼树中带权路径长度之和为()。
A. 20B. 30C. 40D. 4510.设二叉树的先序遍历序列和后序遍历序列正好相反,则该二叉树满足的条件是()。
A. 空或只有一个结点B. 高度等于其结点数C. 任一结点无左孩子D. 任一结点无右孩子11.设某棵三叉树中有40个结点,则该三叉树的最小高度为()。
A. 3B. 4C. 5D. 612.深度为k的完全二叉树中最少有()个结点。
第六章 树及割集习题课1课堂例题例1 设T 是一棵树,T 有3个度为3顶点,1个2度顶点,其余均是1度顶点。
则(1)求T 有几个1度顶点?(2)画出满足上述要求的不同构的两棵树。
分析:对于任一棵树T ,其顶点数p 和边数q 的关系是:1q p =-且1deg()2ipi v q ==∑,根据这些性质容易求解。
解:(1)设该树T 的顶点数为p ,边数为q ,并设树T 中有x 个1度顶点。
于是1deg()33122ipi v x q ==⨯+⨯+=∑且31p x =++,1q p =-,得5x =。
(2)满足上述要求的两棵不同构的无向树,如图1所示。
图1例2设G 是一棵树且()G k ∆≥,证明G 中至少有k 个度为1顶点。
证:设T 中有p 个顶点,s 个树叶,则T 中其余p s -个顶点的度数均大于等于2,且至少有一个顶点的度大于等于k 。
由握手定理可得:1222()2(1)pi i q p deg v p s k s ==-=≥--++∑,有s k ≥。
所以T 中至少有k 个树叶 。
习题例1 若无向图G 中有p 个顶点,1p -条边,则G 为树。
这个命题正确吗?为什么?解:不正确。
3K 与平凡图构成的非连通图中有四个顶点三条边,显然它不是树。
例2设树T 中有2n 个度为1的顶点,有3n 个度为2的顶点,有n 个度为3的顶点,则这棵树有多少个顶点和多少条边?解:设T 有p 个顶点,q 条边,则123161q p n n n n =-=++-=-。
由deg()2v Vv q ∈=∑有:1223322(61)122n n n q n n ⨯+⨯+⨯==-=-,解得:n =2。
故11,12q p ==。
例3证明恰有两个顶点度数为1的树必为一条通路。
证:设T 是一棵具有两个顶点度数为1的(,)p q 树,则1q p =-且1deg()2pii v q ==∑2(1)p =-。
又T 除两个顶点度数为1外,其他顶点度均大于等于2,故211deg()2deg()2(1)p p iii i v v p -===+=-∑∑,即21deg()2(2)p ii v p -==-∑。
第六章树习题1单项选择题1、若一棵二叉树具有10个度为2的结点,5个度为1的结点,则叶子结点个数是(B)。
A、9B、11C、15D、无法确定2、设给定权值总数有n个,其哈夫曼树的结点总数为( D )。
A、不确定B、2nC、2n+1D、2n–13、有关二叉树下列说法正确的是(B)。
A、二叉树的度为2B、一棵二叉树的度可以小于2C、二叉树中至少有一个结点的度为2D、二叉树中任何一个结点的度都为24、一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点。
A、2hB、2h-1C、2h+1D、h+15、对于有n个结点的二叉树, 其高度为()。
log D、不确定A、n log2nB、log2nC、⎣⎦n26、利用二叉链表存储树,则根结点的右指针是()。
A、指向最左孩子B、指向最右孩子C、空D、非空7、树的后根遍历序列等同于该树对应的二叉树的( )。
A、先序遍历B、中序遍历C、后序遍历D、层序遍历8、在下列存储形式中,哪一个不是树的存储形式?()A、双亲表示法B、孩子链表表示法C、孩子兄弟表示法D、顺序存储表示法9、已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。
A、CBEFDAB、FEDCBAC、CBEDFAD、不定10、某二叉树的前序序列和后序序列正好相反,则该二叉树一定是()的二叉树。
A、空的或只有一个结点B、任一结点无左子树C、高度等于其结点数D、任一结点无右子树11、一棵左子树为空的二叉树在先序线索化后,其中空的链域的个数是:( )。
A、不确定B、0C、1D、212、若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则x的前驱为( )。
A、X的双亲B、X的右子树中最左的结点C、X的左子树中最右结点D、X的左子树中最右叶结点13、引入二叉线索树的目的是().A、加快查找结点的前驱或后继的速度B、为了能在二叉树中方便的进行插入和删除C、为了能方便的找到双亲D、使二叉树的遍历结果唯一14、下述编码中哪一个不是前缀码()。
第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( D )A .-A+B*C/DE B. -A+B*CD/E C .2. 设有一表示算术表达式的二叉树(见下图), 它所表示的算术表达式是( C ) A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G 3. 在下述结论中,正确的是( D )①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③B .②③④C .②④D .①④4. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( A )A .m-nB .m-n-1C .n+1D .条件不足,无法确定5.设森林F 中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F 对应的二叉树根结点的右子树上的结点个数是( D )。
A .M1B .M1+M2C .M3D .M2+M36. 设给定权值总数有n 个,其哈夫曼树的结点总数为( D )A .不确定B .2nC .2n+1D .2n-17.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( B )结点A .2hB .2h-1C .2h+1D .h+18. 一棵具有 n 个结点的完全二叉树的树高度(深度)是( A )A .⎣logn ⎦+1B .logn+1C .⎣logn ⎦D .logn-19.深度为h 的满m 叉树的第k 层有( A )个结点。
(1=<k=<h)A .m k-1B .m k -1C .m h-1D .m h -110. 一棵树高为K 的完全二叉树至少有( C )个结点A .2k –1 B. 2k-1 –1 C. 2k-1 D. 2k11. 利用二叉链表存储树,则根结点的右指针是( C )。