2005-06高数试卷
- 格式:doc
- 大小:275.00 KB
- 文档页数:4
中国农业大学2005 ~2006 学年 第 二 学期 高等数学(A 、B ) 课程考试试题 (A 卷)试 题(2006/6)一、 填空题 (满分15分,每小题3分,共5道小题),请将答案写在横线上.1.函数yz x u 2=在点)1,1,1(P 处沿(2,2,1)方向的方向导数为_____________.2.函数xy z =在条件1=+y x 下的极大值=___________.3.设L 为圆周922=+y x ,取逆时针方向,则曲线积分⎰-+-L dy x x dx y xy )2()32(2=__________.4.设⎩⎨⎧<≤+<≤--=ππx x x x f 0101)(2,且以π2为周期,则)(x f 的傅里叶级数在点π=x 处收敛于_____________.5.微分方程0)(=++dx y x xdy 的通解为__________________.二、选择题 (满分15分,每小题3分,共5道小题),请将合适选项填在括号内.1. 设有直线L :21211-=+=-z y x 和平面0224:=-+-∏z y x ,则L 与∏ ( ) (A) 垂直; (B) L 在∏上 ; (C) 平行; (D) 斜交.2.下列命题不正确的是( )(A)),(y x f 在点),(00y x 可微,则),(y x f 在该点连续;(B)),(y x f 在点),(00y x 的偏导数存在,则),(y x f 在该点连续;(C)),(y x f 的偏导数在点),(00y x 连续,则),(y x f 在该点可微;(D)),(y x f 在点),(00y x 可微,则),(y x f 在该点的偏导数存在.3.设∑是平面4=++z y x 被圆柱面122=+y x 截出的有限部分,则曲面积分⎰⎰∑ydS 的值是( ) (A) 334 ; (B) 0; (C) 34; (D) π.4.设α为常数,则级数∑∞=-13]1sin [n nn n α( ) (A) 绝对收敛; (B) 条件收敛; (C) 敛散性与α有关; (D) 发散.5.若21,y y 是二阶齐次线性微分方程0)()(=+'+''y x Q y x P y 的两个特解,21,C C 为两个任意常数,则2211y C y C y +=( )(A ) 是该方程的解; (B ) 是该方程的特解;(C ) 是该方程的通解; (D ) 不一定是该方程的解.三、(10分)求过点)2,1,3(0-P 且通过直线12354:z y x l =+=-的平面方程.四、(10分)设函数),(y x z z =由方程)(22z x yf z x -=+确定,其中f 为可微函数, 证明:x y z y x z z =∂∂+∂∂.五、(10分)计算积分:⎰⎰⎰⎰+x x x dy y x dx dy y x dx 242212sin 2sin ππ.六、(11分)设)(x f 具有二阶连续导数,1)0(',0)0(==f f ,曲线积分dy y x x f dx y x f xy y x L ])('[])([222++-+⎰与路径无关,求)(x f .解:由xQ y P ∂∂=∂∂,整理得)(x f 满足微分方程2)()(x x f x f =+''七、(12分)求幂级数∑∞=-1121n n n x n 的收敛域,并求其和函数.八、(12分)计算曲面积分⎰⎰∑++++212222)()(z y x dxdy a z axdydz ,其中∑为222y x a z ---=的上侧,a 为大于零的常数.九、(5分)设函数)(x f 在0=x 的某邻域内具有二阶连续导数,且0)0(,0)0(='=f f , 证明级数∑∞=1)1(n n f 绝对收敛.。
2005年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试高等数学 试卷题号 一 二 三 四 五 六 总分 核分人 分数一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( ) A .x x y cos = B. 13++=x x yC. 222x x y --=D. 222xx y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3. 当0→x 时,与12-x e 等价的无穷小量是 ( )A. xB.2xC. x 2D. 22x解: ⇒-x e x~12~12x ex -,应选B.4.=⎪⎭⎫ ⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n n n n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( ) A. 1 B. -1 C. 21 D. 21-解:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C. 得分 评卷人6.设函数)(x f 在点1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=')1(f ( )A. 1B. 21-C. 41D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D. 7.由方程y x e xy +=确定的隐函数)(y x 的导数dydx为 ( )A.)1()1(x y y x --B.)1()1(y x x y --C.)1()1(-+y x x yD.)1()1(-+x y y x 解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++,即dy x e dx ey y x yx )()(-=-++,dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( )A. 1)]([+n x f nB. 1)]([!+n x f nC. 1)]()[1(++n x f nD. 1)]([)!1(++n x f n解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='='',⇒ =)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-x xe x f C.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( ) A.增加,曲线)(x f y =为凹的 B.减少,曲线)(x f y =为凹的 C.增加,曲线)(x f y =为凸的 D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B. 11.曲线xe y 1-= ( ) A. 只有垂直渐近线 B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线解:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C. 12.设参数方程为⎩⎨⎧==t b y t a x sin cos ,则二阶导数=22dx yd ( ) A.t a b 2sin B.ta b32sin -C.t a b 2cos D.t t a b22cos sin - 解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22ta b t a t a b 322sin sin 1sin -=-⨯=,应选B. 13.若⎰+=C e dx ex f xx11)(,则=)(x f ( )A. x 1-B. 21x -C. x 1D. 21x解:两边对x 求导 22111)()1()(xx f x e e x f x x -=⇒-⨯=,应选B.14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是 ( )A.⎰+∞+0211dx x B.⎰-10211dx x C.⎰+∞e dx x x ln D.⎰+∞-0dx e x解:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.=⎰-11||dx x x ( )A.0B.32 C.34 D.32- 解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.设)(x f 在],[a a -上连续,则定积分⎰-=-aadx x f )( ( )A.0B.⎰adx x f 0)(2 C.⎰--aadx x f )( D.⎰-aadx x f )(解:⎰⎰⎰⎰-----===-===-aaa aa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )( ( )A.C x x +-2sin 2121 B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21 解: x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B. 19.设函数)(x f 在区间],[b a 上连续,则不正确的是 ( )A.⎰ba dx x f )(是)(x f 的一个原函数 B.⎰xadt t f )(是)(x f 的一个原函数C.⎰a x dt t f )(是)(x f -的一个原函数D.)(x f 在],[b a 上可积解: ⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰ba dx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( ) A. 垂直 B.相交但不垂直 C. 直线在平面上 D. 平行 解:n s n s⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数x z ∂∂和yz ∂∂存在是它在该点处可微的 ( )A.充分条件B.必要条件C.充要条件D.无关条件解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln= ,则=)2,1(dz ( ) A.dx x y 2 B.dy dx 2121- C.dy dx 21- D.dy dx 21+ 解:dy ydx x dz y x y x z 11ln 2ln 2ln-=⇒-==dy dx dz 21)2,1(-=⇒,应选C. 23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( ) A.)1,1(- B.)1,1(- C. )1,1(-- D. )1,1(解:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.二次积分⎰⎰22),(x dy y x f dx 写成另一种次序的积分是 ( ) A. ⎰⎰402),(y dx y x f dy B. ⎰⎰400),(ydx y x f dyC.⎰⎰422),(xdx y x f dy D. ⎰⎰402),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A. 25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(( )A.⎰⎰πθθθ2020)sin ,cos (ardr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f d C.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d解:积分区域在极坐标下可表示为:}θc o s 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,则=+⎰Ldy x xydx 22( )A. -1B.1C. 2D. -1 解:L :,2⎩⎨⎧==xy x x x 从0变到1 ,14222104131332===+=+⎰⎰⎰xdx x dx x dx x dy x xydx L,应选B.27.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n nnC .∑∞=-121)1(n n n D .∑∞=+-1)1()1(n n n n解:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n n n是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n n n条件收敛,应选B. 28. 下列命题正确的是 ( ) A .若级数∑∞=1n nu与∑∞=1n nv收敛,则级数21)(n n nv u+∑∞=收敛B . 若级数∑∞=1n nu与∑∞=1n nv收敛,则级数)(212n n n v u+∑∞=收敛C . 若正项级数∑∞=1n nu与∑∞=1n nv收敛,则级数21)(n n nv u+∑∞=收敛D . 若级数∑∞=1n nn vu 收敛,则级数∑∞=1n nu与∑∞=1n n v都收敛解:正项级数∑∞=1n nu与∑∞=1n nv收敛⇒∑∞=12n nu与∑∞=12n nv收敛,而)(2)(222n n n n v u v u +≤+,所以级数21)(n n n v u +∑∞=收敛 ,应选C 。
广州大学2005-2006学年第二学期考试卷高等数学(90学时)参考解答与评分标准一.填空题(每空2分,本大题满分20分)1. 设y x xy z sin -=, 则=∂∂x zy x y cos -,=∂∂∂y x z 22cos 1yx +. 2. 球面6222=++z y x 在点)1,2,1(处的法向量=n)2,4,2(,切平面方程为62=++z y x . 3. =⎰⎰x dy y x dx 02110=⎰145dx x 1.4. 幂级数∑∞=+0)1(2n n nn x 的收敛半径=R 2, 收敛域∈x )2,2[-.5. 微分方程065=+'-''y y y 的通解为=y x xe C eC 3221+,微分方程xxe y y y 265=+'-''的待定特解形式为=*y xeb ax x 2)(+.学院专业 班级姓名二.选择题 (每小题2分, 本大题满分10分)1. ),(y x f 在点),(00y x 连续是偏导数),(00y x f x 和),(00y x f y 存在的( D ). (A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 无关条件.2. =→→x xyy x sin lim20( B ).(A) 1; (B) 2; (C) 21; (D) ∞.3. 设L 为曲线2x y =上从点)0,0(到点)1,1(的一段弧, 则⎰=Lds y ( C ).(A) ⎰+10241dx x; (B)⎰+141dy y ; (C) ⎰+1241dx x x ; (D)⎰+11dy y ;4. 下列级数条件收敛的是( A ). (A)∑∞=-1)1(n nn ; (B) ∑∞=-12)1(n n n; (C) ∑∞=-12)1(n nn ; (D) ∑∞=-1)2(n nn .5. 方程0)(223=++dy x y xydx 是( D ).(A) 可分离变量的微分方程; (B) 一阶齐次微分方程; (C) 一阶线性微分方程; (D) 全微分方程.三.解答下列各题(每小题7分,本大题满分21分)1. 求)2,(2y x xy f z +=的偏导数和全微分(其中(,)f u v 具有连续偏导数).解 x vv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂212f f y '+'=.............................................................3分 yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂212f y f x '+'=……………………………………...5分 dy f y f x dx f f y dy yzdx x z dz )2()2(2121'+'+'+'=∂∂+∂∂=……………….…7分2. 已知),(y x f z =是由方程y x z e z2sin =+确定的隐函数, 求x z ∂∂和22x z∂∂.解 记y x z e F z 2sin -+=,则xy F x 2-=,z e F zz cos +=……………2分ze xy F F x z z z x cos 2+=-=∂∂…………………………………………………….4分 22x z ∂∂2)c o s ()s i n (2)c o s(2z e z z e xy z e y z x z z +--+=…………………………….…6分 3222)cos ()sin (4)cos (2z e z e y x z e y z z z +--+=……………………………...7分3. 求2(,)32ln 2y f x y x xy x =+--的极值. 解 令 2300xy f y xf y x ⎧=--=⎪⎨⎪=-=⎩, 得驻点 (1,1),(2,2)……………………………………………………………...3分 22xx A f x==,1xy B f ==-,1yy C f ==1222-=-=xB ACD ……………………………………………………4分在点(1,1)处,01>=D ,且20A =>,5(1,1)2f =为极小值………………6分在点(2,2)处,021<-=D ,(2,2)f 不是极值………………………………..7分四.解答下列各题(每小题7分,本大题满分21分)1. 设二次积分⎰⎰-=22021),(x x dy y x f dx I . 1) 画出二次积分I 中的积分区域D ;2) 改换二次积分I 的积分次序; 3) 将二次积分I 化为极坐标形式的二次积分. 解 1)作图从略…………………………………………………………………2分 2) ⎰⎰-+=21111),(y dx y x f dy I ………………………………………………..4分 3) ⎰⎰=θθπρρθρθρθcos 2sec 4)sin ,cos (d f d I ………………………………..7分2. 计算22()x y dxdydz Ω+⎰⎰⎰, 其中Ω是由曲面z y x 222=+及平面2=z 所围成的有界闭区域. 解22()x y dxdydz Ω+⎰⎰⎰=⎰⎰⎰Ωθρρdz d d 3……………………………………..2分⎰⎰⎰=22320202ρπρρθdz d d ………………………………………………………4分⎰-=253)22(2ρρρπd …………………………………………………….….6分π316=………………………………………………………………………….7分3. 计算曲线积分=I ⎰+-Ldy x dx y xy 22)2(, 其中L 是由曲线21x y -=与x轴所围区域D 的正向边界曲线. 解 由格林公式得 ⎰⎰=D ydxdy I 2………………………………………………………………..3分⎰⎰--=210112x y d ydx …………………………………………………………5分 ⎰--=112)1(dx x ……………………………………………………………..6分34=…………………………………………………………………………..7分五.解答下列各题(本大题满分14分)1. (本题6分)1)判别级数∑∞=12n nn的敛散性; 2)判别级数∑∞=12cos 2n n nn 是绝对收敛, 条件收敛, 还是发散?解 1) 记n n nu 2=,因 121l i m 1<=+∞→nn n u u …………………………………...2分所以级数∑∞=1n nu收敛……………………………………………………………….3分2) 因n nn u nn v ≤=|2cos 2|……………………………………………………....4分 而级数∑∞=1n nu收敛,由比较审敛法知级数∑∞=1n nv收敛…………………………...5分原级数绝对收敛……………………………………..…………………………......6分2. (本题8分)将函数x xx f -+=11ln )(展开成x 的幂级数, 并求级数∑∞=-1)12(41n n n 的和.解 +-+++-=+-nn x n x x x x 132)1(32)1l n (,(11≤<-x )………..2分------=-n x n x x x x 132)1l n (32,(11<≤-x )…………….3分xxx f -+=11ln )()1l n ()1l n (x x --+=…………………………………….4分)1213(2123 +-+++=-n x n x x ,(11<<-x )…………..…5分∑∞=-1)12(41n nn 12121)12(121-∞=⎪⎭⎫ ⎝⎛-=∑n n n ……………………………………………………..6分 3ln 41)21(41==f ……………………………………………………………8分六.解答下列各题(本大题满分14分)1. (本题6分) 求微分方程2)2(221-=--x y x dx dy 的通解. 解 通解为⎰⎰⎰⎥⎦⎤⎢⎣⎡+----=C dx dx x x dx x y )21exp()2(2)21exp(2……………...3分 ⎰+--=])2(2)[2(C dx x x ……………………………………………...5分 )2()2(3-+-=x C x …………………………………………………….6分2. (本题8分)设L 是一条平面曲线, 其上任意一点)0)(,(>x y x P 到坐标原点的距离恒等于该点处的切线在y 轴上的截距, 且L 过点)0,21(. 求曲线L 的方程. 解 设曲线L 上点),(y x P 处的切线方程为)(x X y y Y -'=-.................................................1分令0=X 得该切线在y 轴上的截距为y x y '-………………………………….2分由题设知 y x y y x '-=+22……………………………..3分令x yu =, 方程化为 xdxu du -=+21…………………………………..4分 解得 C y x y =++22………………………………6分由L 过点)0,21(, 求得21=C ……………………………………………………7分 于是曲线L 的方程为 2122=++y x y即 y x -=41………………………………………..8分。
武汉大学2005—2006学年第二学期 备用《高等数学》(总学时72)考试试题一、试解下列各题(每小题5分,共50分):1、在曲线t x =, 2t y =, 3t z =上求一点, 使得在该点的切线平行于平面42=++z y x 2、设函数)(x f 在]1,0[上连续,并且⎰=1)(A dx x f ,求⎰⎰101)()(xdy y f x f dx3、找出下列级数中绝对收敛的级数并说明理由。
(A) ∑∞=+-111)1(n nn 、(B) ∑∞=+-1211)1(n n n (C) ∑∞=⎪⎭⎫ ⎝⎛+-1211)1(n n n n 、(D) ∑∞=++-122261)1(n n n n 4、设二元函数)1ln()1(y x xe z y x +++=+,求(1,0)dz5、 求幂级数∑∞=---112)12(2)1(n n n n n x 的收敛域。
6、交换积分次序21(,)xe dxf x y dy ⎰⎰7、求解微分方程x e y y y =+'-''22 8、设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,试比较123,,I I I 的大小。
9、求级数∑∞=+1)2(n nxn n 在收敛区间内的和函数。
10、设,zyy x x z 1=++求,x y z z 二、(8分)设),(),(y x y x y x f ϕ-=, 其中),(y x ϕ在点)0,0(的邻域内连续,(1) ),(y x ϕ满足什么条件, 偏导数)0,0(x f ', )0,0(y f '存在?(2) ),(y x ϕ满足什么条件, ),(y x f 在点)0,0(可微? 三、(8分)某饼干厂生产梳打饼及甜饼,梳打饼每斤纯利6角,甜饼每斤纯利4角,制造x 斤梳打饼及y 斤甜饼的成本函数为y x x y x C +++=600010000),(2,而该厂每月的制造预算是20000元, 问应如何分配梳打饼及甜饼的生产, 才能使利润最大? 四、(8分)计算⎰⎰+Dny x dxdy 222)(,其中n 为正整数,}.),{(2222b y x a y x D ≤+≤=五、(8分)设)(22y x f u +=在第一象限内有二阶连续的偏导数,且02222=∂∂+∂∂yux u ,21)(lim 1=-→x x f x ,试求()f x 的表达式。
2005年普通高等学校招生全国统一考试数 学(江苏卷)第一卷(选择题共60分)参考公式:三角函数的和差化积公式2cos2sin2sin sin βαβαβα−+=+ 2sin2cos2sin sin βαβαβα−+=−2cos2cos2cos cos βαβαβα−+=+ 2sin2sin2cos cos βαβαβα−+−=−若事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概 率P n (k )=kn kkn p p C −−)1(一组数据n x x x ,,,21 的方差])()()[(1222212x x x x x x nS n −++−+−= 其中x 为这组数据的平均值一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
1.设集合A={1,2},B={1,2,3},C={2,3,4}则=C B A )( ( )A .{1,2,3}B .{1,2,4}C .{2,3,4}D .{1,2,3,4} 2.函数)(31R x x y x∈+=−的反函数的解析表达式为( )A .32log 2−=x y B .23log 2−=x yC .23log 2xy −= D .xy −=32log 23.在各项都为正数的等比数列}{n a 中,首项31=a ,前三项和为21,则=++543a a a ( )A .33B .72C .84D .1894.在正三棱柱中ABC —A 1B 1C 1,若AB=2,AA 1=1,则点A 到平面A 1BC 的距离为( )A .43B .23 C .433 D .35.ABC BC A ABC ∆==∆则中,3,3,π的周长为( )A .3)3sin(34++πB B .3)6sin(34++πBC .3)3sin(6++πB D .3)6sin(6++πB6.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A .1617B .1615 C .87 D .07.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( )A .9.4,0.484B .9.4,0.016C .9.5,0.04D .9.5,0.0168.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题: ①若βαγβγα//,,则⊥⊥;②若βαββαα//,//,//,,则n m n m ⊂⊂; ③若βαβα//,,//l l 则⊂;④若.//,//,,,n m l n m l 则γαγγββα=== 其中真命题的个数是 ( )A .1B .2C .3D .4 9.设5)2(,5,4,3,2,1+=x k 则的展开式中kx 的系数不可能是 ( )A .10B .40C .50D .80 10.若=+=−)232cos(,31)6sin(απαπ则( )A .97− B .31−C .31D .97 11.点P (-3,1)在椭圆)0(12222>>=+b a by a x 的左准线上. 过点P 且方向为a =(2,-5)的光线,经直线2−=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为 ( )A .33B .31 C .22 D .21 12.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打 算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法 种数为 ( )A .96B .48C .24D .0第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在答题卡相应位置. 13.命题“若122,−>>bab a 则”的否命题为 . 14.曲线13++=x x y 在点(1,3)处的切线方程是 . 15.函数)34(log 25.0x x y −=的定义域为 .16.函数=+∈=k k k a a则),1,[,618.03 .17.已知a ,b 为常数,若=−++=+++=b a x x b ax f x x x f 5,2410)(,34)(22则 . 18.在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则OA (OB +OC )的最小值是 .三、解答题:本大小题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分12分)如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 为切点),使得PN PM 2=试建立适当的坐标系,并求动点 P 的轨迹方程.20.(本小题满分12分,每小问满分4分)甲、乙两人各射击一次,击中目标的概率分别是4332和.假设两人射击是否击中目 标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (Ⅰ)求甲射击4次,至少1次未击中目标的概率;(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(Ⅲ)假设某人连续2次未击中目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?21. (本小题满分14分,第一小问满分6分,第二、第三小问满分各4分) 如图,在五棱锥S—ABCDE中,SA⊥底面ABCDE,120.SA=AB=AE=2,BC=DE=3,∠BAE=∠BCD=∠CDE=(Ⅰ)求异面直线CD与SB所成的角(用反三角函数值表示);(Ⅱ)证明BC⊥平面SAB(Ⅲ)用反三角函数值表示二面角B-SC-D的大小(本小问不必写出解答过程)22. (本小题满分14分,第一小问满分4分,第二小问满分10分)已知R a ∈,函数.||)(2a x x x f −=(Ⅰ)当a =2时,求f(x)=x 使成立的x 的集合; (Ⅱ)求函数y=f(x)在区间[1,2]上的最小值.23. (本小题满分14分,第一小问满分2分, 第二、第三小问满分各6分)设数列{a n }的前n 项和为n S ,已知a 1=1, a 2=6, a 3=11,且n n S n S n )25()85(1+−−+,,3,2,1, =+=n B An 其中A ,B 为常数.(Ⅰ)求A 与B 的值;(Ⅱ)证明数列{a n }为等差数列;(Ⅲ)证明不等式15>−n m mn a a a 对任何正整数m 、n 都成立.数学试题参考答案一、选择题:本题考查基本概念和基本运算,每小题5分,满分60分。
2005-2006(1)高等数学(B 卷)(72学时)参考解答及评分标准一.填空题(每小题3分,本大题满分15分)1.无穷小量. 2.定义域;值域. 3.x 2sec . 4.C x F +)( 5.概率.二.选择题 (每小题2分, 本大题满分10分)1. ╳2. √ 3.╳ 4. ╳ 5. ╳三.解答下列各题(每小题5分,共25分)1.解: 由 ⎩⎨⎧≥-≠0160sin 2x x 。
2分 得 ⎩⎨⎧≤≤-∈≠44,x Z k k x π。
4分 定义域为 ]4,(),0()0,(),4[ππππ ---。
5分2.解: )1(1122'++++='x x x x y 。
2分 )21211(1122x x x x ⋅++++=。
4分 112+=x 。
5分3.解: )2(3632-=-='x x x x y ,。
1分 令0='y 得驻点01=x 、22=x 。
2分 在区间)0,(-∞、),2(∞+内,0>'y ,)0,(-∞、),2(∞+为函数的单调增加区间;。
4分 在区间)2,0(内,0<'y ,)2,0(为函数的单调减少区间.。
5分 4.解: 原式)25(5sin 52)2sin(lim 0-⋅⋅--=→x x x x x 。
3分 25-=。
5分5.解: 原式2203111lim x x x +-=→。
3分 )1(31l i m 20x x +=→。
4分 31=。
5分四.解答下列各题(每小题5分,共30分)1.解: 原积分⎰=x d xln ln 1。
2分 C x +=ln ln 。
5分2.解: 令1-=x t ,则12+=t x 原积分⎰+=202212dt t t 。
2分 ⎰+-=202)111(2dt t 。
3分 20]arctan [2t t -=。
4分 2arctan 24-=。
5分3.解: 原积分⎰-=20cos πx d x⎰+-=2020cos |cos ππxdx x x 。
2005─2006 学年第一学期 《高等数学Ⅰ》(上)考试试卷(A )
一. 选择题:共10个小题,每小题2分,共20分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、下列函数中在(0,)+∞内为有界函数的是 A 、1
y x
=
B 、
arctan y x =
C 、
ln(1)y x =+
D 、
2y x =
【 】
2、设函数22,0
()2,0x x f x x x +≥⎧=⎨-<⎩
,则0lim ()x f x +→= A 、2 B 、-2 C 、0 D 、不存在 【 】
3、下列等式成立的是 A 、 sin lim
1x x x →∞= B 、sin lim 0x x x →∞= C 、2
sin lim 1x x x π→= D 、2
sin lim 0x x
x π→
= 【 】
4、设()sin 55
f x ln π
=+,则()f x '= A 、cos
5
π
B 、1
5
C 、1
cos 5
5
π
+
D 、0 【 】 5、设cos x
y e =,则dy ==
A 、cos sin x
e x - B 、cos cos x e x C 、cos sin x e xdx - D 、cos cos x e xdx
【 】
6、由参数方程2
3
x t
y t
⎧=⎪⎨=⎪⎩所确定的函数的导数dy dx = A.
2
3t
B.
32
t C.
32t
D.
2
3
t 【 】 7.、下列等式成立的是
A 、sin sin d xdx xdx =⎰
B 、sin cos d xdx xdx =⎰
C 、sin cos d x x =⎰
D 、sin sin d x x =⎰
【 】 8、
2
cos 1x x
dx x
π
π
-
=+⎰ A 、2 B 、1 C 、0 D 、-1 【 】 9、设函数
2()f x x x =+
…………………….………….………………试 题 不 要 超 过 密 封 线………….………………………………
A 、
()f x 在(,0)-∞内单调减少,在(0,)+∞内单调增加 B 、()f x 在(,1)-∞-内单调减少,在(1,)-+∞内单调增加
C 、
()f x 在(,1)-∞内单调减少,在(1,)+∞内单调增加 D 、()
f x 在
1(,)
2
-∞-内单调减少,在
1
(,)2
-+∞内单调增加
【 】
10、设(1,1,1),(1,1,1)a b =-=--
,则有
A 、//a b
B 、a b ⊥
C 、
()
,3
a b π= D 、
()
2,3
a b π=
【 】
二. 填空题:共5个小题,每小题2分,共10分。
把答案填写在题中横线上。
1、设0
()()
lim
1h f x f x h h
→--=,则()f x '=
2、函数2y x =在1x =处的微分dy =
3、反常积分
4
1
1
dx x +∞
=⎰
4
、有定积分的几何意义,得
=⎰
5、过点(1,2,3)且于平面230x y z -+=平行的平面方程是 三. 计算极限
3333(1)(2)(3)(10)lim (101)(10)(9)
x x x x x x x x →∞++++++++-+-
四、设函数
2
,1
(),1ax b x f x x x +>⎧=⎨≤⎩
在1x =处可导,求,a b 的值.
五、已知曲线
2y x x =+上的点的法线经过点(2,2)M -,求法线方程.
六、解答下列各题 (1
)设
ln(y x =+,求dy ,并化简。
(2
)计算不定积分
ln(x dx +⎰
七、求过点(1,1,1)-且与两平面10x y z -+-=和210x y z +++=垂直的平面
方程。
八、求由方程4
41x xy y -+=所确定的隐函数()y f x =在点(0,1)处的二阶导数的
值.
九、设001x ≤≤,曲线2y x =与直线2
0y x =、0x =所围成平面图形的面积为1S ,
曲线
2y x =与直线2
0y x =、1x =所围成平面图形的面积为2S ,当0x 为何值时,
12S S +的值最小?当0x 为何值时,12S S +的值最大?最小、最大值分别是多少?
十、设0
a b <<,函数()f x 在[,]a b 上连续,在(,)a b 内可导,证明存在一点
(,)a b ξ∈,使得
()()()ln
b
f b f a f a
ξξ'-=
十一、判断方程2
sin cos x
x x x =+的实数根个数,为什么?
2005─2006 学年第一学期
《高等数学Ⅰ》(上)考试试卷(A )答案
一、1B 2A 3B 4D 5C 6B 7A 8C 9D 10A
二、1、1;2、2dx ;3、13;4、4
π;5、2310x y z -++=
三、1; 四、2,1a b ==-;
五、380y x --=,
0y x +=,220y x +-=;
六、(1
)dx
dy =;(2
)2
1ln(2x C ⎡⎤++⎣⎦;
七、230x y z -++=; 八、 1
16-;
九、当012x =时,12S S +的值最小,最小值为1
4
,
当01x =时,12S S +的值最大,最大值为2
3
;
十、 略 十一、2个。