模糊综合评判
- 格式:ppt
- 大小:93.00 KB
- 文档页数:5
模糊综合评价法原理模糊综合评价法是一种基于模糊数学的综合评价方法,它应用模糊关系综合的原理,将一些界限不清、难以量化的因素量化,进行综合评价。
这种综合评价方法根据模糊数学的隶属度理论,将定性评价转化为定量评价,即利用模糊数学对受多种因素制约的事物或对象进行总体评价。
它具有结果明确、系统性强的特点,能解决模糊、难以量化的问题,适用于解决各种不确定性问题。
其特点是评价结果不是绝对肯定或否定的,而是用一个模糊集来表示。
模糊综合评价通常由目标层和指标层组成。
通过指标层与评价集之间的模糊关系矩阵(即隶属度矩阵),可以得到目标层对评价集的隶属度向量,从而得到目标层的综合评价结果。
隶属度和隶属度矩阵是模糊综合评价的关键概念。
计算步骤1、确定评价对象的因素集设U={u1,u2,...,um}为刻画被评价对象的m种评价因素(评价指标),其中:m是评价因素的个数,由具体的指标体系所决定。
2、确定评价对象的评语集设V={v1,v2,...,vn},是评价者对被评价对象可能做出的各种总的评价结果组成的评语等级的集合,一般划分为3-5个等级。
3、确定评价因素的权重向量设A=(a1,a2,...,am)为权重分配模糊矢量,其中ai表示第i个因素的权重,要求a1+a2+...+am=1,A反映了各因素的重要程度。
在模糊综合评价中,权重会对最终的评价结果产生很大的影响,不同的权重有时会得到完全不同的结论。
现在权重一般是凭经验给的,但很主观。
确定权重的方法有:(1)专家估计法;(2)加权平均法:当专家人数少于30人时,可采用此方法。
先由多位专家独立给出各因素的权重,然后取各因素的平均值作为其权重;(3)频率分布测定的权重法;(4)模糊协调决策方法:贴近度和贴近度选择原则;(5)层次分析法。
4、进行单因素模糊评价,确立模糊关系矩阵R5、综合评价6、对模糊综合评价结果进行定量分析模糊综合评价的结果是被评价对象对各等级模糊子集的隶属度,它一般是一个模糊矢量,而不是一个值,因而他能提供的信息比其它方法更丰富。
模糊综合评价法模糊综合评价当需要对评价对象做出客观全⾯的评价,但是存在⼤量的模糊性的概念,⽐如⼀个⼈的好坏这样的主观因素会起很⼤作⽤,会使很多指标都⽆法量化,这时就很适合⽤模糊综合评价。
⼀级模糊综合评判1. 确定因素集把所有需要评价的指标构成⼀个集合,即因素集U={u1,u2,...u n}其中的每个u i就为⼀个评价指标2. 确定评语集由于每个指标的评价值不同,那么我们需要有⼀个等级制度来评判各个指标把所有等级构成⼀个集合,即为评语集V={v1,v2,...,v m}⽐如V={好,较好,中等,较差,差}3. 确定各个因素的权重W=[w1,w2,...,w n]$w_i$为第i个元素的权重,且满⾜$\sum_{k=1}^{n}w_i=1$确定权重的⽅法有不少,如Delphi法,加权平均法,众⼈评估法等4. 确定模糊综合评价矩阵对于第i个评价指标u i来说,它有m个评语,我们把对它的评判向量记为R iR i=[r i1,r i2,...,r im]那么对各个指标的总模糊综合评价矩阵就为R=[R1,R2,...R n]它是⼀个从U到V的模糊关系矩阵,即是从因素到评语的关系5. 综合评判综合评价结果B就是权重W和关系矩阵R的乘积,即B=W.R那么最后的评价结果就是B=[b1,b2,...,b m]中最⼤的⼀个元素多层次的模糊综合评价1. 实际上多层次的分析就是在单层次的分析上在多⼀次分析就可由第⼀级的分析得到⼀级评判向量B=[b1,b2,...,b m]。
2. B的权重为A=[a1,a2,....a m]3. ⼆级评判向量B2为B2=A.B4. 故也可以继续推出第三级,第四级,甚⾄更⾼层次的步骤。
Processing math: 100%。
模糊综合评判方法
模糊综合评判方法是一种以模糊数学为基础的评价方法,主要用于处理评价指标不确定、难以量化的问题。
它将定性指标转化为模糊数,然后通过模糊数的运算,得出评价结果。
模糊综合评判方法的步骤如下:
1. 确定评价指标:根据评价对象的特点和目标,确定具体的评价指标集合。
2. 构建模糊数:将定性指标转化为模糊数,即使用隶属函数来描述指标的模糊程度和不确定性。
3. 设定权重:根据评价指标的重要性,设定各指标的权重。
4. 模糊综合评判:根据权重和模糊数的运算规则,对各指标进行综合评判,得出模糊的评价结果。
5. 解模糊化:将模糊结果转化为确定的评价值,可以采用求平均值、加权平均值等方式。
6. 评价结果的解释和分析:对于得到的评价结果进行解释和分析,提出合理的建议和决策。
模糊综合评判方法适用于多指标、多因素、模糊性较强的评价问题,能够更好地反映实际情况的复杂性和不确定性。
它在决策、投资、工程评估等领域得到广泛应用。
模糊综合层次评判法(FAHP)FAHP评价法是一种将模糊综合评判法(Fuzzy Comprehensive Evaluation,FCE)和层次分析法(Analytic Hierarchy Process,AHP)相结合的评价方法,在体系评价、效能评估,系统优化等方面有着广泛的应用,是一种定性与定量相结合的评价模型,一般是先用层析分析法确定因素集,然后用模糊综合评判确定评判效果。
模糊法是在层次分析法之上,两者相互融合,对评价有着很好的可靠性。
模糊数学的相关理论研究1965年,美国加利福尼亚大学控制论专家L.A.Zadeh教授发表了《模糊集合》一文,这标志着模糊数学的诞生。
模糊数学是研究和处理模糊性现象的一种数学方法。
模糊性基本概念模糊性是事物类属的不确定性,是对象资格程度的渐变性。
例如,对于一座山,有人可以认为是高山,但可能有人觉得它并不高。
事物的这种不清晰类属的特性就是模糊性,而这类事物我们通常称为模糊事物。
模糊事物在类属问题上不能做出“是”或“不是”,“属于”或“不属于”,“存在”或“不存在”等的是非断言,只能区别程度和等级。
模糊集合概念论域X上的模糊集合A定义是:A={(x,A(x))|x∈X}或者A={(x,μA(x))|x∈X}其中A(x)或μA(x)称为隶属函数,它满足A:X→M,M称为隶属空间上式表示模糊集合A是论域X到隶属空间的一个映射。
隶属函数A(x)用于刻画元素x对模糊集合A的隶属程度,通常称为隶属度。
模糊集合A的每一个元素(x, A(x))都能明确的表现出x的隶属等级。
A(x)的值越大,x的隶属度就越高。
例如,当隶属空间是(0,1)时,若A(x)=1,则说明x完全属于A;而若A(x)=0时,说明x不属于A;而A(x)值介于0与1之间时,说明隶属度也介于属于与不属于之间——模糊的。
隶属函数的构造与经典集合可由其特征函数所确定一样,模糊集合A也能由其隶属函数所确定。
在解决实际问题时,往往首先遇到的问题是确定隶属函数。
一级模糊综合评判和二级模糊综合评判一、概述模糊综合评判作为一种多指标综合评价方法,在工程、环境、经济等领域得到了广泛的应用。
一级模糊综合评判和二级模糊综合评判作为模糊综合评判的两种典型方法,各自有着特定的优势和适用范围。
本文将从原理、方法、优缺点等方面对一级模糊综合评判和二级模糊综合评判进行详细比较和分析,旨在为不同领域中的实际应用提供参考。
二、一级模糊综合评判1. 原理一级模糊综合评判是将若干个指标的模糊评价结果通过模糊操作符进行组合,得到一个综合的模糊评价结果。
常用的模糊操作符包括模糊交、模糊并、模糊加、模糊减等。
在实际应用中,可以根据不同的情况选择合适的模糊操作符进行组合。
2. 方法一级模糊综合评判的方法主要包括模糊综合评判的建模、指标的模糊化处理、指标的隶属函数设定、模糊操作符的选择等步骤。
通过这些步骤,可以得到一个综合的模糊评价结果,用于指导决策和分析。
3. 优缺点一级模糊综合评判的优点在于方法简单、直观,易于理解和实现。
它可以综合考虑多个指标的信息,避免了单一指标评价的片面性。
然而,一级模糊综合评判的缺点在于无法考虑指标之间的依赖关系和重要性差异,导致结果的不确定性较大。
三、二级模糊综合评判1. 原理二级模糊综合评判是在一级模糊综合评判的基础上,进一步考虑了指标之间的依赖关系和重要性差异。
它将一级评判得到的综合评价结果作为新的指标,进行二级模糊综合评判。
在这个过程中,需要考虑指标的重要性权重和指标之间的相互作用关系。
2. 方法二级模糊综合评判的方法在一级模糊综合评判的基础上增加了考虑指标的权重分配和依赖关系分析的步骤。
通过这些步骤,可以更加准确地评价系统的综合性能,并且增强了结果的可信度和稳定性。
3. 优缺点二级模糊综合评判相对于一级模糊综合评判来说,能够更好地考虑指标之间的依赖关系和重要性差异,结果更加准确可靠。
然而,它的缺点在于方法较为复杂,需要对指标之间的关系进行深入分析和建模,同时需要准确确定指标之间的权重分配,这对数据的要求相对较高。