第2节 平面向量基本定理及其坐标表示
完整版ppt
1
最新考纲 1.了解平面向量的基本定 理及其意义. 2.掌握平面向量的正交分 解及其坐标表示.
3.会用坐标表示平面向量的加 法、减法与数乘运算. 4.理解用坐标表示的平面向量共 线的条件.
完整版ppt
2
编写意图 本节在高考中多以选择、填空题的形式出现,有时将向量作 为工具与其他知识交汇在解答题中出现,本节重点突出向量坐标形式的 线性运算、平面向量共线的坐标表示以及待定系数法等,难点突破向量 作为工具与其他知识交汇的综合题(特别是与解析几何、三角函数、解 三角形交汇),主要体现在思想方法栏目和课时训练选题上;课时训练以 考查基础知识和基本方法为主,兼顾知识的综合.
(填上正确的命题序号).
①a=(1,2),b=(- 1 ,-1),则 a,b 能作为平面向量的一组基底. 2
②a,b 不共线,若λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2. ③向量 OA =(2,4),若将 OA 向上平移 1 个单位,则 OA =(2,5). ④若 a=(x1,y1),b=(x2,y2),则 a∥b 的充要条件是 x1 = y1 .
解析:由于向量 a=(1,2),b=(3,1),根据向量的坐标运算的运算法
则,b-a=(3-1,1-2)=(2,-1).故选 C.
完整版ppt
8
2.(2014 高考福建卷)在下列向量组中,可以把向量 a=(3,2)表示出来的 是( B ) (A)e1=(0,0),e2=(1,2) (B)e1=(-1,2),e2=(5,-2) (C)e1=(3,5),e2=(6,10) (D)e1=(2,-3),e2=(-2,3)
(2)若 A(x1,y1),B(x2,y2),则 AB =(x2-x1,y2-y1).