2.3.1平面向量基本定理课件.ppt
- 格式:pdf
- 大小:2.07 MB
- 文档页数:26
§2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一 平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.2.基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 两向量的夹角与垂直1.夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.2.垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b . 思考 如何正确理解两向量夹角概念答案 (1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.1.平面内任意两个向量都可以作为平面内所有向量的一组基底.( × ) 提示 只有不共线的两个向量才可以作为基底. 2.零向量可以作为基向量.( × )提示 由于0和任意向量共线,故不可作为基向量. 3.平面向量基本定理中基底的选取是唯一的.( × )提示 基底的选取不是唯一的,不共线的两个向量都可作为基底.4.若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( √ )题型一 对基底概念的理解例1 设e 1,e 2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ) A .e 1+e 2和e 1-e 2 B .3e 1-4e 2和6e 1-8e 2 C .e 1+2e 2和2e 1+e 2 D .e 1和e 1+e 2考点 平面向量基本定理 题点 基底的判定 答案 B解析 选项B 中,6e 1-8e 2=2(3e 1-4e 2),∴6e 1-8e 2与3e 1-4e 2共线,∴不能作为基底,选项A ,C ,D 中两向量均不共线,可以作为基底.故选B.反思感悟 考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练1 若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )A .e 1-e 2,e 2-e 1B .2e 1-e 2,e 1-12e 2C .2e 2-3e 1,6e 1-4e 2D .e 1+e 2,e 1+3e 2 考点 平面向量基本定理 题点 基底的判定 答案 D解析 选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2⎝⎛⎭⎫e 1-12e 2,也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 题型二 用基底表示向量例2 如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.考点 平面向量基本定理 题点 用基底表示向量解 ∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点, ∴AD →=BC →=2BE →,BA →=CD →=2CF →, ∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE →=-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →. 解 取CF 的中点G ,连接EG .∵E ,G 分别为BC ,CF 的中点, ∴EG →=12BF →=12b ,∴DG →=DE →+EG →=a +12b .又∵DG →=34DC →=34AB →,∴AB →=43DG →=43⎝⎛⎭⎫a +12b =43a +23b .又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →,∴AD →=BC →=b +12⎝⎛⎭⎫43a +23b =23a +43b . 反思感悟 将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练2 如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 43解析 设AB →=a ,AD →=b , 则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.题型三 向量的夹角例3 已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.考点 向量夹角的定义及夹角的范围 题点 求向量的夹角解 如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB ,则OC →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC ,即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.反思感悟 (1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1,λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练3 在△ABC 中,∠C =90°,BC =12AB ,则AB →与BC →的夹角是( )A .30°B .60°C .120°D .150° 考点 向量夹角的定义及夹角的范围 题点 求向量的夹角 答案 C 解析 如图,作向量AD →=BC →,则∠BAD 是AB →与BC →的夹角,在△ABC 中,因为∠C =90°,BC =12AB ,所以∠ABC =60°,所以∠BAD =120°.平面向量基本定理的应用典例 如图,点A ,B ,C 是圆O 上三点,线段OC 与线段AB 交于圆内一点P .若OC →=mOA →+2mOB →,AP →=λAB →,则λ=________.答案 23解析 ∵OP →与OC →共线,∴存在实数μ,使OP →=μOC →=mμOA →+2mμOB →.∵AP →=OP →-OA →,∴AP →=mμOA →+2mμOB →-OA →=(mμ-1)OA →+2mμOB →=λAB →=λ(OB →-OA →)=-λOA →+λOB →. ∵OA →与OB →不共线,∴⎩⎪⎨⎪⎧mμ-1=-λ,2mμ=λ,解得λ=23.[素养评析] 1.利用平面向量基本定理解决问题时,要抓住用基底表示向量时系数λ1,λ2的唯一性.2.本题主要考查利用平面向量基本定理,建立方程运算求出未知向量,体现了数学运算的核心素养.1.给出下列三种说法:①一个平面内只有一组不共线的向量可作为表示该平面内所有向量的基底;②一个平面内有无数组不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量. 其中,说法正确的为( )A .①②B .②③C .①③D .①②③ 考点 平面向量基本定理 题点 基底的含义与性质 答案 B2.如图所示,设O 是平行四边形ABCD 的两条对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →. 其中可作为该平面内所有向量的基底的是( ) A .①② B .①③ C .②④ D .③④ 考点 平面向量基本定理 题点 基底的判定 答案 B解析 ②中DA →与BC →共线,④中OD →与OB →共线,①③中两向量不共线,故选B.3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________.考点 平面向量基本定理的应用题点 利用平面向量基本定理求参数 答案 -15 -12解析 ∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧ 2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.4.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 12解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →) =-16AB →+23AC →,又∵AB →与AC →不共线,∴λ1=-16,λ2=23,λ1+λ2=-16+23=12.5.在△ABC 中,点D ,E ,F 依次是边AB 的四等分点,试以CB →=e 1,CA →=e 2为基底表示CF →.考点 平面向量基本定理 题点 用基底表示向量 解 AB →=CB →-CA →=e 1-e 2,因为D ,E ,F 依次是边AB 的四等分点, 所以AF →=34AB →=34(e 1-e 2),所以CF →=CA →+AF →=e 2+34(e 1-e 2)=34e 1+14e 2.1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量.②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.一、选择题1.如图所示,矩形ABCD 中,BC →=5e 1,DC →=3e 2,则OC →等于( )A.12(5e 1+3e 2) B.12(5e 1-3e 2) C.12(3e 2-5e 1) D.12(5e 2-3e 1) 考点 平面向量基本定理 题点 用基底表示向量 答案 A解析 OC →=12AC →=12(BC →-BA →)=12(BC →+DC →)=12(5e 1+3e 2). 2.如图所示,用向量e 1,e 2表示向量a -b 为( )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2考点 平面向量基本定理 题点 用基底表示向量 答案 C3.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为( ) A .30° B .45° C .60° D .90° 考点 向量夹角的定义及夹角的范围 题点 求向量的夹角 答案 C4.已知A ,B ,D 三点共线,且对任一点C ,有CD →=43CA →+λCB →,则λ等于( )A.23B.13 C .-13 D .-23 答案 C解析 因为A ,B ,D 三点共线,所以存在实数t ,使AD →=tAB →,则CD →-CA →=t (CB →-CA →). 所以CD →=CA →+t (CB →-CA →)=(1-t )CA →+tCB →. 所以⎩⎪⎨⎪⎧1-t =43,t =λ,解得λ=-13.5.设点D 为△ABC 中边BC 上的中点,O 为AD 上靠近点A 的三等分点,则( ) A.BO →=-16AB →+12AC →B.BO →=16AB →-12AC →C.BO →=56AB →-16AC →D.BO →=-56AB →+16AC →考点 平面向量基本定理 题点 用基底表示向量 答案 D解析 依题意,得BO →=AO →-AB →=13AD →-AB →=13×12(AB →+AC →)-AB →=-56AB →+16AC →,故选D. 6.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →等于( )A .a +λbB .λa +(1-λ)bC .λa +bD.11+λa +λ1+λb 考点 平面向量基本定理 题点 用基底表示向量 答案 D解析 ∵P 1P —→=λPP 2—→,∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2, ∴OP →=11+λOP →1+λ1+λOP →2=11+λa +λ1+λb .7.设a ,b 为基底向量,已知向量AB →=a -k b ,CB →=2a +b ,CD →=3a -b ,若A ,B ,D 三点共线,则实数k 的值等于( ) A .2 B .-2 C .10D .-10考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 A解析 AD →=AB →+BC →+CD →=(a -k b )+(-2a -b )+(3a -b )=2a -(k +2)b ,∵A ,B ,D 三点共线,∴AB →=λAD →,即a -k b =λ[2a -(k +2)b ]=2λa -λ(k +2)b ,∵a ,b 为基底向量,∴⎩⎪⎨⎪⎧2λ=1,k =λ(k +2),解得λ=12,k =2.8.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足O P →=13⎝⎛⎭⎫12OA →+12OB →+2OC →,则点P 一定为( )A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .△ABC 的重心D .AB 边的中点 答案 B解析 ∵O 是△ABC 的重心,∴OA →+OB →+OC →=0,∴OP →=13⎝⎛⎭⎫-12OC →+2OC →=12OC →,∴点P 是线段OC 的中点,即AB 边中线的三等分点(非重心).故选B.9.已知a =e 1+e 2,b =2e 1-e 2,c =-2e 1+4e 2(e 1,e 2是同一平面内的两个不共线向量),则c =________.(用a ,b 表示) 考点 平面向量基本定理 题点 用基底表示向量 答案 2a -2b 解析 设c =λa +μb ,则-2e 1+4e 2=λ(e 1+e 2)+μ(2e 1-e 2) =(λ+2μ)e 1+(λ-μ)e 2, 因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧ -2=λ+2μ,4=λ-μ,解得⎩⎪⎨⎪⎧λ=2,μ=-2,故c =2a -2b .10.如图,在△MAB 中,C 是边AB 上的一点,且AC =5CB ,设MA →=a ,MB →=b ,则MC →=________.(用a ,b 表示)考点 平面向量基本定理 题点 用基底表示向量 答案 16a +56b解析 MC →=MA →+AC →=MA →+56AB →=MA →+56(MB →-MA →)=16MA →+56MB →=16a +56b .11.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________. 考点 平面向量基本定理 题点 基底的含义与性质 答案 (-∞,4)∪(4,+∞)解析 若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.12.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.考点 向量夹角的定义及夹角的范围 题点 求向量的夹角解析 由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |, 所以∠ABO =30°,OA ⊥OB , 即向量a 与c 的夹角为90°. 三、解答题13.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB =k .设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →. 考点 平面向量基本定理 题点 用基底表示向量 解 方法一 如图所示,∵AB →=e 2,且DC AB =k ,∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD → =e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0, 且NB →=-12BC →,AM →=12AD →,∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC →=k +12e 2.方法二 如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得DC →=k e 2.则BC →=BE →+EC →=-(AB →-DC →)+AD →=e 1+(k -1)e 2, MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →)=k +12e 2. 方法三 如图所示,连接MB ,MC .同方法一可得DC →=k e 2, BC →=e 1+(k -1)e 2. 由MN →=12(MB →+MC →),得MN →=12(MA →+AB →+MD →+DC →)=12(AB →+DC →)=k +12e 2. 14.如图所示,已知△AOB 中,点C 是以A 为对称中心的点B 的对称点,OD →=2DB →,DC 与OA 交于E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值. 考点 平面向量基本定理 题点 用基底表示向量解 (1)由题意知A 是BC 的中点,且OD →=23OB →=23b .由平行四边形法则知OB →+OC →=2OA →,∴OC →=2OA →-OB →=2a -b ,DC →=OC →-OD →=(2a -b )-23b =2a -53b .(2)EC →∥DC →,又∵EC →=OC →-OE →=(2a -b )-λa =(2-λ)a -b ,DC →=2a -53b ,∴2-λ2=153,∴λ=45.15.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数解 如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt △OCD 中,∵|OC →|=23, ∠COD =30°,∠OCD =90°, ∴|OD →|=4,|CD →|=2, 故OD →=4OA →,OE →=2OB →, 即λ=4,μ=2,∴λ+μ=6.。