函数5幂函数与零点
- 格式:doc
- 大小:208.90 KB
- 文档页数:3
引言:高中幂函数是高中数学中的重要部分,它在数学研究和实际问题中有着广泛的应用。
本文将对高中幂函数的知识点进行总结和整理,帮助学生完善对幂函数的理解和掌握。
概述:幂函数是指形如y=x^n的函数,其中n是常数。
幂函数的特点是具有单调性和奇偶性,其图象通常为一条曲线。
在研究幂函数时,需要掌握其定义、性质和应用。
正文:一、幂函数的定义1.1 幂函数的基本形式幂函数的基本形式是y=x^n,其中n是常数。
幂函数的定义域为所有实数,且n可以是正整数、负整数、零和有理数。
1.2 幂函数的图象当n为正奇数时,幂函数的图象在第一象限和第三象限上单调递增;当n为正偶数时,幂函数的图象在第一象限上单调递增,且具有对称轴y=0;当n为负数时,幂函数的图象在第一、三象限上单调递减。
1.3 幂函数的特殊情况当n=1时,幂函数变为一次函数;当n=0时,幂函数变为常数函数;当n为正无穷大时,幂函数趋向于正无穷大;当n为负无穷大时,幂函数趋向于零。
二、幂函数的性质2.1 幂函数的单调性幂函数在定义域上的单调性与n的值有关。
当n为正奇数时,幂函数是增函数;当n为正偶数时,在非负区间上是增函数,在负区间上是减函数;当n为负数时,在非负区间上是减函数,在负区间上是增函数。
2.2 幂函数的奇偶性幂函数的奇偶性与n的奇偶性有关。
当n为奇数时,幂函数是奇函数;当n为偶数时,幂函数是偶函数。
2.3 幂函数的零点当n为正奇数时,幂函数的零点为x=0;当n为正偶数时,幂函数的零点为x=0;当n为负奇数时,幂函数没有零点;当n为负偶数时,幂函数的零点为x=0。
三、幂函数的图象变换3.1 幂函数的平移幂函数的平移是指将幂函数的图象沿横轴或纵轴方向移动。
平移的方向和距离与平移的规律有关,具体可利用平移的公式进行计算。
3.2 幂函数的伸缩幂函数的伸缩是指将幂函数的图象进行纵向或横向的拉伸或压缩。
伸缩的方式和伸缩的规律有关,可利用伸缩的公式进行计算。
3.3 幂函数的翻折幂函数的翻折是指将幂函数的图象进行关于横轴或纵轴的翻折。
幂函数的对称轴和零点幂函数是指形如y = ax^n的函数,其中a是常数,n是整数指数。
在幂函数的图像中,对称轴和零点是重要的特征,对于我们理解和分析幂函数的性质和行为至关重要。
一、对称轴对称轴是指在幂函数图像中呈现对称性的直线。
对称轴可以是y轴、x轴或者其他直线。
对于幂函数y = ax^n来说,当指数n为偶数时,对称轴通常是y轴。
例如,当n为2时,我们有y = ax^2,其图像是一个开口朝上或者朝下的抛物线,对称轴恰好是y轴。
当n为4、6、8等偶数时,同样也是如此。
而当指数n为奇数时,对称轴通常为x轴。
例如,当n为3时,我们有y = ax^3,其图像是一个S型曲线,对称轴是x轴。
同样地,当n为5、7、9等奇数时,对称轴也是x轴。
需要注意的是,对称轴也可能是其他斜线,这取决于指数n的具体数值和常数a的正负情况。
不同的对称轴会给幂函数带来特殊的性质,例如对称性和奇偶性。
二、零点零点是指幂函数图像上使得函数值等于零的点的横坐标。
即在幂函数y = ax^n中,当y为0时,找到满足条件的x值。
对于幂函数y = ax^n来说,零点的个数与指数n有关。
对于正整数指数n:1. 当n为偶数时,幂函数必然存在一个或多个零点。
如果常数a为正数,则图像在对称轴的两侧交替穿越x轴,并且每一个交叉点都是一个零点。
如果常数a为负数,则图像在对称轴的两侧交替与x轴相切,并且每一个切点都是一个零点。
2. 当n为奇数时,幂函数的图像至少通过x轴一次,因此必然存在一个零点。
此时,常数a的正负决定了图像与x轴的交点的相对位置。
需要注意的是,当指数n为负数时,指数函数的性质会发生变化,其图像将无法通过x轴。
但原理不变,零点的求解方式依然可以使用。
结论幂函数的对称轴和零点是幂函数图像中的重要特征,能够帮助我们理解和分析函数的行为。
通过观察指数n的奇偶性和常数a的正负情况,我们可以判断出对称轴的位置以及零点的个数。
对称轴和零点的位置对幂函数的对称性、奇偶性以及图像的形状都有着重要的影响。
幂函数分类专题复习幂函数是数学中一种重要的函数类型,具有形如 $f(x) =ax^b$ 的特征形式,其中 $a$ 和 $b$ 是常数。
在幂函数的分类专题复中,我们将介绍几种常见的幂函数及其性质。
一次幂函数一次幂函数的形式为 $f(x) = ax$,其中 $a$ 是常数。
一次幂函数的图像是一条经过原点且斜率为 $a$ 的直线。
当 $a > 0$ 时,图像是上升的;当 $a < 0$ 时,图像是下降的。
性质:- 零点:一次幂函数的零点为 $x=0$。
- 斜率:一次幂函数的斜率恒为 $a$。
- 定义域和值域:一次幂函数的定义域和值域都是全体实数。
二次幂函数二次幂函数的形式为 $f(x) = ax^2$,其中 $a$ 是常数且 $a \neq 0$。
二次幂函数的图像是开口朝上或朝下的抛物线,具体取决于$a$ 的正负性。
性质:- 零点:二次幂函数的零点可以通过解方程 $f(x) = 0$ 来求得。
- 顶点:二次幂函数的顶点坐标为 $\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$,其中 $b$ 和 $c$ 是常数。
- 对称轴:二次幂函数的对称轴为直线 $x = -\frac{b}{2a}$。
- 定义域和值域:二次幂函数的定义域为全体实数,值域视$a$ 的正负性而定。
三次及更高次幂函数三次及更高次幂函数的形式为 $f(x) = ax^n$,其中 $a$ 是常数且 $a \neq 0$,$n$ 是大于等于3的整数。
这些函数的图像具有更复杂的曲线特征,通常会有多个极值点和拐点。
性质:- 零点:三次及更高次幂函数的零点可以通过解方程 $f(x) =0$ 来求得。
- 极值点:三次及更高次幂函数可能存在多个极值点,可以通过求导数和解方程 $f'(x) = 0$ 来找到。
- 拐点:三次及更高次幂函数的拐点是曲线的转折点,可以通过求二阶导数和解方程 $f''(x) = 0$ 来找到。
二次函数与幂函数考试要求 1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识梳理1.幂函数(1)幂函数的定义一般地,函数y=xα叫做幂函数,其中x是自变量,α为常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;④当α为奇数时,y=xα为奇函数;当α为偶数时,y=xα为偶函数.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)图象(抛物线)定义域 R值域 ⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a 对称轴 x =-b2a顶点 坐标 ⎝ ⎛⎭⎪⎫-b 2a ,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减; 在⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递增在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递减思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =1212x 是幂函数.( × )(2)若幂函数y =x α是偶函数,则α为偶数.( × )(3)二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.( √ )(4)若二次函数y =ax 2+bx +c 的两个零点确定,则二次函数的解析式确定.( × ) 教材改编题1.已知幂函数y =f (x )的图象过点(2,2),则f ⎝ ⎛⎭⎪⎫14等于( ) A .-12B.12 C .±12D.22答案 B解析 设f (x )=x α, ∴2α=2,α=12,∴f (x )=12x ,∴f ⎝ ⎛⎭⎪⎫14=12.2.若函数f (x )=4x 2-kx -8在[5,20]上单调,则实数k 的取值范围为________. 答案 (-∞,40]∪[160,+∞)解析 依题意知,k 8≥20或k8≤5,解得k ≥160或k ≤40.3.已知y =f (x )为二次函数,若y =f (x )在x =2处取得最小值-4,且y =f (x )的图象经过原点,则函数解析式为________. 答案 f (x )=x 2-4x解析 因为y =f (x )在x =2处取得最小值-4, 所以可设f (x )=a (x -2)2-4(a >0),又图象过原点,所以f (0)=4a -4=0,a =1, 所以f (x )=(x -2)2-4=x 2-4x .题型一 幂函数的图象与性质例1 (1)若幂函数y =x -1,y =x m 与y =x n在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<m <12C .-1<m <0<n <12D .-1<n <0<m <1 答案 D解析 幂函数y =x α,当α>0时,y =x α在(0,+∞)上单调递增,且0<α<1时,图象上凸, ∴0<m <1.当α<0时,y =x α在(0,+∞)上单调递减. 不妨令x =2,由图象得2-1<2n,则-1<n <0. 综上可知,-1<n <0<m <1.(2)(2022·长沙质检)幂函数f (x )=(m 2-3m +3)x m的图象关于y 轴对称,则实数m =________. 答案 2解析 由幂函数定义,知m 2-3m +3=1, 解得m =1或m =2,当m =1时,f (x )=x 的图象不关于y 轴对称,舍去, 当m =2时,f (x )=x 2的图象关于y 轴对称, 因此m =2. 教师备选1.若幂函数f (x )=()12255a a a x ---在(0,+∞)上单调递增,则a 等于( )A .1B .6C .2D .-1 答案 D解析 因为函数f (x )=()12255a a a x---是幂函数,所以a 2-5a -5=1,解得a =-1或a =6. 当a =-1时,f (x )=12x 在(0,+∞)上单调递增;当a =6时,f (x )=x -3在(0,+∞)上单调递减,所以a =-1.2.若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是( )A.⎣⎢⎡⎭⎪⎫2,167B .(0,2] C.⎝ ⎛⎭⎪⎫-∞,167 D .[2,+∞)答案 A解析 因为函数f (x )=12x 在定义域[0,+∞)内为增函数,且f (x )>f (8x -16),所以⎩⎪⎨⎪⎧x ≥0,8x -16≥0,x >8x -16,即2≤x <167,所以不等式的解集为⎣⎢⎡⎭⎪⎫2,167.思维升华 (1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.跟踪训练1 (1)(2022·宝鸡检测)已知a =432,b =233,c =1225,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案 A解析 由题意得b =233<234=432=a ,a =432=234<4<5=1225=c ,所以b <a <c .(2)已知幂函数y =p qx (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且p q>0 B .q 为偶数,p 为奇数,且p q <0 C .q 为奇数,p 为偶数,且p q >0 D .q 为奇数,p 为偶数,且p q<0 答案 D解析 因为函数y =p q x 的图象关于y 轴对称,于是函数y =p qx 为偶函数,即p 为偶数, 又函数y =p qx 的定义域为(-∞,0)∪(0,+∞),且在(0,+∞)上单调递减,则有p q<0, 又因为p ,q 互质,则q 为奇数,所以只有选项D 正确. 题型二 二次函数的解析式例2 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解 方法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7.方法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+-12=12, 所以m =12.又根据题意,函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1. 又函数有最大值8, 即4a-2a -1--a24a=8.解得a =-4或a =0(舍去).故所求函数的解析式为f (x )=-4x 2+4x +7. 教师备选若函数f (x )=(x +a )(bx +2a )(a ,b ∈R )满足条件f (-x )=f (x ),定义域为R ,值域为(-∞,4],则函数解析式f (x )=________. 答案 -2x 2+4解析 f (x )=(x +a )(bx +2a ) =bx 2+(2a +ab )x +2a 2.∵f (-x )=f (x ), ∴2a +ab =0, ∴f (x )=bx 2+2a 2.∵f (x )的定义域为R ,值域为(-∞,4], ∴b <0,且2a 2=4,∴b =-2,∴f (x )=-2x 2+4.思维升华 求二次函数解析式的三个策略:(1)已知三个点的坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图象与x 轴的两交点的坐标,宜选用零点式.跟踪训练2 (1)已知f (x )为二次函数,且f (x )=x 2+f ′(x )-1,则f (x )等于( ) A .x 2-2x +1 B .x 2+2x +1 C .2x 2-2x +1 D .2x 2+2x -1答案 B解析 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b , 由f (x )=x 2+f ′(x )-1可得ax 2+bx +c =x 2+2ax +(b -1), 所以⎩⎪⎨⎪⎧ a =1,b =2a ,c =b -1,解得⎩⎪⎨⎪⎧a =1,b =2,c =1,因此,f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),且图象被x 轴截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )的解析式为________.答案 f (x )=x 2-4x +3解析 ∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )图象的对称轴为直线x =2, 又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3,设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), ∵f (x )的图象过点(4,3), ∴3a =3,∴a =1,∴所求函数的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.题型三 二次函数的图象与性质 命题点1 二次函数的图象例3 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )答案 D解析 因为abc >0,二次函数f (x )=ax 2+bx +c ,那么可知, 在A 中,a <0,b <0,c <0,不符合题意; B 中,a <0,b >0,c >0,不符合题意; C 中,a >0,c <0,b >0,不符合题意,故选D. 命题点2 二次函数的单调性与最值 例4 已知函数f (x )=x 2-tx -1.(1)若f (x )在区间(-1,2)上不单调,求实数t 的取值范围; (2)若x ∈[-1,2],求f (x )的最小值g (t ).解 f (x )=x 2-tx -1=⎝ ⎛⎭⎪⎫x -t 22-1-t 24.(1)依题意,-1<t2<2,解得-2<t <4,∴实数t 的取值范围是(-2,4).(2)①当t2≥2,即t ≥4时,f (x )在[-1,2]上单调递减,∴f (x )min =f (2)=3-2t . ②当-1<t2<2,即-2<t <4时,f (x )min =f ⎝ ⎛⎭⎪⎫t 2=-1-t 24.③当t2≤-1,即t ≤-2时,f (x )在[-1,2]上单调递增,∴f (x )min =f (-1)=t .综上有g (t )=⎩⎪⎨⎪⎧t ,t ≤-2,-1-t24,-2<t <4,3-2t ,t ≥4.延伸探究 本例条件不变,求当x ∈[-1,2]时,f (x )的最大值G (t ). 解 f (-1)=t ,f (2)=3-2t ,f (2)-f (-1)=3-3t ,当t ≥1时,f (2)-f (-1)≤0, ∴f (2)≤f (-1), ∴f (x )max =f (-1)=t ; 当t <1时,f (2)-f (-1)>0, ∴f (2)>f (-1), ∴f (x )max =f (2)=3-2t ,综上有G (t )=⎩⎪⎨⎪⎧t ,t ≥1,3-2t ,t <1.教师备选1.(多选)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论正确的是( )A .当x >3时,y <0B .4a +2b +c =0C .-1≤a ≤-23D .3a +b >0答案 AC解析 依题意知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ), ∴函数与x 轴的另一交点为(3,0), ∴当x >3时,y <0,故A 正确;当x =2时,y =4a +2b +c >0,故B 错误;∵抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),且a <0,∴a -b +c =0,∵b =-2a ,∴a +2a +c =0, ∴3a +b <0,c =-3a , ∵2≤c ≤3,∴2≤-3a ≤3, ∴-1≤a ≤-23,故C 正确,D 错误.2.(2022·沈阳模拟)已知f (x )=ax 2-2x +1. (1)若f (x )在[0,1]上单调,求实数a 的取值范围; (2)若x ∈[0,1],求f (x )的最小值g (a ). 解 (1)当a =0时,f (x )=-2x +1单调递减; 当a >0时,f (x )的对称轴为x =1a ,且1a>0,∴1a≥1,即0<a ≤1;当a <0时,f (x )的对称轴为x =1a 且1a<0,∴a <0符合题意. 综上有,a ≤1.(2)①当a =0时,f (x )=-2x +1在[0,1]上单调递减, ∴f (x )min =f (1)=-1.②当a >0时,f (x )=ax 2-2x +1的图象开口方向向上,且对称轴为x =1a.(ⅰ)当1a<1,即a >1时,f (x )=ax 2-2x +1图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,1上单调递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a+1=-1a +1.(ⅱ)当1a≥1,即0<a ≤1时,f (x )在[0,1]上单调递减.∴f (x )min =f (1)=a -1.③当a <0时,f (x )=ax 2-2x +1的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧,∴f (x )=ax 2-2x +1在[0,1]上单调递减. ∴f (x )min =f (1)=a -1.综上所述,g (a )=⎩⎪⎨⎪⎧a -1,a ≤1,-1a+1,a >1.思维升华 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3 (1)若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均单调递增,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-113,-3B .[-6,-4]C .[-3,-22]D .[-4,-3]答案 B解析 ∵f (x )为偶函数,∴f (x )在[1,2]上单调递减,在[3,+∞)上单调递增, 当x >0时,f (x )=x 2+ax +2, 对称轴为x =-a 2,∴2≤-a2≤3,解得-6≤a ≤-4.(2)(2022·抚顺模拟)已知函数f (x )=-x 2+2x +5在区间[0,m ]上有最大值6,最小值5,则实数m 的取值范围是________. 答案 [1,2]解析 由题意知,f (x )=-(x -1)2+6, 则f (0)=f (2)=5=f (x )min ,f (1)=6=f (x )max ,函数f (x )的图象如图所示,则1≤m ≤2.课时精练1.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x 答案 B解析 二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点, 设二次函数为g (x )=ax 2+bx ,可得⎩⎪⎨⎪⎧a +b =1,a -b =5,解得a =3,b =-2,所求的二次函数为g (x )=3x 2-2x .2.(2022·延吉检测)若函数y =()222433m m m m x +--+为幂函数,且在(0,+∞)上单调递减,则实数m 的值为( ) A .0B .1或2C .1D .2 答案 C解析 由于函数y =()222433mm m m x +--+为幂函数,所以m 2-3m +3=1,解得m =1或m =2,当m =1时,y =x -1=1x,在(0,+∞)上单调递减,符合题意.当m =2时,y =x 4,在(0,+∞)上单调递增,不符合题意.3.(2022·长沙模拟)已知函数f (x )=x 2-2mx -m +2的值域为[0,+∞),则实数m 的值为( ) A .-2或1 B .-2 C .1 D .1或2答案 A解析 因为f (x )=x 2-2mx -m +2=(x -m )2-m 2-m +2≥-m 2-m +2,且函数f (x )=x 2-2mx -m +2的值域为[0,+∞),所以-m 2-m +2=0,解得m =-2或m =1.4.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.下面四个结论中正确的是( )A .b 2<4ac B .2a -b =1 C .a -b +c =0 D .5a <b答案 D解析 因为二次函数y =ax 2+bx +c 的图象过点A (-3,0),对称轴为直线x =-1,所以⎩⎪⎨⎪⎧-b 2a=-1,9a -3b +c =0,解得⎩⎪⎨⎪⎧b =2a ,c =-3a ,因为二次函数的图象开口方向向下,所以a <0,对于A ,因为二次函数的图象与x 轴有两个交点,所以b 2-4ac =4a 2+12a 2=16a 2>0, 所以b 2>4ac ,故选项A 不正确; 对于B ,因为b =2a ,所以2a -b =0,故选项B 不正确;对于C ,因为a -b +c =a -2a -3a =-4a >0, 故选项C 不正确; 对于D ,因为a <0,所以5a <2a =b ,故选项D 正确.5.(多选)(2022·宜昌质检)已知函数f (x )=x 2-2x +a 有两个零点x 1,x 2,以下结论正确的是( ) A .a <1B .若x 1x 2≠0,则1x 1+1x 2=2aC .f (-1)=f (3)D .函数y =f (|x |)有四个零点 答案 ABC解析 二次函数对应二次方程根的判别式Δ=(-2)2-4a =4-4a >0,a <1,故A 正确; 由根与系数的关系得,x 1+x 2=2,x 1x 2=a ,1x 1+1x 2=x 1+x 2x 1x 2=2a,故B 正确;因为f (x )的对称轴为x =1,点(-1,f (-1)),(3,f (3))关于对称轴对称,故C 正确; 当a <0时,y =f (|x |)只有两个零点,故D 不正确. 6.(多选)已知幂函数f (x )=()2231m m m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足f x 1-f x 2x 1-x 2>0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( )A .a +b >0且ab <0B .a +b <0且ab <0C .a +b <0且ab >0D .以上都可能 答案 BC解析 因为f (x )=()2231m m m m x +---为幂函数,所以m 2-m -1=1, 解得m =2或m =-1.依题意f (x )在(0,+∞)上单调递增, 所以m =2,此时f (x )=x 3,因为f (-x )=(-x )3=-x 3=-f (x ), 所以f (x )=x 3为奇函数. 因为a ,b ∈R 且f (a )+f (b )<0, 所以f (a )<f (-b ). 因为y =f (x )为增函数, 所以a <-b ,所以a +b <0.7.(2022·张家口检测)已知幂函数f (x )=mx n+k 的图象过点⎝ ⎛⎭⎪⎫116,14,则m -2n +3k =________. 答案 0解析 因为f (x )是幂函数, 所以m =1,k =0,又f (x )的图象过点⎝ ⎛⎭⎪⎫116,14, 所以⎝ ⎛⎭⎪⎫116n =14,解得n =12,所以m -2n +3k =0.8.(2022·江苏海安高级中学模拟)函数f (x )=x 2-4x +2在区间[a ,b ]上的值域为[-2,2],则b -a 的取值范围是________. 答案 [2,4]解析 解方程f (x )=x 2-4x +2=2, 解得x =0或x =4,解方程f (x )=x 2-4x +2=-2,解得x =2, 由于函数f (x )在区间[a ,b ]上的值域为[-2,2]. 若函数f (x )在区间[a ,b ]上单调, 则[a ,b ]=[0,2]或[a ,b ]=[2,4], 此时b -a 取得最小值2;若函数f (x )在区间[a ,b ]上不单调,且当b -a 取最大值时,[a ,b ]=[0,4],所以b -a 的最大值为4.所以b -a 的取值范围是[2,4].9.已知二次函数f (x )=ax 2+(b -2)x +3,且-1,3是函数f (x )的零点. (1)求f (x )的解析式,并解不等式f (x )≤3; (2)若g (x )=f (sin x ),求函数g (x )的值域.解 (1)由题意得⎩⎪⎨⎪⎧-1+3=-b -2a,-1×3=3a,解得⎩⎪⎨⎪⎧a =-1,b =4,∴f (x )=-x 2+2x +3,∴当-x 2+2x +3≤3时,即x 2-2x ≥0, 解得x ≥2或x ≤0,∴不等式的解集为(-∞,0]∪[2,+∞). (2)令t =sin x ,则g (t )=-t 2+2t +3=-(t -1)2+4,t ∈[-1,1], 当t =-1时,g (t )有最小值0, 当t =1时,g (t )有最大值4, 故g (t )∈[0,4]. 所以g (x )的值域为[0,4].10.(2022·烟台模拟)已知二次函数f (x )=ax 2+bx +c ,且满足f (0)=2,f (x +1)-f (x )=2x +1.(1)求函数f (x )的解析式;(2)当x ∈[t ,t +2](t ∈R )时,求函数f (x )的最小值g (t )(用t 表示).解 (1)因为二次函数f (x )=ax 2+bx +c 满足f (0)=2,f (x +1)-f (x )=2x +1,所以⎩⎪⎨⎪⎧c =2,a x +12+b x +1+c -ax 2+bx +c =2x +1,即⎩⎪⎨⎪⎧c =2,2ax +b +a =2x +1,所以⎩⎪⎨⎪⎧ c =2,2a =2,b +a =1,解得⎩⎪⎨⎪⎧c =2,a =1,b =0,因此f (x )=x 2+2.(2)因为f (x )=x 2+2是图象的对称轴为直线x =0,且开口向上的二次函数, 当t ≥0时,f (x )=x 2+2在x ∈[t ,t +2]上单调递增, 则f (x )min =f (t )=t 2+2; 当t +2≤0,即t ≤-2时,f (x )=x 2+2在x ∈[t ,t +2]上单调递减,则f (x )min =f (t +2)=(t +2)2+2=t 2+4t +6; 当t <0<t +2,即-2<t <0时,f (x )min =f (0)=2,综上g (t )=⎩⎪⎨⎪⎧t 2+2,t ≥0,2,-2<t <0,t 2+4t +6,t ≤-2.11.(2022·福州模拟)已知函数f (x )=2x 2-mx -3m ,则“m >2”是“f (x )<0对x ∈[1,3]恒成立”的( ) A .充分不必要条件 B .充要条件 C .必要不充分条件 D .既不充分也不必要条件 答案 C解析 若f (x )<0对x ∈[1,3]恒成立,则⎩⎪⎨⎪⎧f 1=2-4m <0,f3=18-6m <0,解得m >3,{m |m >3}是{m |m >2}的真子集,所以“m >2”是“f (x )<0对x ∈[1,3]恒成立”的必要不充分条件.12.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a,y =x b的图象三等分,即有BM =MN =NA ,那么a -1b等于( )A .0B .1C.12D .2答案 A解析 由BM =MN =NA ,点A (1,0),B (0,1),∴M ⎝ ⎛⎭⎪⎫13,23,N ⎝ ⎛⎭⎪⎫23,13, 将两点坐标分别代入y =x a,y =x b, 得a =132log 3,b =231log 3, ∴a -1b=132log 3-2311log 3=0.13.(多选)关于x 的方程(x 2-2x )2-2(2x -x 2)+k =0,下列命题正确的有( ) A .存在实数k ,使得方程无实根B .存在实数k ,使得方程恰有2个不同的实根C .存在实数k ,使得方程恰有3个不同的实根D .存在实数k ,使得方程恰有4个不同的实根 答案 AB解析 设t =x 2-2x ,方程化为关于t 的二次方程t 2+2t +k =0.(*)当k >1时,方程(*)无实根,故原方程无实根;当k =1时,可得t =-1,则x 2-2x =-1,原方程有两个相等的实根x =1; 当k <1时,方程(*)有两个实根t 1,t 2(t 1<t 2), 由t 1+t 2=-2可知,t 1<-1,t 2>-1. 因为t =x 2-2x =(x -1)2-1≥-1,所以x 2-2x =t 1无实根,x 2-2x =t 2有两个不同的实根. 综上可知,A ,B 项正确,C ,D 项错误.14.设关于x 的方程x 2-2mx +2-m =0()m ∈R 的两个实数根分别是α,β,则α2+β2+5的最小值为________. 答案 7解析 由题意有⎩⎪⎨⎪⎧α+β=2m ,αβ=2-m ,且Δ=4m 2-4(2-m )≥0, 解得m ≤-2或m ≥1,α2+β2+5=(α+β)2-2αβ+5=4m 2+2m +1,令f (m )=4m 2+2m +1,而f (m )图象的对称轴为m =-14,且m ≤-2或m ≥1, 所以f (m )min =f (1)=7.15.(2022·台州模拟)已知函数f (x )=(x 2-2x -3)(x 2+ax +b )是偶函数,则f (x )的值域是________. 答案 [-16,+∞)解析 因为f (x )=(x 2-2x -3)(x 2+ax +b ) =(x -3)(x +1)(x 2+ax +b )是偶函数, 所以有⎩⎪⎨⎪⎧f -3=f 3=0,f1=f -1=0,代入得⎩⎪⎨⎪⎧9-3a +b =0,1+a +b =0,解得⎩⎪⎨⎪⎧a =2,b =-3.所以f (x )=(x 2-2x -3)(x 2+2x -3)=(x 2-3)2-4x 2=x 4-10x 2+9 =(x 2-5)2-16≥-16.16.已知a ,b 是常数且a ≠0,f (x )=ax 2+bx 且f (2)=0,且使方程f (x )=x 有等根. (1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使得f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]? 解 (1)由f (x )=ax 2+bx ,且f (2)=0, 则4a +2b =0,又方程f (x )=x ,即ax 2+(b -1)x =0有等根, 得b =1,从而a =-12,所以f (x )=-12x 2+x .(2)假定存在符合条件的m ,n ,由(1)知f (x )=-12x 2+x =-12(x -1)2+12≤12,则有2n ≤12,即n ≤14.又f (x )图象的对称轴为直线x =1, 则f (x )在[m ,n ]上单调递增,于是得⎩⎪⎨⎪⎧m <n ≤14,f m =2m ,f n =2n ,即⎩⎪⎨⎪⎧m <n ≤14,-12m 2+m =2m ,-12n 2+n =2n ,解方程组得m =-2,n =0,所以存在m =-2,n =0,使函数f (x )在[-2,0]上的值域为[-4,0].。
幂函数及函数图像变换知识点1 幂函数 1.幂函数的定义一般地,形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数.2.幂函数的性质:(1)幂函数的图象都过点 ;(2)当0α>时,幂函数在[0,)+∞上 ;当0α<时,幂函数在(0,)+∞上 ; (3)当2,2α=-时,幂函数是 ;当11,1,3,3α=-时,幂函数是 . (4)任何幂函数都不过 象限;(5)当0α>时,幂函数的图象过 . 3.幂函数的图象在第一象限的分布规律:(1)在经过点(1,1)平行于y 轴的直线的右侧,按幂指数由小到大的关系幂函数的图象从 到 分布; (2)幂指数的分母为偶数时,图象只在 象限;幂指数的分子为偶数时,图象在第一、第二象限关于 轴对称;幂指数的分子、分母都为奇数时,图象在第一、第三象限 关于 对称.考向一 幂函数的定义【例1】►讨论下列函数的定义域、值域,奇偶性与单调性: (1)5y x = (2)43y x-= (3)54y x =(4)35y x-=(5)12y x-=分析:要求幂函数的定义域和值域,可先将分数指数式化为根式. 解:(1)定义域R ,值域R ,奇函数,在R 上单调递增.(2)定义域(,0)(0,)-∞⋃+∞,值域(0,)+∞,偶函数,在(,0)-∞上单调递增, 在(0,)+∞ 上单调递减.(3)定义域[0,)+∞,值域[0,)+∞,偶函数,非奇非偶函数,在[0,)+∞上单调递增. (4)定义域(,0)(0,)-∞⋃+∞,值域(,0)(0,)-∞⋃+∞,奇函数,在(,0)-∞上单调递减,在(0,)+∞上单调递减.(5)定义域(0,)+∞,值域(0,)+∞,非奇非偶函数,在(0,)+∞上单调递减. 【训练1】比较大小:(1)11221.5,1.7 (2)33( 1.2),( 1.25)-- (3)1125.25,5.26,5.26--- (4)30.530.5,3,log 0.5 解:(1)∵12y x =在[0,)+∞上是增函数,1.5 1.7<,∴11221.5 1.7< (2)∵3y x =在R 上是增函数, 1.2 1.25->-,∴33( 1.2)( 1.25)->- (3)∵1y x -=在(0,)+∞上是减函数,5.25 5.26<,∴115.25 5.26-->;∵ 5.26x y =是增函数,12->-,∴125.26 5.26-->;综上,1125.25 5.26 5.26--->>(4)∵300.51<<,0.531>,3log 0.50<,∴30.53log 0.50.53<<考向二 二次函数的图像和性质【例2】►(2010大连一模)函数f (x )=x 2-2x +2在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ).(1)试写出g (t )的函数表达式; (2)作g (t )的图象并写出g (t )的最小值.[审题视点] 分类讨论t 的范围分别确定g (t )解析式. 解 (1)f (x )=(x -1)2+1.当t +1≤1,即t ≤0时,g (t )=t 2+1. 当t <1<t +1,即0<t <1时,g (t )=f (1)=1 当t ≥1时,g (t )=f (t )=(t -1)2+1 综上可知g (t )=⎩⎪⎨⎪⎧t 2+1≤0,t ≤0,1,0<t <1,t 2-2 t +2,t ≥1.(2)g (t )的图象如图所示,可知g (t )在(-∞,0]上递减,在[1,+∞)上递增,因此g (t )在[0,1]上取到最小值1.【训练2-1】 ►(2010·安徽)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( ).[审题视点] 分类讨论a >0,a <0.解析 若a >0,则bc >0,根据选项C 、D ,c <0,此时只有b <0,二次函数的对称轴方程x =-b2a >0,选项D 有可能;若a <0,根据选项A ,c <0,此时只能b >0,二次函数的对称轴方程x =-b2a >0,与选项A 不符合;根据选项B ,c >0,此时只能b <0,此时二次函数的对称轴方程x =-b2a <0,与选项B 不符合.综合知只能是选项D.答案 D【训练2-2】 (2011沈阳模拟)已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值.(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5], ∴x =1时,f (x )取得最小值1; x =-5时,f (x )取得最大值37.(2)函数f (x )=(x +a )2+2-a 2的图象的对称轴为直线x =-a , ∵y =f (x )在区间[-5,5]上是单调函数, ∴-a ≤-5或-a ≥5,故a 的取值范围是a ≤-5或a ≥5.考向三 幂函数的图象和性质【例3】►已知幂函数f (x )=223m m x -- (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足33(1)(32)m m a a --+<-的a 的取值范围.[审题视点] 由幂函数的性质可得到幂指数m 2-2m -3<0,再结合m 是整数,及幂函数是偶数可得m 的值.解 ∵函数在(0,+∞)上递减, ∴m 2-2m -3<0,解得-1<m <3.∵m ∈N *,∴m =1,2. 又函数的图象关于y 轴对称, ∴m 2-2m -3是偶数, 而22-2×2-3=-3为奇数, 12-2×1-3=-4为偶数, ∴m =1.而f (x )=x -13在(-∞,0),(0,+∞)上均为减函数,∴(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a . 解得a <-1或23<a <32.故a 的取值范围为⎩⎨⎧⎭⎬⎫a |a <-1或23<a <32.【训练3】已知幂函数223mm y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值.分析:幂函数图象与x 轴、y 轴都无交点,则指数小于或等于零;图象关于原点对称,则函数为奇函数.结合m Z ∈,便可逐步确定m 的值. 解:∵幂函数223mm y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,∴2230m m --≤,∴13m -≤≤;∵m Z ∈,∴2(23)m m Z --∈,又函数图象关于原点对称, ∴223m m --是奇数,∴0m =或2m =. 知识点2 函数图像 (1)平移变换①水平平移:y =f (x ±a )(a >0)的图象,可由y =f (x )的图象向左(+)或向右(-)平移a 个单位而得到.②竖直平移:y =f (x )±b (b >0)的图象,可由y =f (x )的图象向上(+)或向下(-)平移b 个单位而得到. (2)对称变换①y =f (-x )与y =f (x )的图象关于y 轴对称. ②y =-f (x )与y =f (x )的图象关于x 轴对称. ③y =-f (-x )与y =f (x )的图象关于原点对称.由对称变换可利用y =f (x )的图象得到y =|f (x )|与y =f (|x |)的图象.①作出y =f (x )的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到上方,其余部分不变,得到y =|f (x )|的图象;②作出y =f (x )在y 轴上及y 轴右边的图象部分,并作y 轴右边的图象关于y 轴对称的图象,即得y =f (|x |)的图象. (3)伸缩变换①y =af (x )(a >0)的图象,可将y =f (x )图象上每点的纵坐标伸(a >1时)或缩(a <1时)到原来的a 倍,横坐标不变.②y =f (ax )(a >0)的图象,可将y =f (x )的图象上每点的横坐标伸(a <1时)或缩(a >1时)到原来的1a 倍,纵坐标不变. (4)翻折变换①作为y =f (x )的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到上方,其余部分不变,得到y =|f (x )|的图象;②作为y =f (x )在y 轴上及y 轴右边的图象部分,并作y 轴右边的图象关于y 轴对称的图象,即得y =f (|x |)的图象.考向一 作函数图象【例1】►分别画出下列函数的图象: (1)y =|lg x |; (2)y =2x +2;(3)y =x 2-2|x |-1; (4)y =x +2x -1.[审题视点] 根据函数性质通过平移,对称等变换作出函数图象.解 (1)y =⎩⎪⎨⎪⎧lg x (x ≥1),-lg x (0<x <1).图象如图①.(2)将y =2x 的图象向左平移2个单位.图象如图②.(3)y =⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0)x 2+2x -1 (x <0).图象如图③.(4)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图④.【训练1-1】作出下列函数的图象:(1)y=2x+1-1;(2)y=sin|x|;(3)y=|log2(x+1)|.解(1)y=2x+1-1的图象可由y=2x的图象向左平移1个单位,得y=2x+1的图象,再向下平移一个单位得到y=2x+1-1的图象,如图①所示.(2)当x≥0时,y=sin|x|与y=sin x的图象完全相同,又y=sin|x|为偶函数,其图象关于y轴对称,如图②所示.(3)首先作出y=log2x的图象c1,然后将c1向左平移1个单位,得到y=log2(x+1)的图象c2,再把c2在x轴下方的图象翻折到x轴上方,即为所求图象c3:y=|log2(x+1)|.如图③所示(实线部分).【训练1-2】把函数y=f(x)=(x-2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是()A.y=(x-3)2+3B.y=(x-3)2+1C.y=(x-1)2+3 D.y=(x-1)2+1解析:把函数y=f(x)的图象向左平移1个单位,即把其中x换成x+1,于是得y=[(x +1)-2]2+2=(x-1)2+2,再向上平移1个单位,即得到y=(x-1)2+2+1=(x-1)2+3.答案:C考向二函数图象的识辨【例2】►函数f(x)=1+log2x与g(x)=21-x在同一直角坐标系下的图象大致是().[审题视点] 在同一个坐标系中判断两个函数的图象,可根据函数图象上的特征点以及函数的单调性来判断.解析 f (x )=1+log 2x 的图象由函数f (x )=log 2x 的图象向上平移一个单位而得到,所以函数图象经过(1,1)点,且为单调增函数,显然,A 项中单调递增的函数经过点(1,0),而不是(1,1),故不满足;函数g (x )=21-x =2×⎝⎛⎭⎫12x ,其图象经过(0,2)点,且为单调减函数,B 项中单调递减的函数与y 轴的交点坐标为(0,1),故不满足;D 项中两个函数都是单调递增的,故也不满足. 综上所述,排除A ,B ,D.故选C. 答案 C【训练2-1】 (2010·山东)函数y =2x -x 2的图象大致是( ).解析 当x >0时,2x =x 2有两根x =2,4;当x <0时,根据图象法易得到y =2x 与y =x 2有一个交点,则y =2x -x 2在R 上有3个零点,故排除B 、C ;当x →-∞时,2x →0.而x 2→+∞,故y =2x -x 2<0,故选A. 答案 A【训练2-2】(2011·郑州模拟)若函数f (x )=ka x -a -x (a >0且a ≠1)在(-∞,+∞)上既是奇函数又是增函数,则g (x )=log a (x +k )的图象是( ).考向三 函数图象的应用【例3】►已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}. [审题视点] 作出函数图象,由图象观察.解 f (x )=⎩⎪⎨⎪⎧(x -2)2-1, x ∈(-∞,1]∪[3,+∞),-(x -2)2+1, x ∈(1,3), 作出图象如图所示.(1)递增区间为[1,2]和[3,+∞),递减区间为(-∞,1]和[2,3].(2)由图象可知,y =f (x )与y =m 图象,有四个不同的交点,则0<m <1, ∴集合M ={m |0<m <1}.【训练3】 (2010·湖北)若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( ).A .[-1,1+22]B .[1-22,1+22]C .[1-22,3]D .[1-2,3]解析 在同一坐标系下画出曲线y =3-4x -x 2(注:该曲线是以点C (2,3)为圆心、2为半径的圆不在直线y =3上方的部分)与直线y =x 的图象,平移该直线,结合图形分析可知,当直线沿y 轴正方向平移到点(0,3)的过程中的任何位置相应的直线与曲线y =3-4x -x 2都有公共点;注意到与y =x 平行且过点(0,3)的直线的方程是y =x +3;当直线y =x +b 与以点C (2,3)为圆心、2为半径的圆相切时(圆不在直线y =3上方的部分),有|2-3+b |2=2,b =1-2 2.结合图形可知,满足题意的只有C 选项. 答案 C基础练习:1.(人教A 版教材习题改编)已知a =log 0.70.8,b =log 1.10.9,c =1.10.9,则a ,b ,c 的大小关系是( ). A .a <b <c B .a <c <b C .b <a <cD .c <a <b解析 将三个数都和中间量1相比较:0<a =log 0.70.8<1,b =log 1.10.9<0,c =1.10.9>1. 答案 C2.(2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ). A .-3 B .-1 C .1 D .3 解析 ∵f (x )为奇函数,∴f (1)=-f (-1)=-3.答案 A3.(2011·浙江)设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0.若f (α)=4,则实数α等于( ).A .-4或-2B .-4或2C .-2或4D .-2或2解析 由⎩⎪⎨⎪⎧ α≤0,-α=4或⎩⎪⎨⎪⎧α>0,α2=4,得α=-4或α=2,故选B.答案 B4.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b 等于( ). A .3 B .2或3 C .2 D .1或2 解析 函数f (x )=x 2-2x +2在[1,b ]上递增, 由已知条件⎩⎪⎨⎪⎧f =1,fb =b ,b >1,即⎩⎪⎨⎪⎧b 2-3b +2=0,b >1.解得b =2.答案 C 5.(人教A 版)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( ).A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度解析 y =lg x +310=lg(x +3)-1可由y =lg x 的图象向左平移3个单位长度,向下平移1个单位长度而得到. 答案 C6.(2011·安徽)若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( )A.⎝⎛⎭⎫1a ,b B .(10a,1-b ) C.⎝⎛⎭⎫10a ,b +1 D .(a 2,2b )解析 本题主要考查对数运算法则及对数函数图象,属于简单题.当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图象上. 答案 D7.函数y =1-1x -1的图象是( ).解析 将y =-1x 的图象向右平移1个单位,再向上平移一个单位,即可得到函数y =1-1x -1的图象. 答案 B8.已知图①中的图象对应的函数为y =f (x ),则图②的图象对应的函数为( ).A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)解析 y =f (-|x |)=⎩⎪⎨⎪⎧f (-x ),x ≥0,f (x ),x <0.答案 C9.设函数y =x 2-2x ,x ∈[-2,a ],求函数的最小值g (a ).[尝试解答] ∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1,而x =1不一定在区间[-2,a ]内,应进行讨论.当-2<a <1时,函数在[-2,a ]上单调递减,则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2<a <1,-1,a ≥1.。
幂函数及其性质1、幂函数的图象(1)所有的图形都通过(1,1)这点.(a≠0) a>0时 图象过点(0,0)和(1,1) (2)当a>0时,幂函数为单调递增为增函数;a<0时,幂函数为单调递减为减函数。
(3)当a>1时,幂函数图形下凸(竖抛);当0<a<1大于0时,幂函数图形上凸(横抛)。
当a<0时,图像为双曲线。
(4)当a 小于0时,a 越小,图形倾斜程度越大。
(5)显然幂函数无界限。
(6)a=2n,该函数为偶函数 {x|x≠0}。
【例题选讲】例1.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x :(1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数;简解:(1)2m =或1m =-(2)1m =-(3)45m =-(4)25m =-(5)1m =-变式训练:已知函数()()2223m m f x m m x--=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲线。
简解:220230m m m m ⎧+>⎪⎨-->⎪⎩解得:()(),13,m ∈-∞-+∞小结与拓展:要牢记幂函数的定义,列出等式或不等式求解。
例2.比较大小:(1)11221.5,1.7 (2)33( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.530.5,3,log 0.5解:(1)∵12y x =在[0,)+∞上是增函数,1.5 1.7<,∴11221.5 1.7<(2)∵3y x =在R 上是增函数, 1.2 1.25->-,∴33( 1.2)( 1.25)->-(3)∵1y x -=在(0,)+∞上是减函数,5.25 5.26<,∴115.25 5.26-->;∵ 5.26x y =是增函数,12->-,∴125.265.26-->;综上,1125.25 5.26 5.26--->>(4)∵300.51<<,0.531>,3log 0.50<,∴30.53log 0.50.53<< 例3.已知幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值.解:∵幂函数223mm y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,∴2230m m --≤,∴13m -≤≤;∵m Z ∈,∴2(23)m m Z --∈,又函数图象关于原点对称, ∴223m m --是奇数,∴0m =或2m =.例4、求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞). 点评:这是复合函数求值域的问题,应用换元法.例5、已知函数f(x)=(m 2-m-1)x -5m-3,m 为何值时,f(x):(1)是正比例函数;(2)是反比例函数;(3)是二次函数;(4)是幂函数。
高一幂函数幂函数是数学中常见的一种函数形式,其表达式可以写作f(x) = x^n,其中n为指数,也可以是整数、分数或负数。
在高一阶段,我们将会学习到一些关于幂函数的基本性质和应用。
一、幂函数的定义与性质幂函数的定义域一般为实数集R,即所有实数x都可以作为幂函数的自变量。
而幂函数的值域则取决于指数n的奇偶性。
当n为奇数时,幂函数的值域也为实数集R;当n为偶数时,幂函数的值域则为非负实数集[0, +∞)。
幂函数的图像特点也与指数n的奇偶性密切相关。
当n为正整数时,幂函数的图像呈现出单调递增或单调递减的特点,且经过原点(0,0);当n为负整数时,幂函数的图像在第一象限和第三象限上单调递增,而在第二象限和第四象限上单调递减;当n为分数时,幂函数的图像则具有更加复杂的形状。
二、幂函数的应用1. 金融领域中的利息计算在金融领域中,我们常常会遇到复利计算的问题。
而复利计算中的利息增长往往可以用幂函数来表示。
例如,如果我们存款10000元,年利率为5%,那么每年的本息总额可以表示为f(n) =10000*(1+0.05)^n,其中n表示存款的年限。
通过计算幂函数的值,我们可以得到每年的本息总额。
2. 自然科学中的物理规律在自然科学的研究中,我们经常会遇到一些与幂函数相关的物理规律。
例如,牛顿的万有引力定律就是一个幂函数的应用。
该定律表明,两个物体之间的引力与它们质量的乘积成正比,与它们距离的平方成反比。
这可以用幂函数来表示为f(r) = G*m1*m2/r^2,其中G为万有引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。
通过计算幂函数的值,我们可以得到它们之间的引力大小。
3. 经济学中的增长模型在经济学研究中,幂函数也被广泛应用于描述经济增长模型。
例如,柯布-道格拉斯生产函数就是一种幂函数模型,用于描述劳动力和资本对产出的贡献。
该模型可以表示为Y = A*K^α*L^β,其中Y表示产出,A表示全要素生产率,K表示资本,L表示劳动力,α和β分别为资本和劳动力的弹性系数。
3.3 幂函数新课标要求通过具体实例,结合231,,,,y x y y x y x y x x=====的图象,理解它们的变化规律,了解幂函数。
知识梳理一、幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 二、五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y =x ;(2)y =12x ;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质y =x y =x 2 y =x 3 12y x =y =x -1 定义域 R R R [0,+∞) {x |x ≠0} 值域 R [0,+∞)R [0,+∞) {y |y ≠0} 奇偶性 奇 偶奇 非奇非偶 奇单调性 增在[0,+∞) 上增, 在(-∞,0] 上减增增在(0,+∞)上减, 在(-∞,0)上减三、一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.名师导学知识点1 幂函数的概念幂函数的判断及应用(1)判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,需满足:①指数为常数,②底数为自变量,③x α的系数为1.形如y =(3x )α,y =2x α,y =x α+5…形式的函数都不是幂函数.(2)若一个函数为幂函数,则该函数也必具有y =x α(α为常数)这一形式. 【例1-1】在函数y =1x 2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为( )A .0B .1C .2D .3 答案 B解析 ∵y =1x 2=x -2,∴是幂函数;y =2x 2由于出现系数2,因此不是幂函数;y =x 2+x 是两项和的形式,不是幂函数;y =1=x 0(x ≠0),可以看出,常函数y =1的图象比幂函数y =x 0的图象多了一个点(0,1),所以常函数y =1不是幂函数. 【例1-2】已知y =(m 2+2m -2)22m x-+2n -3是幂函数,求m ,n 的值.解 由题意得⎩⎪⎨⎪⎧m 2+2m -2=1,2n -3=0,解得⎩⎪⎨⎪⎧ m =-3,n =32或⎩⎪⎨⎪⎧m =1,n =32.所以m =-3或1,n =32.【变式训练1-1】给出下列函数:①y=x 3;②y=x 2+2x ;③y=4x 2;④y=x 5+1;⑤y=(x-1)2;⑥y=x ;⑦y=x -2.其中幂函数的个数为 ( ) A .1 B .2 C .3D .4C [解析] 由幂函数的定义知,只有①⑥⑦是幂函数,故选C .【变式训练1-2】已知幂函数y=(m 2-m-1),求此幂函数的解析式,并指出其定义域.解:∵y=(m 2-m-1)为幂函数,∴m 2-m-1=1,解得m=2或m=-1.当m=2时,m 2-2m-3=-3,则y=x -3(x ≠0);当m=-1时,m 2-2m-3=0,则y=x 0(x ≠0).故所求幂函数的解析式为y=x -3(x ≠0)或y=x 0(x ≠0).知识点2 幂函数的图象及应用(1)幂函数图象的画法①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y =x α在第一象限内的图象.②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f (x )在其他象限内的图象.(2)解决与幂函数有关的综合性问题的方法首先要考虑幂函数的概念,对于幂函数y =x α(α是常数),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.【例2-1】若点(2,2)在幂函数f (x )的图象上,点⎝⎛⎭⎫-2,14在幂函数g (x )的图象上,问当x 为何值时,(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ).解 设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以将点(2,2)代入f (x )=x α中,得2=(2)α,解得α=2,则f (x )=x 2.同理可求得g (x )=x -2. 在同一坐标系中作出函数f (x )=x 2和g (x )=x-2的图象(如图所示),观察图象可得,(1)当x >1或x <-1时,f (x )>g (x ); (2)当x =1或x =-1时,f (x )=g (x ); (3)当-1<x <1且x ≠0时,f (x )<g (x ).【变式训练2-1】如图所示,图中的曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于C 1,C 2,C 3,C 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,在第一象限内的图象当n >0时,n 越大,y =x n 递增速度越快,故C 1的n =2,C 2的n =12;当n <0时,|n |越大,曲线越陡峭,所以曲线C 3的n =-12,曲线C 4的n =-2.知识点3 幂函数的性质比较幂值大小的方法(1)若两个幂值的指数相同或可化为两个指数相同的幂值时,则可构造函数,利用幂函数的单调性比较大小.(2)若底数、指数均不同,则考虑用中间值法比较大小,这里的中间值可以是“0”或“1”. 【例2-1】[2021·安徽亳州二中高一期中] 已知函数f (x )=(m 2-m-1)是幂函数,且在(0,+∞)上单调递减,则实数m= ( )A .2B .-1C .4D .2或-1A 【解析】因为f (x )为幂函数,所以m 2-m-1=1,解得m=2或m=-1.因为f (x )在(0,+∞)上单调递减,所以m 2-2m-2<0,所以m=2.故选A .【例2-2】比较下列各组数中两个数的大小: (1)⎝⎛⎭⎫250.5与⎝⎛⎭⎫130.5; (2)⎝⎛⎭⎫-23-1与⎝⎛⎭⎫-35-1; (3)3432⎛⎫⎪⎝⎭与3234⎛⎫⎪⎝⎭. 解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的, 又25>13,∴⎝⎛⎭⎫250.5>⎝⎛⎭⎫130.5. (2)∵幂函数y =x-1在(-∞,0)上是单调递减的,又-23<-35,∴⎝⎛⎭⎫-23-1>⎝⎛⎭⎫-35-1. (3)∵函数y 1=34x 在(0,+∞)上单调递增, 又32>1,∴3432⎛⎫⎪⎝⎭>341 =1. 又∵函数y 2=32x 在(0,+∞)上单调递增,且34<1,∴3234⎛⎫⎪⎝⎭<321 =1,∴3432⎛⎫ ⎪⎝⎭>3234⎛⎫⎪⎝⎭. 【变式训练2-1】比较下列各组数的大小: (1)⎝⎛⎭⎫230.3与⎝⎛⎭⎫130.3;(2)-3.143与-π3.解 (1)∵y =x 0.3在[0,+∞)上单调递增且23>13,∴⎝⎛⎭⎫230.3>⎝⎛⎭⎫130.3.(2)∵y =x 3是R 上的增函数,且3.14<π, ∴3.143<π3,∴-3.143>-π3.【变式训练2-2】已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称且在(0,+∞)上单调递减,求满足()31ma -+ <()332m a -- 的a 的取值范围.解 因为函数在(0,+∞)上单调递减,所以3m -9<0, 解得m <3.又因为m ∈N *,所以m =1,2. 因为函数的图象关于y 轴对称, 所以3m -9为偶数,故m =1. 则原不等式可化为()131a -+<()1332a --.因为y =13x- 在(-∞,0),(0,+∞)上均单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a , 解得23<a <32或a <-1.故a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a <-1或23<a <32.名师导练A 组-[应知应会]1.已知点,在幂函数y=f (x )的图像上,则 ( ) A .f (x )= B .f (x )=x 3 C .f (x )=x -2D .f (x )=xB [解析] 设f (x )=x a ,由题意知a==3,所以a=3,所以f (x )=x 3.故选B .2.(2021秋•三明期末)已知幂函数21()m f x x -=的图象经过点(2,8),则实数m 的值是() A .1-B .12C .2D .3【分析】把点的坐标代入幂函数解析式,即可求出m 的值. 【解答】解:幂函数21()m f x x -=的图象经过点(2,8), 2128m -∴=,2m ∴=,故选:C .3.(2021秋•下城区校级期末)若一个幂函数的图象经过点1(2,)4,则它的单调增区间( )A .(,1)-∞B .(0,)+∞C .(,0)-∞D .R【分析】先求出幂函数的解析式,再得出其单调增区间. 【解答】解:设幂函数()f x x α=,函数()f x 经过点1(2,)4,∴124α=,解得2α=-, ∴221()f x x x -==, 故它的单调递增区间为(,0)-∞. 故选:C .4.(2021秋•杨浦区校级期末)已知常数a Q ∈,如图为幂函数a y x =的图象,则a 的值可以为( )A .23B .32 C .23-D .32-【分析】根据幂函数的图象关于y 轴对称,且在第一象限内单调递减,可以得出C 选项正确. 【解答】解:根据幂函数a y x =的图象关于y 轴对称,函数是偶函数,排除B 、D 选项; 再根据幂函数a y x =的图象在第一象限内从左到右下降,是单调减函数, 所以0a <,排除A ,即C 选项正确. 故选:C .5.已知幂函数y=(m 2-2m-2)在(0,+∞)上单调递增,则实数m 的值为 ( )A .-1B .3C .-1或3D .1或-3B [解析] 因为幂函数y=(m 2-2m-2)在(0,+∞)上单调递增,所以m 2-2m-2=1且m 2+m-1>0,解得m=3,则实数m 的值为3.6.(2021秋•白山期末)若函数21()(22)m f x m m x -=--是幂函数,且()y f x =在(0,)+∞上单调递增,则f (2)(= ) A .14B .12C .2D .4【分析】根据幂函数的定义,令2221m m --=,求出m 的值,再判断m 是否满足幂函数在(0,)x ∈+∞上为增函数即可,确定m 的值,从而求出幂函数的解析式,得出结果.【解答】解:因为函数21()(22)m f x m m x -=--是幂函数, 所以2221m m --=,解得1m =-或3m =.又因为()y f x =在(0,)+∞上单调递增,所以10m -, 所以3m =,2()f x x =, 从而f (2)224==, 故选:D .7.(2020秋•河南月考)幂函数223()mm y x m Z +-=∈的图象如图所示,则m 的值为( )A .2-或0B .1-C .0D .2-【分析】依题意,2m =-或1-或0,结合函数为奇函数,依次验证即可得到答案.【解答】解:由幂函数在第一象限的单调性可得,2230m m +-<,解得31m -<<, 再由m Z ∈可得,2m =-或1-或0. 又从图象可知该函数是奇函数,若2m =-,则2233m m +-=-,符合题意; 若1m =-,则2234m m +-=-,不合题意; 若0m =,则2233m m +-=-,符合题意, 综上,2m =-或0. 故选:A .8.(2022春•沈河区校级月考)设113244342(),(),()433a b c ===,则a ,b ,c 的大小顺序是( )A .c a b <<B .c b a <<C .a c b <<D .b c a <<【分析】先判断1b >,再化a 、c ,利用幂函数的性质判断a 、c 的大小. 【解答】解:112439()()1416a ==<,144()13b =>,314428()()1327c ==<;且89012716<<<,函数14y x =在(0,)+∞上是单调增函数,所以114489()()2716<,所以c a <; 综上知,c a b <<. 故选:A .9.(多选题)已知幂函数f (x )= (m ,n ∈N *,m ,n 互质),则下列关于f (x )的结论正确的是( )A .当m ,n 是奇数时,幂函数f (x )是奇函数B .当m 是偶数,n 是奇数时,幂函数f (x )是偶函数C .当0<<1时,幂函数f (x )在(0,+∞)上单调递减D .当m ,n 是奇数时,幂函数f (x )的定义域为R ABD [解析] f (x )==.当m ,n 是奇数时,幂函数f (x )是奇函数,故A 中的结论正确;当m 是偶数,n 是奇数时,幂函数f (x )是偶函数,故B 中的结论正确;当0<<1时,幂函数f (x )在(0,+∞)上单调递增,故C 中的结论错误;当m ,n 是奇数时,幂函数f (x )=的定义域为R,故D 中的结论正确.故选ABD .10.(多选)(2021秋•徐州期末)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线C .当2α=时函数是偶函数D .当3α=时函数有一个零点0【分析】根据幂函数的图象与性质,判断选项中的命题是否正确即可.【解答】解:对于A ,1α=-时幂函数1y x -=在(,0)-∞和(0,)+∞是减函数,在其定义域上不是减函数,A 错误;对于B ,0α=时幂函数01(0)y x x ==≠,其图象是一条直线,去掉点(0,1),B 错误; 对于C ,2α=时幂函数2y x =在定义域R 上是偶函数,C 正确;对于D ,3α=时幂函数3y x =在R 上的奇函数,且是增函数,有唯一零点是0,D 正确. 故选:CD .11.(2019秋•金山区校级期末)幂函数()y f x =的图象经过点1(4,)2,则1()16f 的值为 .【分析】利用待定系数法求出幂函数()y f x =的解析式,再计算1()16f 的值.【解答】解:设幂函数()y f x x α==,R α∈;其图象过点1(4,)2,所以142α=,解得12α=-;所以12()f x x -=,所以112211()()1641616f -===.故答案为:4.12.[2021·厦门外国语学校高一期中] 已知幂函数f (x )=(m 2-5m+7)x m-1为偶函数,则实数m 的值为 .3 [解析] ∵f (x )为幂函数,∴m 2-5m+7=1,解得m=2或m=3.当m=2时,f (x )=x 为奇函数,不满足题意;当m=3时,f (x )=x 2为偶函数,满足题意.综上所述,m=3.13.(2021秋•湖州期末)幂函数()()f x x R αα=∈的图象经过点(2,8),则α的值为 ;函数()f x 为 函数.(填“奇”或“偶” )【分析】先求出幂函数解析式,再判断奇偶性即可. 【解答】解:幂函数()()f x x R αα=∈的图象经过点(2,8), 28α∴=,3α∴=,3()f x x ∴=,定义域为R ,又33()()()f x x x f x -=-=-=-,()f x ∴是奇函数,故答案为:3,奇.14.(2020春•嘉陵区月考)若幂函数22(22)m y m m x -=--在(0,)x ∈+∞上为减函数,则实数m 的值是【分析】根据给出的函数为幂函数,由幂函数概念知2221m m --=,再根据函数在(0,)+∞上为减函数,得到幂指数应该小于0,求得的m 值应满足以上两条.【解答】解:因为函数22(22)m y m m x -=--既是幂函数又是(0,)+∞的减函数, 所以222120m m m ⎧--=⎨-<⎩⇒312m m m ==-⎧⎨<⎩或,解得:1m =-. 故答案为:1-.15.(2021秋•道里区校级月考)当01x <<时, 1.1()f x x =,0.9()g x x =,2()h x x -=的大小关系是 .【分析】画出这三个函数在区间(0,1)上的图象可得答案. 【解答】解:画出幂函数的图象如下图可知()()()f x g x h x <<故答案为()()()f x g x h x <<16.(2021•西湖区校级模拟)已知函数223()(2,)n n f x x n k k N -++==∈的图象在[0,)+∞上单调递增则n = ,f (2)= .【分析】根据幂函数的单调性,列出不等式求出n 的值,写出()f x 的解析式,再计算f (2)的值.【解答】解:函数223()n n f x x -++=的图象在[0,)+∞上单调递增,所以2230n n -++>, 即2230n n --<,解得13n -<<;又2n k =,且k N ∈,所以0n =,2,当0n =时,3()f x x =;当0n =时,3()f x x =;所以f (2)328==.故答案为:0,2;8.17.[2021·浙江宁波高一期中] 已知幂函数f (x )的图像过点P 8,.(1)求函数f (x )的解析式;(2)画出函数f (x )的图像,并指出其单调区间.解:(1)设f (x )=x α. ∵f (x )的图像过点P 8,,∴8α=,即23α=2-1,解得α=-,故函数f (x )的解析式为f (x )=(x ≠0). (2)作出函数f (x )的图像如图所示.由图可知,函数f (x )的单调递减区间为(-∞,0),(0,+∞),无单调递增区间.18.[2021·广州六中高一期中] 已知幂函数f (x )的图像过点(2,).(1)求出函数f (x )的解析式,判断并证明f (x )在[0,+∞)上的单调性;(2)若函数g (x )是R 上的偶函数,当x ≥0时,g (x )=f (x ),求满足g (1-m )≤的实数m 的取值范围. 解:(1)设f (x )=x α,将点(2,)的坐标代入,得=2α,解得α=, 所以f (x )=.幂函数f (x )==在[0,+∞)上单调递增.证明:任取x 1,x 2∈[0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=-==, 因为x 1-x 2<0,+>0,所以f (x 1)<f (x 2), 故幂函数f (x )=在[0,+∞)上单调递增.(2)当x ≥0时,g (x )=f (x ),而幂函数f (x )=在[0,+∞)上单调递增, 所以当x ≥0时,g (x )单调递增.因为函数g (x )是R 上的偶函数,所以g (x )在(-∞,0)上单调递减. 由g (5)=,g (1-m )≤可得|1-m|≤5,解得-4≤m ≤6,所以满足g (1-m )≤的实数m 的取值范围为[-4,6]. B 组-[素养提升]1.已知幂函数y =223m m x-- (m ∈Z )的图象与x 轴和y 轴没有交点,且关于y 轴对称,则m 等于( )A .1B .0,2C .-1,1,3D .0,1,2答案 C解析 ∵幂函数y =223m m x -- (m ∈Z )的图象与x 轴、y 轴没有交点,且关于y 轴对称, ∴m 2-2m -3≤0,且m 2-2m -3(m ∈Z )为偶数,由m 2-2m -3≤0,得-1≤m ≤3,又m ∈Z ,∴m =-1,0,1,2,3.当m =-1时,m 2-2m -3=1+2-3=0,为偶数,符合题意;当m =0时,m 2-2m -3=-3,为奇数,不符合题意;当m =1时,m 2-2m -3=1-2-3=-4,为偶数,符合题意;当m =2时,m 2-2m -3=4-4-3=-3,为奇数,不符合题意;当m =3时,m 2-2m -3=9-6-3=0,为偶数,符合题意.综上所述,m =-1,1,3.2.(2022春•凯里市校级期中)已知一次函数()f x 的图象过点(0,1)-和(2,1),()(1)m g x m x =-为幂函数.(Ⅰ)求函数()f x 与()g x 的解析式;(Ⅱ)当a R ∈时,解关于x 的不等式:()()af x g x <.【分析】(1)利用待定系数法求出解析式即可;(2)分0a <或4a >,0a =,4a =,04a <<四种情况讨论即可.【解答】解:()I 根据一次函数()f x 的图象过点(0,1)-和(2,1),设()f x kx b =+,则112b k b -=⎧⎨=+⎩,解得11k b =⎧⎨=-⎩,则()1f x x =- ()(1)m g x m x =-为幂函数,则2m =,故2()g x x =()()()II af x g x <即2(1)a x x -<,则△24(4)a a a a =-=-当0a <或4a >时,不等式的解集为24{|}a a a x x --或24{|}a a a x x +->, 当0a =时,不等式的解集为{|0}x x ≠;当4a =时,不等式的解集为{|2}x x ≠当04a <<时,不等式的解集为R .。
基本初等函数——幂函数1.幂函数(1)定义:形如a y x =(a ∈R )的函数称为幂函数,其中底数x 是自变量,a 为常数.常见的五类幂函数为y x =,2y x =,3y x =,12y=x ,1y x -=.(2)五种幂函数的图象(3)性质①幂函数在(0,+∞)上都有定义;②当0a >时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当0a <时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:()2f x ax bx c ++=(0a ≠). ②顶点式:()2()f x a x m n −+=(0a ≠). ③零点式:()12()()f x a x x x x −−=(0a ≠). (2)二次函数的图象和性质12y=x题型1 幂函数的图象与性质1.(2020春•沈河区校级月考)设1234a ⎛⎫= ⎪⎝⎭,1443b ⎛⎫= ⎪⎝⎭,3423c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小顺序是( ) A .c a b <<B .c b a <<C .a c b <<D .b c a <<【分析】先判断1b >,再化a 、c ,利用幂函数的性质判断a 、c 的大小. 【解答】解:1124391416a ⎛⎫⎛⎫==< ⎪ ⎪⎝⎭⎝⎭,14413b ⎛⎫=> ⎪⎝⎭, 3144281327c ⎛⎫⎛⎫==< ⎪ ⎪⎝⎭⎝⎭; 且89012716<<<,函数14y x =在(0,+∞)上是单调增函数,所以1144892716⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以a c <; 综上知,c a b <<. 故选:A .2.(2019秋•杨浦区校级期末)幂函数()()()2231,mm f x a x a m −−=−∈N 为偶函数,且在(0,+∞)上是减函数,则a m += .【分析】先利用幂函数的定义和单调性求出a 的值和m 的范围,再结合偶函数确定m 的值,即可求出结果.【解答】解:∵幂函数()()()2231,m m f x a x a m −−=−∈N ,在(0,+∞)上是减函数,∴11a −=,且2230m m −−<, ∴2a =,13m −<<, 又∵m ∈N ,∵0,1,2m =, 又∵幂函数()f x 为偶函数,∵1m =,∵3a m +=, 故答案为:3.3.已知幂函数223()(22)()nnf x n n x n −=+−∈Z 的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .3−B .1C .2D .1或2【分析】本题考查幂函数的性质,根据幂函数的性质即可求解. 【解析】∵幂函数223()(22)nnf x n n x −=+−在(0,+∞)上是减函数,∴22221,30,n n n n ⎧+−=⎨−<⎩∴1n =,又1n =时,()2f x x -=的图象关于y 轴对称,故1n =.故选B.★幂函数的性质与图象特征的关系(1)幂函数的形式是()a y x a ∈R =,其中只有一个参数a ,因此只需一个条件即可确定其解析式.(2 )判断幂函数()a y x a ∈R =的奇偶性时,a 是分数时,一般将其先化为根式,再判断. (3)若幂函数a y x =在(0,+∞)上单调递增,则0a >,若在(0,+∞)上单调递减,则0a <. 题型2 二次函数的解析式1 .(2019秋•道里区校级月考)已知二次函数()()230f x ax bx a =++≠图象过点()3,0A −,对称轴为1x =.(1)求()y f x =的解析式;(2)若函数()y g x =满足()()21g x f x +=,求函数()y g x =的解析式.【分析】(1)根据条件即可得出933012a b b a−+=⎧⎪⎨−=⎪⎩,从而可解出12,55a b =−=,这样即可得出()212355f x x x =−++;(2)可根据题意得出()21221355g x x x +=−++,从而可设21x t +=,解出12t x −=,带入()21221355g x x x +=−++即可得出()2131120104g t t t =−++,t 换上x 即可得出()y g x =的解析式.【解答】解:(1)根据题意得,933012a b b a−+=⎧⎪⎨−=⎪⎩,解得1515a b ⎧=−⎪⎪⎨⎪=⎪⎩,∴∴()212355f x x x =−++;(2)由题意得,()21221355g x x x +=−++,设21x t +=,则12t x −=,∴()()()22111311320520104g t t t t t =−−+−+=−++, ∴()2131120104g x x x =−++.2.(一题多解)已知二次函数()f x 满足()21f −=,()11f −-=,且()f x 的最大值是8,试确定此二次函数的解析式. 【解】 法一:(利用一般式)设()()20f x ax bx c a =++≠. 由题意得2421,1,48,4a b c a b c ac b a⎧⎪++=⎪⎪−+=−⎨⎪−⎪=⎪⎩解得447.a b c =−⎧⎪=⎨⎪=⎩所以所求二次函数的解析式为()2447f x x x −++=. 法二:(利用顶点式)设()2()()0f x a x m n a −+≠=. 因为()(2)1f f −=, 所以抛物线的对称轴为()21122x +−==. 所以1=2m .又根据题意函数有最大值8,所以8n =,所以21()82f x a x ⎛⎫=−+ ⎪⎝⎭.因为f ()(2)1f f −=,所以2128=12a ⎛⎫−+− ⎪⎝⎭,解得4a =−,所以221()=48=4472f x x x x ⎛⎫−−+−++ ⎪⎝⎭.法三:(利用零点式)由已知()10f x +=的两根为12x =,21x =−, 故可设()())1(12f x a x x +=−+, 即()221f x ax ax a =−−−. 又函数有最大值8,即()2421=84a a a a−−.解得4a =−或0a =(舍去),所以所求函数的解析式为()2447f x x x −++=.3.(2019秋•贺州期中)已知一个二次函数()f x ,()04f =,()20f =,()40f =.求这个函数的解析式.【分析】先设出函数的表达式,再将函数值代入得到方程组,求出即可. 【解答】解:设()2f x ax bx c =++,∴44201640c a b v a b c =⎧⎪++=⎨⎪++=⎩,解得:124a b c ⎧=⎪⎪=−⎨⎪=⎪⎩,∴∴()21342f x x x =−+. ★求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:题型3 二次函数的图象与性质1.已知0abc >,则二次函数()2f x ax bx c =++的图象可能是( )AB【解析】 A 项,因为0a <,02ba−<,所以0b <. 又因为0abc >,所以0c >,而()00f c =<,故A 错. B 项,因为0a <,02ba−>,所以0b >. 又因为0abc >,所以0c <,而()00f c =>,故B 错. C 项,因为0a >,02ba−<,所以0b >.又因为0abc >, 所以0c >,而()00f c =<,故C 错. D 项,因为0a >,02ba−>,所以0b <,因为0abc >,所以0c <,而()00f c =<,故选D.2 .(2019秋•庐江县期末)函数223y x x =−+在闭区间[]0,m 上有最大值3,最小值为2,m 的取值范围是( )A .(],2−∞B .[]0,2C .[]1,2D .[)1,+∞【分析】本题利用数形结合法解决,作出函数()f x 的图象,如图所示,当1x =时,y 最小,最小值是2,当2x =时,3y =,欲使函数223y x x =−+在闭区间[]0,m 上的上有最大值3,最小值2,则实数m 的取值范围要大于等于1而小于等于2即可. 【解答】解:作出函数()f x 的图象,如图所示, 当1x =时,y 最小,最小值是2,当2x =时,3y =,函数2()23f x x x =−+在闭区间[]0,m 上上有最大值3,最小值2, 则实数m 的取值范围是[]1,2. 故选:C .CD3.(2019秋•吉安期末)函数()()22213f x x a x =−−++在区间[]2,3上是增函数,则a 的取值范围是( )A .13,2⎛⎤−∞− ⎥⎝⎦B .13,2⎛⎤−∞ ⎥⎝⎦C .13,2⎡⎫−+∞⎪⎢⎣⎭D .13,2⎡⎫+∞⎪⎢⎣⎭【分析】函数2()2(21)3f x x a x =−−++的对称轴214a x +=−,从而2134a +−≥,由此能求出a 的取值范围.【解答】解:函数()()22213f x x a x =−−++在区间[]2,3上是增函数,函数()()22213f x x a x =−−++的对称轴214a x +=−, ∴2134a +−≥, 解得132a −≤.∴a 的取值范围是13,2⎛⎤−∞− ⎥⎝⎦.故选:A .4.(2019秋•宜昌期末)函数221y x x =−−在闭区间[]0,3上的最大值与最小值的和是( )A .1−B .0C .1D .2【分析】函数221y x x =−−是一条以1x =为对称轴,开口向上的抛物线,在闭区间[]0,3上y先减后增,所以当1x =时,函数取最小值;当3x =时,函数取最大值,代入计算即可 【解答】解:()222112y x x x =−−=−− ∴当1x =时,函数取最小值2−, 当3x =时,函数取最大值2 ∴最大值与最小值的和为0 故选:B .5.(2019秋•长春期末)已知函数()()22f x x x a x =++∈R .(1)若函数()f x 的值域为[)0,+∞,求实数a 的值;(2)若()0f x >对任意的[)1,x ∈+∞成立,求实数a 的取值范围. 【分析】(1)根据函数的值域可知0=△,解出a 即可;(2)利用分离参数法表示出22a x x >−−,求出22x x −−的取值范围即可. 【解答】解:(1)函数()()22f x x x a x =++∈R 的值域为[)0,+∞,∴22410a =−⨯⨯=△, ∴1a =.(2)∵()0f x >对任意的[)1,x ∈+∞成立, ∴220x x a ++>对任意的[)1,x ∈+∞成立, ∴22a x x >−−对任意的[)1,x ∈+∞成立, 又当[)1,x ∈+∞时,()22max21213x x −−=−−⨯=−,∴3a >−.即所求实数的取值范围是()3,−+∞.★1.识别二次函数图象应学会“三看”★2.二次函数的单调性问题(1)对于二次函数的单调性,关键是看图象的开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的图象的对称性转化到同一单调区间上比较.★3.二次函数的最值问题(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.(2)二次函数的单调性问题主要依据二次函数图象的对称轴进行分类讨论求解.★4.由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2 )两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:()a f x ≥恒成立()max a f x ⇔≥,()a f x ≤恒成立()min a f x ⇔≤.1.(2020春•本溪月考)已知幂函数()()()22421mm f x m x m −+=−∈R ,在()0,+∞上单调递增.设5log 4a =,15log 3b =,0.20.5c −=,则()f a ,()f b ,()f c 的大小关系是( )看函数选象上的一些特殊点,如函数选象与y 选的交点、与x 选的交点、函数选象的最高点或最低点等看选称选和最选。
幂函数
1.幂函数的定义:一般地,形如 的函数称为指数函数,其中α是常量,x 是变量。
思考1:下列函数不是幂函数是 .
①4y x = ②22y x = ③3
y x =- ④21
y x
=
⑤ 2.3x y = 注意:指数函数与幂函数的模型区别比较: 思考2:作出函数x y =,2x y =,3x y =,2
1x y =,3
1x y =,
32x y =,2
3x y =的图象.并观察图象,总结填写下表:
x y =
2x y =
3x y =
2
1x y =
3
1x y =
3
2x y =
2
3x y =
定义域 值域 奇偶性 单调性
思考3:作出函数1-=x y ,2
1-
=x y , 23
y x -=的图象. 观察图象,总结填写下表:
思考4:作出函数)0(==ααx y 的图象并考察它的性质。
)1(==αα
x y 呢? 2.画出幂函数)(Q x y ∈=αα
的的图象: 3.幂函数α
x y =的主要性质:
(1)幂函数α
x y =在第一象限内的特征:
若1>α,函数的图象都过定点 ,下凸递增,在区间 是 函数 若10<<α,函数的图象都过定点 ,上凸递增,在区间 是 函数 若0<α,函数的图象都过定点 ,下凸递减,在区间 是 函数 (2)幂函数α
x y =的图象必过第 象限,必不过第 象限,有可能过第 象限,具体看幂函数αx y =的奇偶性。
α
x y =是偶函数时,图象还在第 象限,是奇函数时,图象还在第 象限;也有可能既不是奇函数也不是偶函数,但不可能既是奇函数也是偶函数.
例1.已知幂函数24
25
()(1)m m f x m x
-+-=+,求它的定义域,指出其奇偶性,单调性,并作出
它的简图.
变题1:已知函数)(3
2
z m x y m m
∈=--的图象与x 轴、y 轴都没有交点且关于原点对称,求
m 的值。
变题2:已知幂函数)()(2
23z m x x f m m ∈=-+是偶函数,且在),0(+∞上是增函数,求)
(x f 的解析式.
例2.求函数03
22
12)2()(--++=-
x x x x x f 的定义域。
例3.比较下列各组数的大小: (1)4
36.3,3
25
.2-
,73)8.0(- (2)3
21.2,3
1)
4.2(-
-,3
2)4(- (3)23
2255
3.8,3.9,( 1.8)-
-
变题:若0.8 1.5a
a
>,则a 的取值范围为 若3
3
0.01a -->,则a 的取值范围为
零点
思考1.下列两个问题的结果是否相同:
(1)求一元二次方程0322=--x x 的根;
(2)求二次函数322
--=x x y 的图象与x 轴的交点的横坐标。
1.零点定义:一般地,我们把 称为函数)(x f y =的零点。
思考2.判断下列函数的零点的个数:
1)32-=x y ; 2)x y 5.0=; 3)202++-=x x y ;
4))13)(1(2+--=x x x y ; 5))23)(2(22+--=x x x y .
思考3.函数)(x f y =的零点与方程0)(=x f 及函数)(x f y =的图象有何关系? 思考4.函数)(x f y =的零点是点还是数? 思考5.已知1)(2-=x x f ,求函数)1(+x f 的零点.
2.零点的存在性定理:一般地,若函数)(x f y =在 ,且 ,则称函数)(x f y =在区间),(b a 上有零点。
思考7.试求出函数5)(2-=x x f 的正零点(精确到0.1)。
3.二分法:对于在区间],[b a 上不间断,且)()(b f a f ⋅ 0的函数)(x f y =,通过不断把零点所在的区间 ,使区间的两个端点 ,进而得到零点 的方法。
三、典例欣赏:
例1.求证:二次函数2
237y x x =--有两个不同的零点.
变题1:求证:函数1)(23++=x x x f 在区间)1,2(-上存在零点.
变题2:判断函数2
()21f x x x =--在区间(2,3)上是否存在零点.
变题3:求证:无论a 取什么实数,二次函数22-++=a ax x y 都有两个零点21,x x )(21x x <,
并求出12x x -最小时的二次函数的解析式。
例2.如图:这是一个二次函数)(x f y =的图象:(1)写出这个二次函数的零点;(2)写
出这个二次函数的解析式;(3)分别比较⋅-)4(f )1(-f ,⋅)0(f )2(f 与0的大小关系。
例3.证明方程x
x 23-6=在区间]2,1[内有惟一一个实数根,并求出这个实数根(精确到0.1)。
例4.当关于x 的方程0422
=+-ax x 的根满足下列条件时,求实数a 的取值范围: (1)一根在(0,1)上,另一根在(1,5)上;(2)至少有一个根在(0,1)上.
变题1:若关于x 的方程0122
=--x ax 在(0,1)内恰有一解,求a 的取值范围.
变题2:已知函数f (x )=mx 2
+(m-3)x+1的图象与x 轴有两个不同的交点。
(1)若两个交点中有且只有一个在原点的左侧,求实数m 的取值范围; (2)若两个交点中至少有一个在原点的右侧,求实数m 的取值范围.
例5.关于x 的方程x 2
+x=m+1在0<x ≤1内有解,求实数m 的范围.
43-x
y o 1。