新人教范文高考数学专题复习《充要条件》测试题
- 格式:docx
- 大小:159.16 KB
- 文档页数:2
高考数学难点2充要条件的判定习题与答案●歼灭难点训练一、选择题1.(★★★★)函数f(x)=x|x+a|+b是奇函数的充要条件是( )A.ab=0B.a+b=0C.a=bD.a2+b2=02.(★★★★)“a=1”是函数y=cos2ax-sin2ax的最小正周期为“π”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也不是必要条件二、填空题3.(★★★★)a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的_________.4.(★★★★)命题A:两曲线F(x,y)=0和G(x,y)=0相交于点P(x0,y0),命题B:曲线F(x,y)+λG(x,y)=0(λ为常数)过点P(x0,y0),则A是B的__________条件.三、解答题5.(★★★★★)设α,β是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n}、{b n}满足:,求证:数列{a n}成等差数列的充要条件是数列{b n}也是等差数列.7.(★★★★★)已知抛物线C:y=-x2+mx-1和点A(3,0),B(0,3),求抛物线C与线段AB有两个不同交点的充要条件.8.(★★★★★)p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有2个小于1的正根,试分析p是q的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4.设f(x)=x2+ax+b,则f(x)的图象是开口向上的抛物线.又|α|<2,|β|<2,∴f(±2)>0.即有(2)必要性:∴方程f(x)=0的两根α,β同在(-2,2)内或无实根.∵α,β是方程f(x)=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2.歼灭难点训练一、1.解析:若a2+b2=0,即a=b=0,此时f(-x)=(-x)|x+0|+0=-x·|x|=-(x|x+0|+b)=-(x|x+a|+b)=-f(x).∴a2+b2=0是f(x)为奇函数的充分条件,又若f(x)=x|x+a|+b是奇函数,即f(-x)=(-x)|(-x)+a|+b=-f(x),则必有a=b=0,即a2+b2=0.∴a2+b2=0是f(x)为奇函数的必要条件.答案:D2.解析:若a=1,则y=cos2x-sin2x=cos2x,此时y的最小正周期为π.故a=1是充分条件,反过来,由y=cos2ax-sin2ax=cos2ax.故函数y的最小正周期为π,则a=±1,故a=1不是必要条件.答案:A二、3.解析:当a=3时,直线l1:3x+2y+9=0;直线l2:3x+2y+4=0.∵l1与l2的A1∶A2=B1∶B2=1∶1,答案:充要条件4.解析:若P(x0,y0)是F(x,y)=0和G(x,y)=0的交点,则F(x0,y0)+λG(x0,y0)=0,即F(x,y)+λG(x,y)=0,过P(x0,y0);反之不成立.答案:充分不必要三、5.解:根据韦达定理得a=α+β,b=αβ.判定的条件是、(注意p中a、b满足的前提是Δ=a2-4b≥0)。
学校:___________姓名:___________班级:___________考号:___________1.若集合{A x x =≤3,}x ∈Z ,{243B x x x =-+≤0,}x ∈Z ,则( )A. “x A ∈”是“x B ∈”的充分条件但不是必要条件B. “x A ∈”是“x B ∈”的必要条件但不是充分条件C. “x A ∈”是“x B ∈”的充要条件D. “x A ∈”既不是“x B ∈”的充分条件,也不是“x B ∈”的必要条件2.若将集合P={1,2,3,4},Q={0<x<5,x ∈R},则下列论断正确的是( )A. x ∈P 是x ∈Q 的必要不充分条件B. x ∈P 是x ∈Q 的即不充分也不必要条件。
C. x ∈P 是x ∈Q 的充分必要条件D. x ∈P 是x ∈Q 的充分不必要条件3.下列命题中为真命题的是A .若21,0≥+≠xx x 则 B .直线b a ,为异面直线的充要条件是直线b a ,不相交C .“1=a ”是“直线0=-ay x 与直线0=+ay x 互相垂直”的充要条件D .若命题2:R,10p x x x ∃∈-->“”,则命题p 的否定为:“2R,10x x x ∀∈--≤”4.在下列结论中,正确的是( )①""q p ∧为真是""q p ∨为真的充分不必要条件;②""q p ∧为假是""q p ∨为真的充分不必要条件;③""q p ∨为真是""p ⌝为假的必要不充分条件;④""p ⌝为真是""q p ∧为假的必要不充分条件A. ①②B. ①③C. ②④D. ③④5.若集合{A x x =≤3,}x ∈Z ,{243B x x x =-+≤0,}x ∈Z ,则( )A. “x A ∈”是“x B ∈”的充分条件但不是必要条件B. “x A ∈”是“x B ∈”的必要条件但不是充分条件C. “x A ∈”是“x B ∈”的充要条件D. “x A ∈”既不是“x B ∈”的充分条件,也不是“x B ∈”的必要条件6.设命题2:>x p 是42>x 的充要条件;命题",:"22b a c b c a q >>则若,则( ) A. ""p q ∨为真 B. ""q p ∧为真 C.p 真q 假 D. q p 、均为假7.“1λ<”是“数列2*2()n a n n n N λ=-∈为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.对于实数,''0''a b b a <<、是''11''ab >的( ) A .充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件 9.在ABC ∆中,“60A =o ”是“1cos 2A =”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件10.关于x 、y 的二元一次方程组1,323,mx y mx my m +=-⎧⎨-=+⎩的系数行列式0D =是该方程组有解的( ) A .充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件11.条件p :1>x ,1>y ,条件q :2>+y x ,1>xy ,则条件p 是条件q 的 ( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件12.“11x<”是“1x >”的 A .充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件13.2m =-是直线(2)30m x my -++=与直线30x my --=垂直的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件14.“0x ≠”是“0x <”的 ( )A 充分非必要条件B 必要非充分条件C 充要条件D 既非充分又非必要条件.15.“a 〉0”是“”的A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件16.数列{}n a 满足111,n n a a r a r +==⋅+(*,n r ∈∈N R 且0r ≠),则“1r =”是“数列{}n a 成等差数列”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件17.x 2-2x-3<0成立的一个必要不充分条件是 ( )A .-1<x<3B .0<x<3C .-2<x<3D .-2<x<1 18.已知a ,b 是实数,则“⎩⎨⎧>>32b a ”是“5>+b a ”的19.“1-=x ”是“12=x ”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件20.“3πα=”是“21cos =α”的( ) A .充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件21.“2x >”是“24x >”的( ).A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件 22.已知向量(1,2),(2,1)a x b =-=r r,则a b ⊥r r 的充要条件是() A .12x =- B .1x =- C .5x = D .x =023.“非空集合M 不是P 的子集”的充要条件是( )A .,x M x P ∀∈∉B .,x P x M ∀∈∈C .11,x M x P ∃∈∈,又22,x M x P ∃∈∉D .00,x M x P ∃∈∉ 24.已知a R ∈,则“2a >”是“112a <”的( )A .充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件25.已知f (x )=x 2–2x +3,g (x )=kx –1,则“| k |≤2”是“f (x )≥g (x )在R 上恒成立”的 ( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件26.下面四个条件中,使a b >成立的充分不必要条件为( )A .1a b >+B .1a b >-C .22ab > D .33a b > 27.一元二次方程2210(0),ax x a ++=≠有一个正根和一个负根的充分不必要条件是( )A .0a <B .0a >C .1a <-D .1a > 28.已知条件1:≤x p ,条件11:<x q ,则p 是q ⌝成立的 A .充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件 29.“0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件30.集合A={x||x|≤4,x ∈R},B={x|(x+5)(x-a )≤0},则“A ⊆B”是“a>4”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 31.“22a b >”是22log log a b >”的32.“2230x x -->成立”是“3x >成立”的A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件33.“cos x =0”是 “sin x =1”的(▲ )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件35.“1k =”是“直线0x y k -+=与圆221x y += 相交”的A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件36.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,则“2cos a b C =”是“ABC ∆是等腰三角形”的A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件37.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件38.设等比数列{}n a 的公比为q ,前n 项和为n S .则“||q =是“627S S =”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件39.“a ,b >0”是“ab ≤222b a +”的 ( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件40.在ABC ∆中,0AB AC ⋅>u u u r u u u r是ABC ∆为锐角三角形的A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件41.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( )A .充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件试卷答案1.B略2.D略3.D4.B5.B略6.A7.A略8.A9.C略10.D 略11.A 略12.B 略13.C 略14.B15.A 略16.A 略17.C 略18.A 略19.A 略20.A 略21.A 略22.D23.D24.A 略25.A 略26.A 略27.C 略28.B 由11x <得,0x <或1x >,所以q ⌝:01x ≤≤,所以p 是q ⌝成立的必要不充分条件,选B.29.C30.B31.B若22a b >,则有a b >。
第6课时 充要条件一.课题:充要条件二.教学目标:掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.三.教学重点:充要条件关系的判定.四.教学过程:(一)主要知识:1.充要条件的概念及关系的判定; 2.充要条件关系的证明.(二)主要方法:1.判断充要关系的关键是分清条件和结论;2.判断p q ⇒是否正确的本质是判断命题“若p ,则q ”的真假;3.判断充要条件关系的三种方法:①定义法;②利用原命题和逆否命题的等价性;③用数形结合法(或图解法).4.说明不充分或不必要时,常构造反例.(三)例题分析:例1.指出下列各组命题中,p 是q 的什么条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选一种作答)(1)在ABC ∆中,:p A B >,:sin sin q A B >(2)对于实数,x y ,:8p x y +≠,:2q x ≠或6y ≠(3)在ABC ∆中,:sin sin p A B >,:tan tan q A B >(4)已知,x y R ∈,22:(1)(2)0p x y -+-=,:(1)(2)0q x y --=解:(1)在ABC ∆中,有正弦定理知道:sin sin a b A B= ∴sin sin A B a b >⇔> 又由a b A B >⇔>所以,sin sin A B A B >⇔> 即p 是q 的的充要条件.(2)因为命题“若2x =且6y =,则8x y +=”是真命题,故p q ⇒,命题“若8x y +=,则2x =且6y =”是假命题,故q 不能推出p ,所以p 是q 的充分不必要条件.(3)取120,30A B ==,p 不能推导出q ;取30,120A B ==,q 不能推导出p所以,p 是q 的既不充分也不必要条件.(4)因为{(1,2)}P =,{(,)|1Q x y x ==或2}y =,P Q ≠⊂, 所以,p 是q 的充分非必要条件.例2.设,x y R ∈,则222x y +<是||||x y +≤ )、是||||2x y +<的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解:由图形可以知道选择B ,D .(图略)例3.若命题甲是命题乙的充分非必要条件,命题丙是命题乙的必要非充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解:因为甲是乙的充分非必要条件,故甲能推出乙,乙不能推出甲,因为丙是乙的必要非充分条件,故乙能推出丙,丙不能推出乙,因为丁是丙的充要条件,故丁能推出丙,丙也能推出丁,由此可知,甲能推出丁,丁不能推出甲即丁是甲的必要不充分条件,选B .例4.设,x y R ∈,求证:||||||x y x y +=+成立的充要条件是0xy ≥.证明:充分性:如果0xy =,那么,①0,0x y =≠②0,0x y ≠= ③0,0x y ==于是||||||x y x y +=+如果0xy >即0,0x y >>或0,0x y <<,当0,0x y >>时,||||||x y x y x y +=+=+,当0,0x y <<时,||()()||||x y x y x y x y +=--=-+-=+,总之,当0xy ≥时,||||||x y x y +=+.必要性:由||||||x y x y +=+及,x y R ∈得22()(||||)x y x y +=+即222222||x xy y x xy y ++=++得||xy xy =所以0xy ≥故必要性成立,综上,原命题成立.例5.已知数列{}n a 的通项1113423n a n n n =++++++,为了使不等式22(1)11log (1)log 20n t t a t t ->--对任意*n N ∈恒成立的充要条件.解:∵11111111()()02425324262526n n a a n n n n n n n +-=+-=-+->+++++++, 则1221n n n a a a a a -->>>>>,欲使得题设中的不等式对任意*n N ∈恒成立,只须{}n a 的最小项221(1)11log (1)log 20t t a t t ->--即可,又因为11194520a =+=, 即只须11t -≠且22911log (1)log (1)02020t t t t ----<,解得1log (1)(1)t t t t -<-<>,即101(2)t t t t<<-<≠,解得实数t 应满足的关系为12t +>且2t ≠. 例6.(1)是否存在实数m ,使得20x m +<是2230x x -->的充分条件?(2)是否存在实数m ,使得20x m +<是2230x x -->的必要条件?解:欲使得20x m +<是2230x x -->的充分条件,则只要{|}{|12m x x x x <-⊆<-或3}x >,则只要12m -≤-即2m ≥, 故存在实数2m ≥时,使20x m +<是2230x x -->的充分条件.(2)欲使20x m +<是2230x x -->的必要条件,则只要{|}{|12m x x x x <-⊇<-或3}x >,则这是不可能的,故不存在实数m 时,使20x m +<是2230x x -->的必要条件.(四)巩固练习:1.若非空集合M N ≠⊂,则“a M ∈或a N ∈”是“a M N ∈”的 条件. 2.05x <<是|2|3x -<的 条件.3.直线,a b 和平面,αβ,//a b 的一个充分条件是( )A.//,//a b ααB.//,//,//a b αβαβC. ,,//a b αβαβ⊥⊥D. ,,a b αβαβ⊥⊥⊥。
高中数学高考总复习充分必要条件习题及详解一、选择题1.(文)已知a、b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案] D[解析]a2>b2不能推出a>b,例:(-2)2>12,但-2<1;a>b不能推出a2>b2,例:1>-2,但12<(-2)2,故a2>b2是a>b的既不充分也不必要条件.(理)“|x-1|<2成立”是“x(x-3)<0成立”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[答案] B[解析]由|x-1|<2得-2<x-1<2,∴-1<x<3;由x(x-3)<0得0<x<3.因此“|x-1|<2成立”是“x(x-3)<0成立”的必要不充分条件.2.(2010·福建文)若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件[答案] A[解析]当x=4时,|a|=42+32=5当|a|=x2+9=5时,解得x=±4.所以“x=4”是“|a|=5”的充分而不必要条件.3.(文)已知数列{a n},“对任意的n∈N*,点P n(n,a n)都在直线y=3x+2上”是“{a n}为等差数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析]点P n(n,a n)在直线y=3x+2上,即有a n=3n+2,则能推出{a n}是等差数列;但反过来,{a n}是等差数列,a n=3n+2未必成立,所以是充分不必要条件,故选A.(理)(2010·南充市)等比数列{a n }中,“a 1<a 3”是“a 5<a 7”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分与不必要条件[答案] C[解析] 在等比数列中,q ≠0,∴q 4>0,∴a 1<a 3⇔a 1q 4<a 3q 4⇔a 5<a 7.4.(09·陕西)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 由m >n >0可以得方程mx 2+ny 2=1表示焦点在y 轴上的椭圆,反之亦成立.故选C.5.(文)设集合A ={x |x x -1<0},B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析] ∵A ={x |0<x <1},∴A B ,故“m ∈A ”是“m ∈B ”的充分不必要条件,选A. (理)(2010·杭州学军中学)已知m ,n ∈R ,则“m ≠0或n ≠0”是“mn ≠0”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ∵mn ≠0⇔m ≠0且n ≠0,故选A.6.(文)(2010·北京东城区)“x =π4”是“函数y =sin2x 取得最大值”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] x =π4时,y =sin2x 取最大值,但y =sin2x 取最大值时,2x =2k π+π2,k ∈Z ,不一定有x =π4. (理)“θ=2π3”是“tan θ=2cos ⎝⎛⎭⎫π2+θ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 解法1:∵θ=2π3为方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3是tan θ=2cos ⎝⎛⎭⎫π2+θ成立的充分条件; 又∵θ=8π3也是方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3不是tan θ=2cos ⎝⎛⎭⎫π2+θ的必要条件,故选A. 解法2:∵tan θ=2cos ⎝⎛⎭⎫π2+θ,∴sin θ=0或cos θ=-12, ∴方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解集为A =⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π或θ=2k π±23π,k ∈Z , 显然⎩⎨⎧⎭⎬⎫2π3A ,故选A. 7.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 [答案] B[解析] 两直线垂直的充要条件是(m +2)(m -2)+3m (m +2)=0即m =12或m =-2,∴m =12是两直线相互垂直的充分而不必要条件. 8.(2010·浙江宁波统考)设m ,n 是平面α内的两条不同直线,l 1,l 2是平面β内两条相交直线,则α⊥β的一个充分不必要条件是( )A .l 1⊥m ,l 1⊥nB .m ⊥l 1,m ⊥l 2C .m ⊥l 1,n ⊥l 2D .m ∥n ,l 1⊥n[答案] B[解析] 当m ⊥l 1,m ⊥l 2时,∵l 1与l 2是β内两条相交直线,∴m ⊥β,∵m ⊂α,∴α⊥β,但α⊥β时,未必有m ⊥l 1,m ⊥l 2.9.(2010·黑龙江哈三中)命题甲:⎝⎛⎭⎫12x,21-x,2x 2成等比数列;命题乙:lg x ,lg(x +1),lg(x+3)成等差数列,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] B[解析] 由条件知甲:(21-x )2=⎝⎛⎭⎫12x ·2x 2, ∴2(1-x )=-x +x 2,解得x =1或-2;命题乙:2lg(x +1)=lg x +lg(x +3), ∴⎩⎪⎨⎪⎧ (x +1)2=x (x +3)x +1>0x >0x +3>0,∴x =1,∴甲是乙的必要不充分条件.10.(2010·辽宁文,4)已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)[答案] C[解析] ∵f ′(x )=2ax +b ,又2ax 0+b =0,∴有f ′(x 0)=0故f (x )在点x 0处切线斜率为0∵a >0 f (x )=ax 2+bx +c∴f (x 0)为f (x )的图象顶点的函数值∴f (x )≥f (x 0)恒成立故C 选项为假命题,选C.[点评] 可以用作差法比较.二、填空题11.给出以下四个命题:①若p ∨q 为真命题,则p ∧q 为真命题.②命题“若A ∩B =A ,则A ∪B =B ”的逆命题.③设a 、b 、c 分别是△ABC 三个内角A 、B 、C 所对的边,若a =1,b =3,则A =30°是B =60°的必要不充分条件.④命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题,其中真命题的序号是________.[答案] ②③④[解析] ①∵p ∨q 为真,∴p 真或q 真,故p ∧q 不一定为真命题,故①假.②逆命题:若A ∪B =B ,则A ∩B =A ,∵A ∪B =B ,A ⊆B ,∴A ∩B =A ,故②真.③由条件得,b a =sin B sin A =3,当B =60°时,有sin A =12,注意b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°,或B =120°.故③真; ④否命题:若f (x )不是奇函数,则f (-x )不是奇函数,这是一个真命题,假若f (-x )为奇函数,则f [-(-x )]=-f (-x ),即f (-x )=-f (x ),∴f (x )为奇函数,与条件矛盾.12.(文)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域.有下列命题: ①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集;其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ①④[解析] 结合题设的定义,逐一判断,可知①④正确.(理)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域.有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ③④[解析] ①整数a =2,b =4,a b不是整数; ②如将有理数集Q ,添上元素2,得到数集M ,则取a =3,b =2,a +b ∉M ;③由数域P 的定义知,若a ∈P ,b ∈P (P 中至少含有两个元素),则有a +b ∈P ,从而a +2b ,a +3b ,…,a +nb ∈P ,∴P 中必含有无穷多个元素,∴③对.④设x 是一个非完全平方正整数(x >1),a ,b ∈Q ,则由数域定义知,F ={a +b x |a 、b ∈Q }必是数域,这样的数域F 有无穷多个.13.(2010·辽宁葫芦岛四校联考)设有两个命题:p :不等式⎝⎛⎭⎫13x +4>m >2x -x 2对一切实数x 恒成立;q :f (x )=-(7-2m )x 是R 上的减函数,如果p 且q 为真命题,则实数m 的取值范围是________.[答案] (1,3)[解析] ∵⎝⎛⎭⎫13x =4>4,2x -x 2=-(x -1)2+1≤1,∴要使⎝⎛⎭⎫13x +4>m >2x -x 2对一切x ∈R 都成立,应有1<m ≤4;由f (x )=-(7-2m )x 在R上是单调减函数得,7-2m >1,∴m <3,∵p 且q 为真命题,∴p 真且q 真,∴1<m <3.14.(2010·福建理)已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2-x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k +1).其中所有正确结论的序号是________.[答案] ①②④[解析] 对于①,f (2)=0,又f (2)=2f (1)=0,∴f (1)=0,同理f (4)=2f (2)=0,f (8)=0……f (1)=2f (12)=0, ∴f (12)=0,f (14)=0…… 归纳可得,正确.对于②④当1<x ≤2时,f (2x )=4-2x ,而2<2x ≤4,∴当2<x ≤4时,f (x )=4-x同理,当4<x ≤8时,f (x )=8-x ……∴当2m -1<x ≤2m 时,f (x )=2m -x ,故②正确,④也正确. 而③中,若f (2n +1)=9,∵2n <2n +1≤2n +1∴f (x )=2n +1-x , ∴f (2n +1)=2n +1-2n -1=9, ∴2n =10,∴n ∉Z ,故错误.三、解答题15.已知c >0.设命题P :函数y =log c x 为减函数.命题Q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c恒成立.如果P 或Q 为真命题,P 且Q 为假命题,求c 的取值范围.[解析] 由y =log c x 为减函数得0<c <1当x ∈⎣⎡⎦⎤12,2时,因为f ′(x )=1-1x 2, 故函数f (x )在⎣⎡⎦⎤12,1上为减函数,在(1,2]上为增函数.∴f (x )=x +1x在x ∈⎣⎡⎦⎤12,2上的最小值为f (1)=2 当x ∈⎣⎡⎦⎤12,2时,由函数f (x )=x +1x >1c 恒成立.得2>1c ,解得c >12如果P 真,且Q 假,则0<c ≤12如果P 假,且Q 真,则c ≥1所以c 的取值范围为(0,12]∪[1,+∞). 16.给出下列命题:(1)p :x -2=0,q :(x -2)(x -3)=0.(2)p :m <-2;q :方程x 2-x -m =0无实根.(3)已知四边形M ,p :M 是矩形;q :M 的对角线相等.试分别指出p 是q 的什么条件.[解析] (1)∵x -2=0⇒(x -2)(x -3)=0;而(x -2)(x -3)=0⇒/ x -2=0.∴p 是q 的充分不必要条件.(2)∵m <-2⇒方程x 2-x -m =0无实根;方程x 2-x -m =0无实根⇒/ m <-2.∴p 是q 的充分不必要条件.(3)∵矩形的对角线相等,∴p ⇒q ;而对角线相等的四边形不一定是矩形.∴q ⇒/ p .∴p 是q 的充分不必要条件.17.(文)已知数列{a n }的前n 项和S n =p n +q (p ≠0,且q ≠1),求数列{a n }成等比数列的充要条件.[解析] 当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=(p -1)p n -1, 由于p ≠0,q ≠1,∴当n ≥2时,{a n }为公比为p 的等比数列.要使{a n }是等比数列(当n ∈N *时),则a 2a 1=p . 又a 2=(p -1)p ,∴(p -1)p p +q=p ,∴p 2-p =p 2+pq ,∴q =-1,即{a n }是等比数列的必要条件是p ≠0,且p ≠1,且q =-1.再证充分性:当p ≠0,且p ≠1,且q =-1时,S n =p n -1.当n =1时,S 1=a 1=p -1≠0;当n ≥2时,a n =S n -S n -1=(p -1)p n -1. 显然当n =1时也满足上式,∴a n =(p -1)p n -1,n ∈N *, ∴a n a n -1=p (n ≥2),∴{a n }是等比数列. 综上可知,数列{a n }成等比数列的充要条件是p ≠0,p ≠1,且q =-1.(理)(2010·哈三中模拟)已知函数f (x )=12(x -1)2+ln x -ax +a . (1)若x =2为函数极值点,求a 的值;(2)若x ∈(1,3)时,f (x )>0恒成立,求a 的取值范围.[解析] (1)f ′(x )=(x -1)+1x -a ,由f ′(2)=0得,a =32; (2)当a ≤1时,∵x ∈(1,3),∴f ′(x )=⎝⎛⎭⎫x +1x -(1+a )≥2-2=0成立,所以函数y =f (x )在(1,3)上为增函数,对任意的x ∈(1,3),f (x )>f (1)=0,所以a ≤1时命题成立;当a >1时,令f ′(x )=(x -1)+1x -a =0得,x =(a +1)±(a +1)2-42,则函数在(0,(a +1)-(a +1)2-42)上为增函数, 在((a +1)-(a +1)2-42,(a +1)+(a +1)2-42)上为减函数,在((a +1)+(a +1)2-42,+∞)上为增函数,当a ≤73时,1≤(a +1)+(a +1)2-42≤3,则f (1)>f ((a +1)+(a +1)2-42),不合题意,舍去.当a >73时,函数在(1,3)上是减函数,f (x )<f (3)<0,不合题意,舍去. 综上,a ≤1.。
可编辑修改精选全文完整版1.已知x∈R,命题“若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是()A.0B.1C.2 D.3解析:选C.命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题.综上,以上3个命题中真命题的个数是2.故选C.2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定解析:选B.命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.3.(2018·陕西质量检测(一))设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但是a<b即a -b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,选A.4.在△ABC中,角A,B,C的对边分别为a,b,c,则“sin A>sin B”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.设△ABC外接圆的半径为R,若sin A>sin B,则2R sin A>2R sin B,即a>b;若a>b,则a2R>b2R,即sin A>sin B,所以在△ABC中,“sin A>sin B”是“a>b”的充要条件,故选C.5.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C .①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1”. 因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题;④原命题为真,逆否命题也为真.6.(2018·石家庄模拟)“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A .由log 2(2x -3)<1⇒0<2x -3<2⇒32<x <52,4x >8⇒2x >3⇒x >32,所以“log 2(2x -3)<1”是“4x >8”的充分不必要条件,故选A .7.已知直线l ,m ,其中只有m 在平面α内,则“l ∥α”是“l ∥m ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B .当l ∥α时,直线l 与平面α内的直线m 平行、异面都有可能,所以l ∥m 不一定成立;当l ∥m 时,根据直线与平面平行的判定定理知直线l ∥α,即“l ∥α”是“l ∥m ”的必要不充分条件,故选B .8.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B .要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.9.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C .因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d ,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,故选C .10.(2018·惠州第三次调研)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C .设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C .11.(2018·贵阳检测)设向量a =(1,x -1),b =(x +1,3),则“x =2”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .依题意,注意到a ∥b 的充要条件是1×3=(x -1)(x +1),即x =±2.因此,由x =2可得a ∥b ,“x =2”是“a ∥b ”的充分条件;由a ∥b 不能得到x =2,“x =2”不是“a ∥b ”的必要条件,故“x =2”是“a ∥b ”的充分不必要条件,选A .12.(2018·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A .命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有⎩⎪⎨⎪⎧a =01>0或⎩⎪⎨⎪⎧a >0a 2-4a <0,则0≤a <4,所以命题p 成立是命题q 成立的充分不必要条件,故选A . 13.下列命题中为真命题的是________. ①命题“若x >1,则x 2>1”的否命题; ②命题“若x >y ,则x >|y |”的逆命题; ③命题“若x =1,则x 2+x -2=0”的否命题; ④命题“若x 2>1,则x >1”的逆否命题.解析:对于①,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故①为假命题;对于②,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知②为真命题;对于③,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故③为假命题;对于④,命题“若x 2>1,则x >1”的逆否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故④为假命题.答案:②14.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________.解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.答案:115.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0,故-3≤a ≤0. 答案:[-3,0]16.(2018·长沙模拟)给出下列命题:①已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的充分不必要条件; ②“x <0”是“ln(x +1)<0”的必要不充分条件;③“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的充要条件;④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”.其中正确命题的序号是________.(把所有正确命题的序号都写上)解析:①因为“a =3”可以推出“A ⊆B ”,但“A ⊆B ”不能推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件,故①正确;②“x <0”不能推出“ln(x +1)<0”,但“ln(x +1)<0”可以推出“x <0”,所以“x <0”是“ln(x +1)<0”的必要不充分条件,故②正确;③f (x )=cos 2ax -sin 2ax =cos 2ax ,若其最小正周期为π,则2π2|a |=π⇒a =±1,因此“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件,故③错误;④“平面向量a 与b 的夹角是钝角”可以推出“a·b <0”,但由“a·b <0”,得“平面向量a 与b 的夹角是钝角或平角”,所以“a·b <0”是“平面向量a 与b 的夹角是钝角”的必要不充分条件,故④错误.正确命题的序号是①②.答案:①②1.(2017·高考天津卷)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .因为⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6, sin θ<12⇔θ∈⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,⎝⎛⎭⎫0,π6⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,所以“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 2.下列选项中,p 是q 的必要不充分条件的是( ) A .p :x =1,q :x 2=x B .p :|a |>|b |,q :a 2>b 2 C .p :x >a 2+b 2,q :x >2ab D .p :a +c >b +d ,q :a >b 且c >d解析:选D.A 中,x =1⇒x 2=x ,x 2=x ⇒x =0或x =1⇒/ x =1,故p 是q 的充分不必要条件;B 中,因为|a |>|b |,根据不等式的性质可得a 2>b 2,反之也成立,故p 是q 的充要条件;C 中,因为a 2+b 2≥2ab ,由x >a 2+b 2,得x >2ab ,反之不成立,故p 是q 的充分不必要条件;D 中,取a =-1,b =1,c =0,d =-3,满足a +c >b +d ,但是a <b ,c >d ,反之,由同向不等式可加性得a >b ,c >d ⇒a +c >b +d ,故p 是q 的必要不充分条件.综上所述,故选D.3.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]解析:选B .由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B .4.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.解析:因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.答案:m >25.已知集合A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716,因为x ∈⎣⎡⎦⎤34,2,所以716≤y ≤2, 所以A =⎩⎨⎧⎭⎬⎫y |716≤y ≤2.由x +m 2≥1,得x ≥1-m 2, 所以B ={x |x ≥1-m 2}.因为“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 6.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:因为mx 2-4x +4=0是一元二次方程,所以m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎡⎦⎤-54,1. 因为两方程的根都是整数, 故其根的和与积也为整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m 2-4m -5∈Z .所以m 为4的约数. 又因为m ∈⎣⎡⎦⎤-54,1, 所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根为非整数; 而当m =1时,两方程的根均为整数, 所以两方程的根均为整数的充要条件是m =1.。
充要条件的测试题及答案1. 判断下列命题是否为充要条件,并说明理由。
(1) 若a > 0,则a² > 0。
(2) 若a² > 0,则a > 0。
2. 已知命题p:"若x > 2,则x² > 4",命题q:"若x² > 4,则x > 2",判断p和q是否互为充要条件。
3. 判断以下命题是否为充要条件。
(1) 若x² - 4x + 4 = 0,则x = 2。
(2) 若x = 2,则x² - 4x + 4 = 0。
4. 判断以下命题是否为充要条件。
(1) 若x² + y² = 0,则x = 0且y = 0。
(2) 若x = 0且y = 0,则x² + y² = 0。
5. 已知命题p:"若x > 0,则x² > 0",命题q:"若x² > 0,则x > 0",判断p和q是否互为充要条件。
6. 判断以下命题是否为充要条件。
(1) 若x² - 2x + 1 = 0,则x = 1。
(2) 若x = 1,则x² - 2x + 1 = 0。
7. 已知命题p:"若x > 1,则x² > 1",命题q:"若x² > 1,则x > 1",判断p和q是否互为充要条件。
8. 判断以下命题是否为充要条件。
(1) 若x³ = 8,则x = 2。
(2) 若x = 2,则x³ = 8。
9. 判断以下命题是否为充要条件。
(1) 若x² - 6x + 9 = 0,则x = 3。
(2) 若x = 3,则x² - 6x + 9 = 0。
专题1.2 全称量词与存在量词、充要条件1.(全国高考真题(理))设命题2:,2nP n N n ∃∈>,则P ⌝为( ) A .2,2nn N n ∀∈> B .2,2nn N n ∃∈≤ C .2,2nn N n ∀∈≤ D .2,2n n N n ∃∈=【答案】C 【解析】特称命题的否定为全称命题,所以命题的否命题应该为2,2nn N n ∀∈≤,即本题的正确选项为C.2.(2021·四川高三三模(理))命题p “(0,)x ∀∈+∞,sin x x >”的否定p ⌝为( ) A .0(0,)x ∃∈+∞,00sin x x > B .0(0,)x ∃∈+∞,00sin x x ≤ C .00],(x ∃∈-∞,00sin x x > D .00],(x ∃∈-∞,00sin x x ≥【答案】B 【解析】由含有一个量词的命题的否定的定义判断. 【详解】因为命题p “(0,)x ∀∈+∞,sin x x >”是全称量词命题,所以其否定是存在量词命题,即0:(0,)p x ⌝∃∈+∞,00sin x x ≤. 故选:B3.(2021·上海高三二模)设α:x >1且y >2,β:x +y >3,则α是β成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】A 【解析】利用充分条件和必要条件的定义进行判断即可. 【详解】练基础解:若“1x >且2y >”则“3x y +>”成立,当5x =,1y =时,满足3x y +>,但1x >且2y >不成立, 故1x >且2y >”是“3x y +>”的充分非必要条件. 故选:A .4.(2021·江西高三三模(理))设x ∈R ,则"22x -<<"是"12x <<"的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】用集合法判断即可. 【详解】因为集合{|12}x x <<是集合{|22}x x -<<的真子集, 所以“22x -<<”是“12x <<”的必要不充分条件. 故选:B.5.(2021·浙江绍兴市·高三三模)已知z 是复数,i 是虚数单位,则“z i =-”是“21z =-”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】根据复数的运算及充分必要条件的判断即可求得结果. 【详解】∵z i =-,∴()221z i =-=-; ∵21z =-,∴z i =±.故“z i =-”是“21z =-”的充分而非必要条件. 故选:A.6.(2021·四川高三二模(文))若l ,m 是平面α外的两条不同直线,且//m α,则“//l m ”是“//l α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】根据线线、线面的平行关系,结合条件间的推出关系,判断“//l m ”、“//l α”之间的充分、必要关系. 【详解】∵l ,m 是平面α外的两条不同的直线,//m α,∴若//l m ,则推出“//l α”;若//l α,则//l m 或l 与m 相交;∴若l ,m 是平面α外的两条不同直线,且//m α,则“//l m ”是“//l α”的充分不必要条件. 故选:A.7.(2021·北京高三二模)“0a ≤是”“函数ln ,0()2,0xx x f x a x >⎧=⎨-+≤⎩有且只有一个零点”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】根据函数零点的性质,结合充分条件和必要条件的定义进行判断即可. 【详解】当0x >时,令()0f x =,则ln 0x =,1x ∴=, 当0x >时,()f x 有一个零点为1, 函数()f x 只有一个零点,∴当0x ≤时,()2x f x a =-+无零点,即2x a >或2x a <, ∴当0x ≤时,(]20,1x ∈,1a ∴>或0a ≤,0a ∴≤是函数()f x 只有一个零点的充分不必要条件,故选:A.8.(2021·四川泸州市·高三三模(理))“5m =”是“双曲线C :2214x y m m+=-的虚轴长为2”的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】根据双曲线C :2214x y m m+=-的虚轴长为2求出对应的m 值即可判断.【详解】若双曲线C :2214x y m m+=-的虚轴长为2,则当0m >且40m -<时,即4m >时,2=,解得5m =,当0m <且40m ->时,即0m <时,2=,解得1m =-,所以“双曲线C :2214x y m m +=-的虚轴长为2”对应的m 值为5m =或1m =-,故“5m =”是“双曲线C :2214x y m m+=-的虚轴长为2”的充分但不必要条件.故选:A.9.(2021·上海高三二模)已知函数()2sin(2)f x x ϕ=+,则“2ϕπ=”是“()f x 为偶函数”的( )条件 A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件【答案】A 【解析】 当2ϕπ=时,()2cos2f x x =,根据奇偶性的定义判断为偶函数,反之当()f x 为偶函数时,2k πϕπ=+,k Z ∈,从而可得结果.【详解】 当2ϕπ=时,()2sin 22cos 22f x x x π⎛⎫=+= ⎪⎝⎭,∵()()()2cos 22cos2f x x x f x -=-==,∴()f x 为偶函数. 当()f x 为偶函数时,2k πϕπ=+,k Z ∈,综上所述2ϕπ=是()f x 为偶函数的充分不必要条件, 故选:A.10.(2021·四川高三三模(理))已知数列{}n a 为等比数列,“650a a >>”是“数列{}n a 为递增数列”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】B 【解析】根据等比数列的通项公式、数列的单调性,结合充分必要条件的定义分析可得答案. 【详解】当650a a >>,则651a q a =>,且5140aa q=>,则数列{}n a 为递增数列; 反之,当数列{}n a 为递增数列时,也有可能出现650a a >>,故为充分不必要条件. 故选:B1.(2021·陕西汉中市·高三二模(文))直线:0l x y a -+=,圆C :222x y +=,则“2a =”是“l 与圆C 相切”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】B 【解析】根据充分条件和必要条件的判断方法,分别判断充分性和必要性,即可的到答案. 【详解】圆C 的方程222x y +=,其圆心坐标为()0,0,半径为r =当2a =时,直线20l x y -+=:,圆心到直线的距离d r ===,此时,直线l 与圆C 相切,故充分性成立;当直线l 与圆C 相切时,圆心到直线的距离d ==所以2a =±,故必要性不成立,所以,“2a =”是“直线l 与圆C 相切”的充分不必要条件. 故选:B .练提升2.(2021·江西高三其他模拟(文))“1n >”是“方程221x ny +=表示焦点在x 轴上的圆锥曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】先求出方程221x ny +=表示焦点在x 轴 上的圆锥曲线对应的n 的范围,再结合两者的关系可得两者之间的条件关系. 【详解】当0n <时,方程221x ny +=表示焦点在x 轴上的双曲线;当0n >时,221x ny +=可化为2211y x n+=, 因为椭圆的焦点在x 轴上,所以11n>即1n >, 故方程221x ny +=表示焦点在x 轴上的圆锥曲线时,0n <或1n >,故“1n >”是“方程221x ny +=表示焦点在x 轴上的圆锥曲线”的充分不必要条件,故选:A.3.(2021·湖南高三三模)设a ,b ,m 为实数,给出下列三个条件:①33a b >:②22am bm >;③11a b<,其中使a b >成立的充分不必要条件是( ) A .① B .②C .③D .①②③【答案】B 【解析】利用充分条件和必要条件的定义逐个分析判断即可 【详解】解:对于①,当33a b >时,a b >成立,而当a b >时,33a b >成立,所以33a b >是a b >的充要条件,所以①不合题意;对于②,当22am bm >时,由不等式的性质可知a b >成立,而当a b >,0m =时,22am bm >不成立,所以22am bm >是a b >的充分不必要条件,所以②符合题意;对于③,当1,1a b =-=时,11a b <成立,而a b >不成立,当1,1a b ==-时,a b >成立,而11a b<不成立,所以11a b<是a b >的既不充分也不必要条件,所以③不合题意, 故选:B4.(2021·浙江高三月考)在ABC 中,“ABC 为钝角三角形”是“cos cos A B +>的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】考虑两个条件之间的推出关系后可判断两者之间的条件关系. 【详解】取2,63A C B ππ===,则121cos cos 22A B -+=<<故“ABC 为钝角三角形”推不出“cos cos A B +>若cos cos A B +>若A 为钝角或直角,则cos cos B A >≥A 为锐角,同理B 为锐角. 若2A B π+≥,则022B A ππ<-≤<,故cos cos sin 2A B B π⎛⎫≤-=⎪⎝⎭,所以sin cos cos cos B B A B +≥+>4B π⎛⎫+> ⎪⎝⎭.故2A B π+<即C 为钝角.故“cos cos A B +>能推出“ABC 为钝角三角形”,故选:B.5.(2021·江西上饶市·高三其他模拟(理))将函数()cos(2)6f x x π=-向左平移()0ϕϕ>个单位长度,所得图像的对应函数为()g x ,则“3πϕ=”是“()g x 为奇函数”的( )A .充分不必要B .必要不充分C .充要条件D .既不充分也不必要【答案】A 【解析】 分别从3πϕ=及()g x 为奇函数出发,证明对方是否成立,从而验证二者的关系.【详解】 当3πϕ=时,()cos[2()]sin 236g x x x ππ=+-=-,易知()g x 为奇函数,则“3πϕ=”是“()g x 为奇函数”的充分条件;当 “()g x 为奇函数”时,()cos[2()]cos(22)66g x x x ππϕϕ=+-=+-,则必有26232k k ππππϕπϕ-=+⇒=+,k Z ∈, 故3πϕ=只是其中一个值,则“3πϕ=”是“()g x 为奇函数”的不必要条件;故选:A6.【多选题】(2020·全国高一课时练习)下列命题是真命题的为( ) A .2,10x R x ∀∈--< B .,,n Z m Z nm m ∀∈∃∈=C .所有圆的圆心到其切线的距离都等于半径D .存在实数x ,使得213234x x =-+ 【答案】ABC 【解析】根据题意,依次分析各选项即可得答案. 【详解】对于A ,2,0x R x ∀∈-≤,所以210x --<,故A 选项是真命题; 对于B ,当0m =时,nm m =恒成立,故B 选项是真命题;对于C ,任何一个圆的圆心到切线的距离都等于半径,故C 选项是真命题. 对于D ,因为()2223122-+=-+≥x x x ,所以21132324x x ≤<-+.故D 选项是假命题. 故选:ABC.7.【多选题】(2021·湖南常德市·高三一模)下列说法正确的是( )A .命题:0,1∃<->x p x e x 的否定¬:0,1x p x e x ∀<-B .二项式5(12)x +的展开式的各项的系数和为32C .已知直线a ⊂平面α,则“l a //”是//l α”的必要不充分条件D .函数1sin sin y x x=+的图象关于直线2x π=对称【答案】AD 【解析】根据特称命题的否定求解方法可判断A ;令1x =代入二项式即可求得各项的系数和,可判断B ;由于直线l 与α的关系不确定故能判断C ;判断()f x π-是否等于()f x ,就能判断D 是否正确.【详解】解:对于A :命题:0,1∃<->xp x e x 的否定¬:0,1x p x e x ∀<-≤,故A 正确;对于B :二项式5(12)x +的展开式的各项的系数和为55(12)3+=,故B 错误; 对于C :已知直线a ⊂平面α,由于直线l 与α的关系不确定, 故“l a //”是//l α”的既不必要不充分条件,故C 错误; 对于D :由于x 关于2x π=的对称点为x π-,故1()sin sin f x x x=+,满足11()sin()sin ()sin()sin f x x x f x x x πππ-=-+=+=-, 故函数1sin sin y x x=+的图象关于直线2x π=对称,故D 正确.故选:AD .8.【多选题】(2021·湖南高三月考)下列“若p ,则q ”形式的命题中,p 是q 的必要条件的是( ) A .若两直线的斜率相等,则两直线平行 B .若5x >,则10x >C .已知a →是直线a 的方向向量,n →是平面α的法向量,若a α⊥,则a n →→⊥ D .已知可导函数()f x ,若0()0f x '=,则()f x 在0x x =处取得极值 【答案】BD 【解析】只需判断必要性是否成立即可.【详解】对于A ,两直线平行时,两直线的斜率相等或斜率都不存在,所以必要性不成立; 对于B ,x > 10时,x > 5,所以必要性成立;对于C ,若a n →→⊥,则a //a 或a ⊂a ,所以必要性不成立;对于D ,f (x )在0x x =处取得极值时,必有0()0f x '=,必要性成立. 故选: BD9.(2021·四川高三三模(文))已知函数2()2f x x ax b =-+,()x R ∈.下列四个命题: ①a R ∃∈,使()f x 为偶函数;②若(0)(2)f f =,则()f x 的图象关于直线1x =对称; ③若20a b -≤,则()f x 在区间[,)a +∞上是增函数; ④若220a b -->,则函数()()2h x f x =-有两个零点. 其中所有真命题的序号是___________. 【答案】①③ 【解析】根据一元二次函数及绝对值函数的性质,结合奇偶性,对称性,单调性对每一项进行分析即可. 【详解】若()f x 为偶函数,则22()2()2f x x ax b f x x ax b -=++==-+,则22222224()0x ax b x ax b ax x b ++=-+⇒+=对x R ∀∈恒成立,则0a =, 故①正确;(0)f b =,(2)44f a b =-+,若(0)(2)f f =,即44b a b =-+,则441b a b a =-+⇔=或4422b a b a b -=-+⇔-=, 若取0,2a b ==-,则2()2f x x =-关于0x =对称,②错误; 若20a b -≤,函数22y x ax b =-+的判别式2440a b ∆=-≤,即220y x ax b =-+≥,22()22f x x ax b x ax b =-+=-+,由二次函数性质,知()f x 在区间[,)a +∞上是增函数,③正确;取0,4a b ==-,满足220a b -->,则22()4242f x x x =-=⇔-=或2-,解得x =,即()()2h x f x =-有4个零点,④错误;故答案为:①③10.(2021·浙江高一期末)命题“x R ∀∈,210x x ++>”的否定是_______________;设a ,b ,c 分别是ABC 的三条边,且a b c ≤≤.我们知道ABC 为直角三角形,那么222+=a b c .反过来,如果222+=a b c ,那么ABC 为直角三角形.由此可知,ABC 为直角三角形的充要条件是222+=a b c .请利用边长a ,b ,c 给出ABC 为锐角三角形的一个充要条件是______________.【答案】x R ∃∈,210x x ++≤ 222a b c +>【解析】根据全称量词命题的否定直接写出即可;根据勾股定理,充要条件及反证法得出ABC 为锐角三角形的一个充要条件是222a b c +>.【详解】解:根据全称量词命题的否定为存在量词命题可知,命题“x R ∀∈,210x x ++>”的否定是x R ∃∈,210x x ++≤;设a ,b ,c 是ABC 的三条边,且a b c ≤≤,ABC 为锐角三角形的一个充要条件是222a b c +>. 证明如下:必要性:在ABC 中,C ∠是锐角,过点A 作AD BC ⊥于点D ,如下图:根据图象可知()222222AB AD BD AC CD BC CD =+=-+- 2222222222AC CD BC CD BC CD AC BC BC CD AC BC =-++-⋅=+-⋅<+,即222AB AC BC <+,222a b c +>可得证.充分性:在ABC 中,222a b c +>,所以C ∠不是直角.假设C ∠是钝角,如下图:过点A 作AD BC ⊥,交BC 延长线于点D ,则()222222AB AD BD AC CD BC CD =+=-++ 2222222222AC CD BC CD BC CD AC BC BC CD AC BC =-+++⋅=++⋅>+,即222AB AC BC >+,222a b c +<,与222a b c +>矛盾.故C ∠为锐角,即ABC 为锐角三角形.1.(2019年高考全国Ⅱ卷理)设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .2.(2019·天津高考真题(文))设x ∈R ,则“05x <<”是“11x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件 练真题D .既不充分也不必要条件【答案】B【解析】11x -<等价于02x <<,故05x <<推不出11x -<; 由11x -<能推出05x <<.故“05x <<”是“|1|1x -<”的必要不充分条件.故选B .3.(2019年高考浙江)若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.故选A.4.(2020·北京高考真题)已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C【解析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦; 0, 0a >b>a b +≥4a b +≤4a b ≤+≤4ab ≤=1, =4a b 4ab ≤=5>4a+b 4a b +≤4ab ≤(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121k k k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件.故选:C.5.(2018·浙江省高考真题)已知两条直线,a b 和平面α,若b α⊂,则//a b 是//a α的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件【答案】D【解析】当b α⊂时,若//a b 时,a 与α的关系可能是//a α,也可能是a α⊂,即//a α不一定成立,故////a b a α⇒为假命题;若//a α时,a 与b 的关系可能是//a b ,也可能是a 与b 异面,即//a b 不一定成立,故////a a b α⇒也为假命题;故//a b 是//a α的既不充分又不必要条件故选:D6.(2020·全国高考真题(理))设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α; 若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题; 对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题, 14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题. 故答案为:①③④.。
充要条件(30分钟 60分)一、选择题(每小题5分,共30分)1.“x =3”是“x 2=9”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【解析】选A.当x =3时,x 2=9;但x 2=9,有x =±3.所以“x =3”是“x 2=9”的充分不必要条件.2.“x >5”是“x >10”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【解析】选B.因为x >5推不出x >10,故充分性不成立,x >10推得出x >5,所以必要性成立,所以“x >5”是“x >10”的必要不充分条件.3.已知a ∈R ,则“a >2”是“a 2>2a ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】选 A.由“a >2”可推出“a 2>2a ”,由“a 2>2a ”不能推出“a >2”,所以“a >2”是“a 2>2a ”的充分不必要条件.4.“(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【解析】选B.当x =0时,显然(2x -1)x =0;当(2x -1)x =0时,x =0或x =12,所以“(2x -1)x =0”是“x =0”的必要不充分条件.5.设集合A ={x |x >2},B ={x |x >3},那么“x ∈A 或x ∈B ”是“x ∈A ∩B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】选B.(A ∩B )⊆(A ∪B ),即“x ∈A ∩B ”⇒“x ∈A 或x ∈B ”.所以“x ∈A 或x ∈B ”是“x ∈A ∩B ”的必要不充分条件.6.(多选题)已知实系数一元二次方程ax 2+bx +c =0(a ≠0),下列结论正确的是( )A .Δ=b 2-4ac ≥0是这个方程有实根的充要条件;B .Δ=b 2-4ac =0是这个方程有实根的充分条件;C .Δ=b 2-4ac >0是这个方程有实根的必要条件;D .Δ=b 2-4ac <0是这个方程没有实根的充要条件.【解析】选A 、B 、D.Δ≥0⇔方程ax 2+bx +c =0有实根,A 对; Δ=0⇒方程ax 2+bx +c =0有实根,B 对;Δ>0⇒方程ax 2+bx +c =0有实根,但ax 2+bx +c =0有实根⇒/ Δ>0,C 错; Δ<0⇔方程ax 2+bx +c =0无实根,D 对.二、填空题(每小题5分,共10分)7.条件p :x >a ,条件q :x ≥2.(1)若p 是q 的充分不必要条件,则a 的取值范围是________;(2)若p 是q 的必要不充分条件,则a 的取值范围是________.【解析】设A ={x |x >a },B ={x |x ≥2},(1)因为p 是q 的充分不必要条件,所以A B ,所以a ≥2;(2)因为p 是q 的必要不充分条件,所以B A ,所以a <2.答案:(1)a ≥2 (2)a <28.函数y =x 2+mx +1的图象关于直线x =1对称的充要条件是________.【解析】函数y =x 2+mx +1的图象的对称轴为x =-m 2 ,由题意:-m 2=1,所以m =-2. 答案:m =-2三、解答题(每小题10分,共20分)9.下列各题中,证明p 是q 的充要条件(1)p :两个三角形相似;q :两个三角形三边成比例;(2)p :x =1是一元二次方程ax 2+bx +c =0的一个根;q :a +b +c =0(a ≠0).【解析】(1)p :两个三角形相似,q :两个三角形三边成比例,因为“若p ,则q ”是相似三角形的性质定理,“若q ,则p ”是相似三角形的判定定理,所以它们均为真命题,即p ,q 能等价互推,所以p 是q 的充要条件.(2)p :x =1是一元二次方程ax 2+bx +c =0的一个根,q :a +b +c =0(a ≠0).将x =1代入方程ax 2+bx +c =0得a +b +c =0(a ≠0),即 “若p ,则q ” 为真命题,若a +b +c =0(a ≠0),则x =1时,方程左式=a ×12+b ×1+c =a +b +c =0,即x =1适合方程,x =1是一元二次方程ax 2+bx +c =0的一个根,故“若q ,则p ”为真命题,即p ,q 能等价互推,所以p 是q 的充要条件.10.已知p :x ≤2,q :x ≤a ,分别求满足下列条件的实数a 的取值范围.(1)p是q的充分条件.(2)p是q的必要条件.【解析】记P={x|x≤2},Q={x|x≤a},(1)由p是q的充分条件,得P⊆Q,得a≥2,所以实数a的取值范围是{a|a≥2}.(2)由p是q的必要条件,得P⊇Q,得a≤2,所以实数a的取值范围是{a|a≤2}.。
充要条件(时间:25分,满分55分)班级 姓名 得分一、选择题1.设{a n }是等比数列,则“a 1<a 2<a 3”是“数列{a n }是递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 若a 1<a 2<a 3,则a 1<a 1q <a 1q 2,若a 1>0,则q >1,此时为递增数列,若a 1<0,则0<q <1,同样为递增数列,故充分性成立,必要性显然成立.2.“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] C3.下列命题中的真命题有( )①两直线平行的充要条件是两直线的斜率相等;②△ABC 中,AB →·BC →<0是△ABC 为钝角三角形的充要条件;③2b =a +c 是数列a 、b 、c 为等差数列的充要条件;④△ABC 中,tan A tan B >1是△ABC 为锐角三角形的充要条件.A .1个B .2个C .3个D .4个[答案] B[解析] 两直线平行不一定有斜率,①假.由AB →·BC →<0只能说明∠ABC 为锐角,当△ABC 为钝角三角形时,AB →·BC →的符号也不能确定,因为A 、B 、C 哪一个为钝角未告诉,∴②假;③显然为真.由tan A tan B >1,知A 、B 为锐角,∴sin A sin B >cos A cos B ,∴cos(A +B )<0,即cos C >0.∴角C 为锐角,∴△ABC 为锐角三角形.反之若△ABC 为锐角三角形,则A +B >π2, ∴cos(A +B )<0,∴cos A cos B <sin A sin B ,∵cos A >0,cos B >0,∴t an A tan B >1,故④真.4.“α=2k π+β,k ∈Z ”是“sin α=sin β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 由三角函数诱导公式可知,α=2k π+β,k ∈Z 时,sin α=sin β;反之,由sin α=sin β可得,α=2k π+β,k ∈Z 或α=(2k +1)π-β,k ∈Z ,所以,“α=2k π+β,k ∈Z ”是“sin α=sin β”的充分不必要条件,选A.5.设命题甲为:0<x <5,命题乙为:|x -2|<3,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A6.设l 、m 、n 均为直线,其中m 、n 在平面α内,则“l ⊥α”是“l ⊥m 且l ⊥n ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] ∵l ⊥α,m ⊂α,n ⊂α,∵l ⊥m 且l ⊥n ,故充分性成立;又l ⊥m 且l ⊥n 时,m 、n ⊂α,不一定有m 与n 相交,∴l ⊥α不一定成立,∴必要性不成立,故选A.二、填空题7.平面向量a 、b 都是非零向量,a ·b <0是a 与b 夹角为钝角的__________________条件.[答案] 必要不充分[解析] 若a 与b 夹角为钝角,则a ·b <0,反之a ·b <0时,如果a 与b 方向相反,则a 与b 夹角不是钝角.8.已知三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0,则l 1、l 2、l 3构不成三角形的充要条件是k ∈集合__________________.[答案] {-5,5,-10}[解析] ①l 1∥l 3时,k =5;②l 2∥l 3时,k =-5;③l 1、l 2、l 3相交于同一点时,k =-10.9.函数f (x )的定义域为I ,p :“对任意x ∈I ,都有f (x )≤M ”.q :“M 为函数f (x )的最大值”,则p 是q 的__________________条件.[答案] 必要不充分10.f (x )=|x |·(x -b )在[0,2]上是减函数的充要条件是______________________.[答案] b ≥4[解析] f (x )=⎩⎪⎨⎪⎧ x x -b x ≥0,-x x -b x <0.若b ≤0,则f (x )在[0,2]上为增函数,∴b >0,∵f (x )在[0,2]上为减函数,∴b 2≥2,∴b ≥4. 三、解答题11.方程mx 2+(2m +3)x +1-m =0有一个正根和一个负根的充要条件是什么?[解析] 由题意知⎩⎪⎨⎪⎧ m +2-4m -m 1-m m<0,∴m >1或m <0, 即所求充要条件是m >1或m <0.12.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.[证明] 充分性:当q =-1时,a 1=p -1,当n ≥2时,a n =S n -S n -1=p n -1(p -1),当n =1时也成立.于是a n +1a n =p n p -p n -1p -=p ,即数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1),∵p ≠0且p ≠1,∴a n +1a n =p n p -p n -1p -=p ,∵{a n}为等比数列,∴a2a1=a n+1a n=p,即p p-p+q=p,∴p-1=p+q,∴q=-1.综上所述,q=-1是数列{a n}为等比数列的充要条件.。
充要条件的测试题及答案一、选择题1. 以下哪个选项正确描述了充要条件?A. 条件A是条件B的充分条件B. 条件A是条件B的必要条件C. 条件A是条件B的充要条件D. 条件A是条件B的既不充分也不必要条件答案:C2. 如果A⇒B,B⇒A,则A和B的关系是:A. A是B的充分条件B. A是B的必要条件C. A是B的充要条件D. A与B互为独立条件答案:C二、判断题1. 如果A是B的充分条件,那么B也是A的必要条件。
()答案:错误2. 如果A是B的必要条件,那么B是A的充分条件。
()答案:正确三、简答题1. 解释什么是充要条件,并给出一个例子。
答案:充要条件指的是两个条件之间存在一种相互依赖的关系,即一个条件的存在必然导致另一个条件的存在,反之亦然。
例如,一个数是偶数(条件A)是它能够被2整除(条件B)的充要条件。
2. 区分“充分条件”和“必要条件”并给出各自的例子。
答案:充分条件指的是一个条件的存在足以保证另一个条件的存在,但不是唯一的保证。
例如,一个数是偶数是它能够被2整除的充分条件。
必要条件指的是一个条件的存在是另一个条件存在所必需的,但不是充分的。
例如,一个数能够被2整除是它为偶数的必要条件。
四、应用题1. 如果x > 0是x² > 0的充分条件,判断x < 0是否是x² > 0的必要条件。
答案:不是。
因为x < 0时,x²仍然是正数,但x > 0是x² > 0的充分条件,意味着x² > 0时,x一定大于0,但x < 0时x² > 0并不成立,所以x < 0不是x² > 0的必要条件。
2. 证明如果A是B的充要条件,那么B也是A的充要条件。
答案:如果A是B的充要条件,根据充要条件的定义,A⇒B且B⇒A。
这意味着如果A成立,则B必然成立;反之,如果B成立,则A也必然成立。
第6课时 充要条件
一.课题:充要条件
二.教学目标:掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.
三.教学重点:充要条件关系的判定.
四.教学过程:
(一)主要知识:
1.充要条件的概念及关系的判定; 2.充要条件关系的证明.
(二)主要方法:
1.判断充要关系的关键是分清条件和结论;
2.判断p q ⇒是否正确的本质是判断命题“若p ,则q ”的真假;
3.判断充要条件关系的三种方法:
①定义法;②利用原命题和逆否命题的等价性;③用数形结合法(或图解法).
4.说明不充分或不必要时,常构造反例.
(三)例题分析:
例1.指出下列各组命题中,p 是q 的什么条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选一种作答)
(1)在ABC ∆中,:p A B >,:sin sin q A B >
(2)对于实数,x y ,:8p x y +≠,:2q x ≠或6y ≠
(3)在ABC ∆中,:sin sin p A B >,:tan tan q A B >
(4)已知,x y R ∈,22
:(1)(2)0p x y -+-=,:(1)(2)0q x y --= 解:(1)在ABC ∆中,有正弦定理知道:
sin sin a b A B
= ∴sin sin A B a b >⇔> 又由a b A B >⇔>
所以,sin sin A B A B >⇔> 即p 是q 的的充要条件.
(2)因为命题“若2x =且6y =,则8x y +=”是真命题,故p q ⇒,
命题“若8x y +=,则2x =且6y =”是假命题,故q 不能推出p ,
所以p 是q 的充分不必要条件.
(3)取120,30A B ==,p 不能推导出q ;取30,120A B ==,q 不能推导出p
所以,p 是q 的既不充分也不必要条件.
(4)因为{(1,2)}P =,{(,)|1Q x y x ==或2}y =,P Q ≠
⊂, 所以,p 是q 的充分非必要条件.
例2.设,x y R ∈,则222x y +<是||||x y +≤ )、是||||2x y +<的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解:由图形可以知道选择B ,D .(图略)
例3.若命题甲是命题乙的充分非必要条件,命题丙是命题乙的必要非充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解:因为甲是乙的充分非必要条件,故甲能推出乙,乙不能推出甲,
因为丙是乙的必要非充分条件,故乙能推出丙,丙不能推出乙,
因为丁是丙的充要条件,故丁能推出丙,丙也能推出丁,
由此可知,甲能推出丁,丁不能推出甲即丁是甲的必要不充分条件,选B .
例4.设,x y R ∈,求证:||||||x y x y +=+成立的充要条件是0xy ≥.
证明:充分性:如果0xy =,那么,①0,0x y =≠②0,0x y ≠= ③0,0x y ==于是||||||
x y x y +=+ 如果0xy >即0,0x y >>或0,0x y <<,
当0,0x y >>时,||||||x y x y x y +=+=+,
当0,0x y <<时,||()()||||x y x y x y x y +=--=-+-=+,
总之,当0xy ≥时,||||||x y x y +=+.
必要性:由||||||x y x y +=+及,x y R ∈
得22()(||||)x y x y +=+即222222||x xy y x xy y ++=++
得||xy xy =所以0xy ≥故必要性成立,
综上,原命题成立.
例5.已知数列{}n a 的通项1113423n a n n n =
++++++,为了使不等式22(1)11log (1)log 20n t t a t t ->--对任意*n N ∈恒成立的充要条件.
解:∵11111111()()02425324262526
n n a a n n n n n n n +-=
+-=-+->+++++++, 则1221n n n a a a a a -->>>>>, 欲使得题设中的不等式对任意*
n N ∈恒成立, 只须{}n a 的最小项221(1)11log (1)log 20t t a t t ->--
即可,又因为11194520
a =+=, 即只须11t -≠且22911log (1)log (1)02020
t t t t ----<,解得1log (1)(1)t t t t -<-<>,
即101(2)t t t t
<<-<≠,解得实数t 应满足的关系为t >且2t ≠. 例6.(1)是否存在实数m ,使得20x m +<是2230x x -->的充分条件?
(2)是否存在实数m ,使得20x m +<是2230x x -->的必要条件?
解:欲使得20x m +<是2230x x -->的充分条件,则只要{|}{|12
m x x x x <-⊆<-或3}x >,则只要12
m -≤-即2m ≥, 故存在实数2m ≥时,使20x m +<是2230x x -->的充分条件.
(2)欲使20x m +<是2230x x -->的必要条件,则只要{|}{|12m x x x x <-⊇<-或3}x >,则这是不可能的,
故不存在实数m 时,使20x m +<是2230x x -->的必要条件.
(四)巩固练习:
1.若非空集合M N ≠
⊂,则“a M ∈或a N ∈”是“a M N ∈”的 条件. 2.05x <<是|2|3x -<的 条件.
3.直线,a b 和平面,αβ,//a b 的一个充分条件是( )
A.//,//a b αα
B.//,//,//a b αβαβ
C. ,,//a b αβαβ⊥⊥
D. ,,a b αβαβ⊥⊥⊥。