2019届高考数学二轮复习 第三部分 6 回顾6 必练习题 Word版含解析
- 格式:doc
- 大小:91.50 KB
- 文档页数:3
2020高考仿真模拟卷(六)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足z (1+i)=|-1+3i|,则复数z 的共轭复数为( ) A .-1+i B .-1-i C .1+i D .1-i答案 C解析 由z (1+i)=|-1+3i|=(-1)2+(3)2=2,得z =21+i =2(1-i )(1+i )(1-i )=1-i ,∴z -=1+i.故选C.2.已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集的个数为( )A .1B .3C .5D .7答案 B解析 依题意,在同一平面直角坐标系中分别作出x 2=4y 与y =x 的图象,观察可知,它们有2个交点,即A ∩B 有2个元素,故A ∩B 的真子集的个数为3,故选B.3.已知命题p :“∀a >b ,|a |>|b |”,命题q :“∃x 0<0,2x 0 >0”,则下列为真命题的是( )A .p ∧qB .(綈p )∧(綈q )C .p ∨qD .p ∨(綈q ) 答案 C解析 对于命题p ,当a =0,b =-1时,0>-1, 但是|a |=0,|b |=1,|a |<|b |,所以命题p 是假命题. 对于命题q ,∃x 0<0,2x 0 >0,如x 0=-1,2-1=12>0. 所以命题q 是真命题,所以p ∨q 为真命题.4.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A-b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3答案 A解析 由题意,得a 2-b 2=4c 2,则-14=cos A =b 2+c 2-a 22bc ,∴c 2-4c 22bc =-14,∴3c 2b =14,∴b c =32×4=6,故选A.5.执行如图所示的程序框图,则输出的T =( )A .8B .6C .7D .9答案 B解析 由题意,得T =1×log 24×log 46×…×log 6264=lg 4lg 2×lg 6lg 4×…×lg 64lg 62=lg 64lg 2=6,故选B.6.要得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =2sin x cos x 的图象( )A .向左平移π3个单位 B .向右平移π3个单位 C .向左平移π6个单位 D .向右平移π6个单位 答案 C解析 将函数y =2sin x cos x =sin2x 的图象向左平移π6个单位可得到y =sin2⎝ ⎛⎭⎪⎫x +π6,即y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,故选C.7.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,且经过点(2,2),则双曲线的实轴长为( )A .12B .1C .2 2D . 2答案 C解析 由题意双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,即ca =3⇒c 2=3a 2.又由c 2=a 2+b 2,即b 2=2a 2,所以双曲线的方程为y 2a 2-x 22a 2=1,又因为双曲线过点(2,2),代入双曲线的方程,得4a 2-42a 2=1,解得a =2,所以双曲线的实轴长为2a =2 2.8.若x ,y 满足⎩⎨⎧x -2y +7≥0,2x +y ≥3,3x -y +1≤0,则x 2+y 2的最大值为( )A .5B .11.6C .17D .25答案 C解析 作出不等式组所表示的可行域如下图所示,则x 2+y 2的最大值在点B (1,4)处取得,故x 2+y 2的最大值为17.9.设函数f (x )=|lg x |,若存在实数0<a <b ,满足f (a )=f (b ),则M =log 2a 2+b 28,N =log 2⎝⎛⎭⎪⎫1a +b 2,Q =ln 1e 2的关系为( )A .M >N >QB .M >Q >NC .N >Q >MD .N >M >Q答案 B解析 ∵f (a )=f (b ),∴|lg a |=|lg b |, ∴lg a +lg b =0,即ab =1, ∵⎝ ⎛⎭⎪⎫1a +b 2=1a +b +2=1a +1a +2<12+2=14, ∴N =log 2⎝⎛⎭⎪⎫1a +b 2<-2, 又a 2+b 28>ab 4=14,∴a 2+b 28>14>⎝⎛⎭⎪⎫1a +b 2, ∴M =log 2a 2+b 28>-2, 又Q =ln 1e 2=-2,∴M >Q >N .10.正三棱柱ABC -A 1B 1C 1中,各棱长均为2,M 为AA 1的中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是( )A .10B .4+ 3C .2+ 3D .4+ 3答案 D解析 ①从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =AM 2+AN 2=12+(2+1)2=10.②从底面到N 点,沿棱柱的AC ,BC 剪开、展开,如图2. 则MN =AM 2+AN 2-2AM ·AN cos120°=12+(3)2+2×1×3×12=4+3,∵4+3<10,∴MN min =4+ 3.11.(2019·江西景德镇第二次质检)已知F 是抛物线x 2=4y 的焦点,点P 在抛物线上,点A (0,-1),则|PF ||P A |的最小值是( )A .22B .32C .1D .12答案 A解析 由题意可得,抛物线x 2=4y 的焦点F (0,1),准线方程为y =-1,过点P 作PM 垂直于准线,垂足为M ,由抛物线的定义可得|PF |=|PM |,则|PF ||P A |=|PM ||P A |=sin ∠P AM ,因为∠P AM 为锐角,故当∠P AM 最小时,|PF ||P A |最小,即当P A 和抛物线相切时,|PF ||P A |最小,设切点P (2a ,a ),由y =14x 2,得y ′=12x ,则切线P A 的斜率为12×2a =a =a +12a ,解得a =1,即P (2,1),此时|PM |=2,|P A |=22,所以sin ∠P AM =|PM ||P A |=22,故选A.12.(2019·天津部分区一模联考)已知函数y =f (x )的定义域为(-π,π),且函数y =f (x +2)的图象关于直线x =-2对称,当x ∈(0,π)时,f (x )=πln x -f ′⎝ ⎛⎭⎪⎫π2sin x (其中f ′(x )是f (x )的导函数),若a =f (log π3),b =f (log 139),c =f (π13 ),则a ,b ,c 的大小关系是( )A .b >a >cB .a >b >cC .c >b >aD .b >c >a答案 D解析 ∵f (x )=πln x -f ′⎝ ⎛⎭⎪⎫π2sin x ,∴f ′(x )=πx -f ′⎝ ⎛⎭⎪⎫π2cos x ,则f ′⎝ ⎛⎭⎪⎫π2=2-f ′⎝ ⎛⎭⎪⎫π2cos π2=2,即f ′(x )=πx -2cos x ,当π2≤x <π时,2cos x ≤0,f ′(x )>0;当0<x <π2时,πx >2,2cos x <2,∴f ′(x )>0,即f (x )在(0,π)上单调递增,∵y =f (x +2)的图象关于x =-2对称,∴y =f (x +2)向右平移2个单位得到y =f (x )的图象关于y 轴对称,即y =f (x )为偶函数,b =f (log 139)=f (-2)=f (2),0=log π1<log π3<log ππ=1,1=π0<π13<π12 <2,即0<log π3<π13 <2<π,∴f (2)>f (π13 )>f (log π3),即b >c >a .二、填空题:本题共4小题,每小题5分,共20分.13.平面向量a 与b 的夹角为45°,a =(1,-1),|b |=1,则|a +2b |=________. 答案10解析 由题意,得a ·b =|a ||b |cos45°=2×1×22=1,所以|a +2b |2=a 2+4a ·b +4b 2=2+4×1+4×1=10,所以|a +2b |=10.14.已知函数f (x )=ax -log 2(2x +1)(a ∈R )为偶函数,则a =________. 答案 12解析 由f (x )=f (-x ),得ax -log 2(2x +1)=-ax -log 2(2-x +1),2ax =log 2(2x+1)-log 2(2-x+1)=log 22x +12-x +1=x ,由于x 的任意性,所以a =12.15.如图,为测量竖直旗杆CD 的高度,在旗杆底部C 所在水平地面上选取相距421 m 的两点A ,B 且AB 所在直线为东西方向,在A 处测得旗杆底部C 在西偏北20°的方向上,旗杆顶部D 的仰角为60°;在B 处测得旗杆底部C 在东偏北10°方向上,旗杆顶部D 的仰角为45°,则旗杆CD 的高度为________ m.答案 12解析 设CD =x ,在Rt △BCD 中,∠CBD =45°,∴BC =x ,在Rt △ACD 中,∠CAD =60°,∴AC =CD tan60°=x 3,在△ABC 中,∠CAB =20°,∠CBA =10°,AB =421, ∴∠ACB =180°-20°-10°=150°,由余弦定理可得AB 2=AC 2+BC 2-2AC ·BC ·cos150°, 即(421)2=13x 2+x 2+2·x 3·x ·32=73x 2,解得x =12.即旗杆CD 的高度为12 m.16.已知腰长为2的等腰直角△ABC 中, M 为斜边AB 的中点,点P 为该平面内一动点,若|PC →|=2,则(P A →·PB →)·(PC →·PM→) 的最小值是________.答案 32-24 2解析 根据题意,建立平面直角坐标系, 如图所示,则C (0,0),B (2,0),A (0,2),M (1,1),由|PC→|=2,知点P 的轨迹为圆心在原点,半径为2的圆,设点P (2cos θ,2sin θ),θ∈[0,2π); 则P A →=(-2cos θ,2-2sin θ), PB→=(2-2cos θ,-2sin θ),PC →=(-2cos θ,-2sin θ), PM→=(1-2cos θ,1-2sin θ), ∴(P A →·PB →)·(PC →·PM →)=[(-2cos θ)(2-2cos θ)+(-2sin θ)(2-2sin θ)]·[(-2cos θ)(1-2cos θ)+(-2sin θ)(1-2sin θ)]=(4-4cos θ-4sin θ)(4-2cos θ-2sin θ) =8(3-3cos θ-3sin θ+2sin θcos θ), 设t =sin θ+cos θ,∴t =2sin ⎝ ⎛⎭⎪⎫θ+π4∈[-2,2],∴t 2=1+2sin θcos θ, ∴2sin θcos θ=t 2-1,∴y =8(3-3t +t 2-1)=8⎝ ⎛⎭⎪⎫t -322-2,当t =2时,y 取得最小值为32-24 2.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知等比数列{a n }中,a n >0,a 1=164,1a n -1a n +1=2a n +2,n ∈N *.(1)求{a n }的通项公式;(2)设b n =(-1)n ·(log 2a n )2,求数列{b n }的前2n 项和T 2n . 解 (1)设等比数列{a n }的公比为q ,则q >0, 因为1a n -1a n +1=2a n +2,所以1a 1q n -1-1a 1q n =2a 1q n +1,因为q >0,解得q =2,所以a n =164×2n -1=2n -7,n ∈N *.4分(2)b n =(-1)n ·(log 2a n )2=(-1)n ·(log 22n -7)2=(-1)n ·(n -7)2, 设c n =n -7,则b n =(-1)n ·(c n )2,6分T 2n =b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =-(c 1)2+(c 2)2+[-(c 3)2]+(c 4)2+…+[-(c 2n -1)2]+(c 2n )2=(-c 1+c 2)(c 1+c 2)+(-c 3+c 4)·(c 3+c 4)+…+(-c 2n -1+c 2n )(c 2n -1+c 2n )=c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =2n [-6+(2n -7)]2=n (2n -13)=2n 2-13n .12分18.(2019·四川百校模拟冲刺)(本小题满分12分)如图,在三棱柱A 1B 1C 1-ABC 中,D 是棱AB 的中点.(1)证明:BC 1∥平面A 1CD ;(2)若AA 1⊥平面ABC ,AB =2,BB 1=4,AC =BC ,E 是棱BB 1的中点,当二面角E -A 1C -D 的大小为π4时,求线段DC 的长度.解 (1)证明:连接AC 1交A 1C 于点F ,则F 为AC 1的中点,连接DF ,而D 是AB 的中点,则BC 1∥DF ,因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .4分(2)因为AA 1⊥平面ABC ,所以AA 1⊥CD ,又AC =BC ,E 是棱BB 1的中点, 所以DC ⊥AB ,所以DC ⊥平面ABB 1A 1,5分以D 为坐标原点,过D 作AB 的垂线为x 轴,DB 为y 轴,DC 为z 轴建立如图所示的空间直角坐标系Dxyz ,设DC 的长度为t ,则C (0,0,t ),E (2,1,0),A 1(4,-1,0),D (0,0,0),所以EA 1→=(2,-2,0),A 1C →=(-4,1,t ),DA 1→=(4,-1,0),DC →=(0,0,t ), 分别设平面EA 1C 与平面DA 1C 的法向量为m =(x 1,y 1,z 1),n =(x 2,y 2,z 2), 由⎩⎨⎧2x 1-2y 1=0,-4x 1+y 1+tz 1=0,令x 1=1,得m =⎝ ⎛⎭⎪⎫1,1,3t ,同理可得n =(1,4,0),9分 由cos 〈m ,n 〉=1+417×2+9t 2=22,解得t =3174, 所以线段DC 的长度为3174.12分19.(2019·湖南长沙统一检测)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为13,左、右焦点分别为F 1,F 2,A 为椭圆C 上一点,AF 1与y 轴相交于点B ,|AB |=|F 2B |,|OB |=43.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 1,A 2,过A 1,A 2分别作x 轴的垂线l 1,l 2,椭圆C 的一条切线l :y =kx +m (k ≠0)与l 1,l 2交于M ,N 两点,求证:∠MF 1N =∠MF 2N .解 (1)连接AF 2,由题意,得|AB |=|F 2B |=|F 1B |, 所以BO 为△F 1AF 2的中位线,又因为BO ⊥F 1F 2,所以AF 2⊥F 1F 2,且|AF 2|=2|BO |=b 2a =83, 又e =c a =13,a 2=b 2+c 2,得a 2=9,b 2=8, 故所求椭圆C 的标准方程为x 29+y 28=1.4分 (2)证明:由题意可知,l 1的方程为x =-3, l 2的方程为x =3.直线l 与直线l 1,l 2联立可得M (-3,-3k +m ),N (3,3k +m ),又F 1(-1,0), 所以F 1M →=(-2,-3k +m ),F 1N →=(4,3k +m ),所以F 1M →·F 1N →=-8+m 2-9k 2. 联立⎩⎪⎨⎪⎧x 29+y 28=1,y =kx +m ,得(9k 2+8)x 2+18kmx +9m 2-72=0.7分 因为直线l 与椭圆C 相切,所以Δ=(18km )2-4(9k 2+8)(9m 2-72)=0,化简,得m 2=9k 2+8. 所以F 1M →·F 1N →=-8+m 2-9k 2=0, 则F 1M →⊥F 1N →,故∠MF 1N 为定值π2.10分 同理F 2M →=(-4,-3k +m ),F 2N →=(2,3k +m ), 因为F 2M →·F 2N →=0,所以F 2M →⊥F 2N →,∠MF 2N =π2. 故∠MF 1N =∠MF 2N .12分20.(本小题满分12分)某快递公司收取快递费用的标准是:重量不超过1 kg 的包裹收费10元;重量超过1 kg 的包裹,除1 kg 收费10元之外,超过1 kg 的部分,每超出1 kg(不足1 kg ,按1 kg 计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如下:公司对近(1)计算该公司未来3天内恰有2天揽件数在101~400之间的概率; (2)①估计该公司对每件包裹收取的快递费的平均值;②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?解 (1)样本中包裹件数在101~400之间的天数为48,频率f =4860=45,故可估计概率为45.显然未来3天中,包裹件数在101~400之间的天数X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫3,45, 故所求概率为C 23×⎝ ⎛⎭⎪⎫452×15=48125.4分(2)①样本中快递费用及包裹件数如下表:10×43+15×30+20×15+25×8+30×4100=15(元),故该公司对每件包裹收取的快递费的平均值可估计为15元.6分②根据题意及①,揽件数每增加1,可使前台工资和公司利润增加15×13=5(元),将题目中的天数转化为频率,得;8分 若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:10分 因975<1000,故公司将前台工作人员裁员1人对提高公司利润不利.12分 21.(2019·江西南昌一模)(本小题满分12分)已知函数f (x )=e x (-x +ln x +a )(e 为自然对数的底数,a 为常数,且a ≤1).(1)判断函数f (x )在区间(1,e)内是否存在极值点,并说明理由; (2)若当a =ln 2时,f (x )<k (k ∈Z )恒成立,求整数k 的最小值. 解 (1)f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x -x +1x +a -1,令g (x )=ln x -x +1x +a -1,x ∈(1,e), 则f ′(x )=e x g (x ),2分 g ′(x )=-x 2-x +1x 2<0恒成立, 所以g (x )在(1,e)上单调递减, 所以g (x )<g (1)=a -1≤0, 所以f ′(x )=0在(1,e)内无解.所以函数f (x )在区间(1,e)内无极值点.5分(2)当a =ln 2时,f (x )=e x (-x +ln x +ln 2),定义域为(0,+∞), f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x -x +1x +ln 2-1, 令h (x )=ln x -x +1x +ln 2-1, 由(1)知,h (x )在(0,+∞)上单调递减, 又h ⎝ ⎛⎭⎪⎫12=12>0,h (1)=ln 2-1<0,所以存在x 1∈⎝ ⎛⎭⎪⎫12,1,使得h (x 1)=0,且当x ∈(0,x 1)时,h (x )>0,即f ′(x )>0,当x ∈(x 1,+∞)时,h (x )<0,即f ′(x )<0.所以f (x )在(0,x 1)上单调递增,在(x 1,+∞)上单调递减,所以f (x )max =f (x 1)=e x 1(-x 1+ln x 1+ln 2).8分由h (x 1)=0,得ln x 1-x 1+1x 1+ln 2-1=0,即ln x 1-x 1+ln 2=1-1x 1,所以f (x 1)=e x 1⎝ ⎛⎭⎪⎫1-1x 1,x 1∈⎝ ⎛⎭⎪⎫12,1,令r (x )=e x ⎝ ⎛⎭⎪⎫1-1x ,x ∈⎝ ⎛⎭⎪⎫12,1,则r ′(x )=e x ⎝ ⎛⎭⎪⎫1x 2-1x +1>0恒成立,所以r (x )在⎝ ⎛⎭⎪⎫12,1上单调递增,所以r ⎝ ⎛⎭⎪⎫12<r (x )<r (1)=0,所以f (x )max <0,又因为f ⎝ ⎛⎭⎪⎫12=e 12 ⎝ ⎛⎭⎪⎫-12-ln 2+ln 2=-e 2>-1,所以-1<f (x )max <0,所以若f (x )<k (k ∈Z )恒成立,则k 的最小值为0.12分 (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是ρ=2,以极点为原点,极轴为x 轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =2-12t ,y =1+32t (t 为参数).(1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)设曲线C 经过伸缩变换⎩⎨⎧x ′=x ,y ′=2y 得到曲线C ′,设曲线C ′上任一点为M (x 0,y 0),求3x 0+12y 0的取值范围.解 (1)由直线l 的参数方程消去参数可得它的普通方程为3x +y -23-1=0,由ρ=2两端平方可得曲线C 的直角坐标方程为x 2+y 2=4.4分(2)曲线C 经过伸缩变换⎩⎨⎧x ′=x ,y ′=2y得到曲线C ′的方程为x ′2+y ′24=4,即x ′24+y ′216=1,则点M 的参数方程为⎩⎨⎧x 0=2cos θ,y 0=4sin θ(θ为参数),代入3x 0+12y 0,得3×2cos θ+12×4sin θ=2sin θ+23cos θ=4sin ⎝ ⎛⎭⎪⎫θ+π3,由三角函数的基本性质,知4sin ⎝ ⎛⎭⎪⎫θ+π3∈[-4,4].10分23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x -a |-|3x +2|(a >0). (1)当a =1时,解不等式f (x )>x -1;(2)若关于x 的不等式f (x )>4有解,求a 的取值范围. 解 (1)当a =1时,即解不等式|x -1|-|3x +2|>x -1.当x >1时,不等式可化为-2x -3>x -1,即x <-23,与x >1矛盾,无解. 当-23≤x ≤1时,不等式可化为-4x -1>x -1, 即x <0,所以解得-23≤x <0.当x <-23时,不等式可化为2x +3>x -1,即x >-4,所以解得-4<x <-23.综上所述,所求不等式的解集为(-4,0).5分(2)f (x )=⎩⎪⎨⎪⎧2x +a +2,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -a -2,x >a ,7分因为函数f (x )在⎝ ⎛⎭⎪⎫-∞,-23上单调递增,在⎝ ⎛⎭⎪⎫-23,+∞上单调递减,所以当x =-23时,f (x )max =23+a ,8分 不等式f (x )>4有解等价于f (x )max =23+a >4, 解得a >103.故a 的取值范围为⎝ ⎛⎭⎪⎫103,+∞.10分。
2019届高三二轮精品 第三篇 方法应用篇方法四 分离(常数)参数法分离(常数)参数法是高中数学中比较常见的数学思想方法,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系,其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高,随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法. 1 分离常数法分离常数法在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出变量的取值范围. 1.1 用分离常数法求分式函数的最值(值域)分离常数法是研究分式函数的一种代数变形的常用方法,主要的分式函数有ax by cx d+=+, ,, 等,解题的关键是通过恒等变形从分式函数中分离出常数.例1. 已知函数(0a >且1a ≠)是定义在R 上的奇函数.(Ⅰ)求a 的值;(Ⅱ)求函数()f x 的值域; (Ⅲ)当[]1,2x ∈时,恒成立,求实数m 的取值范围.【答案】(Ⅰ) 2a =;(Ⅱ) ()1,1-;(Ⅲ) 10,3⎡⎫+∞⎪⎢⎣⎭. 【解析】(Ⅰ)∵()f x 是R 上的奇函数, ∴,即.整理可得2a =.(注:本题也可由()00f =解得2a =,但要进行验证)(Ⅲ)当[]1,2x ∈时,.由题意得在[]1,2x ∈时恒成立,∴在[]1,2x ∈时恒成立. 令,则有,∵当13t ≤≤时函数21y t t=-+为增函数, ∴.∴103m ≥. 故实数m 的取值范围为10,3⎡⎫+∞⎪⎢⎣⎭. 例2.一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:OQP ∆的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【答案】(Ⅰ)221164x y +=;(Ⅱ)存在最小值8. 【解析】(Ⅰ)设点,,依题意,2MD DN =,且,所以,且即且0(2)0.t t x -= 由于当点D 不动时,点N 也不动,所以t 不恒等于0,于是02t x =,故,代入2201x y +=,可得221164x y +=,即所求的曲线C 的方程为221.164x y +=(Ⅱ)(1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有.(2)当直线l 的斜率存在时,设直线,第21题解答图第21题图1第21题图2由 消去y ,可得.因为直线l 总与椭圆C 有且只有一个公共点, 所以,即. ①又由,20,y kx m x y =+⎧⎨-=⎩可得;同理可得.由原点O 到直线PQ 的距离为d =和,可得. ②将①代入②得,.当214k >时,;当2104k ≤<时,.因2104k ≤<,则,22214k ≥-,所以,当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,OPQ ∆的面积取得最小值8. 1.2 用分离常数法判断分式函数的单调性例3.已知函数,判断函数()f x 的单调性.【答案】当0a b ->时,函数()f x 在(,)b -∞-和(,)b -+∞上是减函数;当0a b -<时,函数()f x 在(,)b -∞-和(,)b -+∞上是增函数.【解析】由已知有,x b ≠-,∴当0a b ->时,函数()f x 在(,)b -∞-和(,)b -+∞上是减函数;当0a b -<时,函数()f x 在(,)b -∞-和(,)b -+∞上是增函数.例4.【2018届高三训练】若不等式x 2+ax +1≥0对一切x∈1(0, 2⎤⎥⎦恒成立,则a 的最小值为( )A. 0B. -2C. -52D. -3 【答案】C【解析】因为x∈1(0, 2⎤⎥⎦,且x 2+ax +1≥0,所以a≥-1x x ⎛⎫+ ⎪⎝⎭,所以a≥-max1x x ⎛⎫+⎪⎝⎭. 又y =x +1x 在1(0, 2⎤⎥⎦内是单调递减的, 所以a≥-max1x x ⎛⎫+⎪⎝⎭=-(12+112)=-52 故选:C1.3 用分离常数法创设应用基本不等式的条件 例5.已知,则的大小关系是( ).A .B .C .D .【答案】B2 分离参数法分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是分离出参数之后将原问题转化为求函数的最值或值域问题.2.1 用分离参数法解决不等式恒成立问题例6.【山东省济南市2019届高三上学期期末】已知函数,若对任意,不等式恒成立,其中,则的取值范围是( )A. B. C. D.【答案】B【解析】学-科网作出函数的图象,由图像可知:函数在R上单调递减,,即,由函数在R上单调递减,可得:变量分离可得:,令则,又∴∴故选:B例7.【广东省2019届高三上期末】已知函数.(1)当时,求曲线在点处的切线方程;(2)当时,设,若恒成立,求实数的取值范围.【答案】(1); (2).【解析】 (1)当时,,则函数在点处的切线的斜率为.又,故函数在点处的切线方程为即.(2)由可得,即.因为,所以.令,则.令则(8分)因为,所以, 所以在上单调递增,则,所以,即实数的取值范围.2.2 求定点的坐标 例8. 已知直线l :,m R ∈,求证:直线l 恒过定点.【答案】(3,1). 【解析】直线l 的方程可化为,设直线l 恒过定点(,)M x y ,由m R ∈,得(3,1)M ⇒,∴直线l 恒过定点(3,1).【反思提升】综合上面的例题,我们可以看到,分离参(常)数是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知,解决问题的关键是分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据需遵循.。
第19讲概率、统计、统计案例1.[2018·全国卷Ⅱ]我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.[试做]命题角度古典概型①求古典概型概率的方法:直接法:将所求事件的概率分解为一些彼此互斥的事件的概率,再运用互斥事件概率的加法公式计算.间接法:先求事件的对立事件的概率,再用公式P(A)=1-P()求概率,即运用逆向思维(正难则反),特别是对“至多”“至少”型题目,用间接法求解更简便.②易错点:当事件A,B为互斥事件时,有P(A+B)=P(A)+P(B),否则P(A+B)=P(A)+P(B)-P(A∩B).2.(1)[2018·全国卷Ⅰ]如图M6-19-1所示,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()图M6-19-1A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3(2)[2017·全国卷Ⅰ]如图M6-19-2所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()图M6-19-2A. B.C. D.[试做]命题角度几何概型①利用几何概型概率公式求解.②处理几何概型与非几何知识的综合问题的关键是,通过转化,将某一事件所包含的事件用“长度”“角度”“面积”“体积”等表示出来,如把这两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上一个区域,进而转化为面积的度量来解决.③易错点:利用几何概型的概率公式时,不要忽视事件是否等可能.3.[2018·全国卷Ⅲ]某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p= () A.0.7 B.0.6C.0.4D.0.3[试做]命题角度n次独立重复试验的期望与方差关键一:确定n的值;关键二:利用方差公式D(X)=np(1-p)求解.小题1用样本估计总体1 (1)某机构为了解“跑团”每月跑步的平均里程,收集并整理了2017年1月至2017年11月期间“跑团”每月跑步的平均里程(单位:km)的数据,得到如图M6-19-3所示的折线图.图M6-19-3根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程的峰值出现在9月份D.1月至5月的月跑步的平均里程相对于6月至11月,波动性较小,变化比较平稳(2)为了了解一批产品的长度(单位:mm)情况,现抽取容量为400的样本进行检测,如图M6-19-4所示是检测结果的频率分布直方图,根据产品标准,单件产品长度在[25,30)的为一等品,在[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为.图M6-19-4[听课笔记]【考场点拨】用频率分布直方图估计总体的数字特征应注意以下几点:(1)频率分布直方图的纵轴是,而不是频率;(2)在频率分布直方图中每个小长方形的面积才是相应区间的频率,在应用和作频率分布直方图时要注意;(3)最高的小长方形底边中点的横坐标是众数;(4)平分频率分布直方图的面积且垂直于横轴的直线与横轴交点的横坐标是中位数;(5)频率分布直方图中每个小长方形的面积乘小长方形底边中点的横坐标之和是中位数.【自我检测】1.甲、乙两名同学6次考试的成绩统计如图M6-19-5所示,甲、乙两组数据的平均数分别为,,标准差分别为σ甲,σ乙,则()图M6-19-5A.<,σ甲<σ乙B.<,σ甲>σ乙C.>,σ甲<σ乙D.>,σ甲>σ乙2.从某中学甲、乙两班中各随机抽取10名同学,测量他们的身高(单位:cm),所得数据用茎叶图表示,如图M6-19-6,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是()图M6-19-6A.甲班同学身高的方差较大B.甲班同学身高的平均值较大C.甲班同学身高的中位数较大D.甲班同学身高在175 cm以上的人数较多3.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,则()A.=4,s2<2B.=4,s2>2C.>4,s2<2D.>4,s2>24.为了解某校一次期中考试数学成绩的情况,抽取100位学生的数学成绩(单位:分),得到如图M6-19-7所示的频率分布直方图,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则估计该次考试数学成绩的中位数是()图M6-19-7A.71.5B.71.8C.72D.75小题2变量间的相关关系、统计案例2 (1)随着国家“二孩政策”的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机附表:841 6.635由K2=算得,K的观测值k=≈9.616,参照附表,得到的正确结论是()A.在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别有关”B.有99%以上的把握认为“生育意愿与城市级别有关”C.在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别无关”D.有99%以上的把握认为“生育意愿与城市级别无关”(2)某公司在对一种新产品进行合理定价前,将该产品按事先拟定的价格进行试销,得到如下数由表中数据,求得线性回归方程为=-4x+,当产品的销量为76件时,产品的单价大致为元.[听课笔记]【考场点拨】(1)回归直线一定过样本点的中心(,).(2)随机变量K2的观测值k越大,说明“两个变量有关系”的可能性越大.【自我检测】1.某中学的兴趣小组将在某座山测得海拔高度、气压和沸点的六组数据绘制成散点图如图M6-19-8所示,则下列说法错误的是()①②图M6-19-8A.沸点与海拔高度呈正相关B.沸点与气压呈正相关C.沸点与海拔高度呈负相关D.沸点与海拔高度、沸点与气压的相关性都很强A.a=45,c=15B.a=40,c=20C.a=35,c=25D.a=30,c=301若y关于x的回归方程为=1.3x-1,则m=.小题3古典概型与几何概型3 (1)已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球.现随机地从甲袋中取出1个球放入乙袋,再从乙袋中随机取出1个球,则从乙袋中取出红球的概率为()A.B.C.D.(2)如图M6-19-9,E,F,G,H是平面四边形ABCD各边的中点,若在平面四边形ABCD内任取一点,则该点取自阴影部分的概率是()图M6-19-9A.B.C.D.[听课笔记]【考场点拨】求解概率题的几个失分点:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)古典概型问题中如涉及“至多”“至少”等事件的概率计算时,没有转化为求其对立事件的概率,来简化运算;(3)几何概型中,基本事件对应的区域测度把握不准导致错误;(4)利用概率公式时,忽视验证事件是否等可能导致错误.【自我检测】1.为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是()A.0.3B.0.4C.0.6D.0.72.如图M6-19-10,半径为R的圆O内有四个半径相等的小圆,其圆心分别为A,B,C,D,这四个小圆都与圆O内切,且相邻两小圆外切,图M6-19-10则在圆O内任取一点,该点恰好取自阴影部分的概率为()A.12-8B.6-4C.9-6D.3-23.已知M是半径为R的圆上的一个定点,在圆上等可能地任取一点N,连接MN,则弦MN的长度超过R的概率是()A.B.C.D.4.连续2次抛掷一颗质地均匀的骰子,观察向上的点数,则事件“点数之积是3的倍数”的概率为.小题4条件概率、相互独立事件与独立重复试验4 (1)从装有若干个大小相同的红球、白球和黄球的袋中随机摸出1个球,摸到红球、白球和黄球的概率分别为,,.若从袋中随机摸出1个球,记下颜色后放回,连续摸3次,则记下的颜色中有红有白但没有黄的概率为()A.B.C.D.(2),其中A的各位数字中,a1=1,a k(k=2,3,4,5)出现0的概率为,出现1的概率为.若启动一次出现的数字为A=10101,则称这次试验成功,若成功一次得2分,失败一次得-1分,则100次重复试验的总得分X的方差为.[听课笔记]【考场点拨】求相互独立事件同时发生的概率的方法:(1)相互独立事件同时发生的概率等于他们各自发生的概率之积;(2)正面计算较复杂或难以入手时,可从其对立事件入手计算.特别提醒:利用独立重复试验的概率公式计算概率时,其计算量往往很大,计算时要小心谨慎,以确保计算的正确.【自我检测】1.某电视台“夏日水上闯关”节目中的前三关的过关率分别为0.8,0.7,0.6,只有通过前一关才能进入下一关,且是否通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为()A.0.56B.0.336C.0.32D.0.2242.据统计,连续熬夜48小时诱发心脏病的概率为0.055,连续熬夜72小时诱发心脏病的概率为0.19.现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为()A.B.C.D.0.193.设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=,则P(η≥2)的值为()A.B.C.D.4.设随机变量X~B,则P(X=3)=.第19讲概率、统计、统计案例典型真题研析1.C[解析] 不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中任取两个有种取法,其中和为30的有3种,即(7,23),(11,19),(13,17),所以所求概率P==.2.(1)A(2)B[解析] (1)设AB=a,AC=b,BC=c,则a2+b2=c2.记△ABC的面积为S1,黑色部分的面积为S2,则S2=π+π+ab-π=π(a2+b2-c2)+ab=ab=S1.根据几何概型的概率计算公式可知p1=p2.(2)根据对称性,图中黑色部分、白色部分的面积相等.设正方形的边长为2,则正方形的面积为4,图中圆的面积为π,故黑色部分的面积为,所以所求的概率为=.3.B[解析] 由DX=10p(1-p)=2.4,解得p=0.4或p=0.6.由P(X=4)=p4(1-p)6<P(X=6)=p6(1-p)4,可知p>0.5,故p=0.6.故选B.考点考法探究小题1例1(1)D(2)100[解析] (1)由折线图知,月跑步平均里程的中位数为5月份对应的里程数,月跑步平均里程不是逐月增加的,月跑步平均里程的峰值出现在10月份,故A,B,C中结论不正确,故选D.(2)由题意得,三等品的频率为(0.012 5+0.025 0+0.012 5)×5=0.25,∴样本中三等品的件数为400×0.25=100.【自我检测】1.C[解析] 由图可知,甲同学的平均成绩高于乙同学,且甲同学的成绩更稳定,即>,σ甲<σ乙,故选C.2.A[解析] 观察茎叶图可知甲班同学身高的数据波动大,所以甲班同学身高的方差较大,A中结论正确;甲班同学身高的平均值为=169.2,乙班同学身高的平均值为=171,所以乙班同学身高的平均值较大,B中结论错误;甲班同学身高的中位数为=168,乙班同学身高的中位数为=171.5,所以乙班同学身高的中位数较大,C中结论错误;甲班同学身高在175 cm以上的有3人,乙班同学身高在175 cm以上的有4人,所以乙班同学身高在175 cm以上的人数较多,D中结论错误.故选A.3.A[解析] ∵某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,∴==4,s2==<2,故选A.4.C[解析] 由题,0.04+10a+0.3+0.4+0.1+10a=1,得a=0.008.因为成绩在[40,50),[50,60),[60,70)的频率之和为0.04+0.08+0.3=0.42,所以中位数位于区间[70,80)内,由=0.2,得中位数约为70+0.2×10=72.故选C.小题2例2(1)B(2)7.5[解析] (1)根据K2的观测值k=≈9.616>6.635,可得有99%以上的把握认为“生育意愿与城市级别有关”,或在犯错误的概率不超过0.01的前提下,认为“生育意愿与城市级别有关”,所以选B.(2)由表中数据得,=6.5,=80,∴=80+4×6.5=106,∴回归方程为=-4x+106.当y=76时,76=-4x+106,∴x=7.5.【自我检测】1.A[解析] 结合散点图可得,沸点与气压呈正相关,气压与海拔高度呈负相关,所以沸点与海拔高度呈负相关,且沸点与海拔高度、沸点与气压的相关性都很强.故选A.2.A[解析] 由题意易知,若|a-c|越大,则X与Y有关系的可能性越大,结合选项计算可得A选项符合题意.故选A.3.3.1[解析] 由题意得==2.5,代入到线性回归方程=1.3x-1,得=2.25.∴0.1+1.8+m+4=4×2.25=9,∴m=3.1.小题3例3(1)B(2)B[解析] (1)先从甲袋中取出1个球放入乙袋,再从乙袋中取出1个球的基本事件总数为=10,取出红球的基本事件总数为+=5,所以从乙袋中取出红球的概率P==.故选B.(2)连接AC,与HE,FG分别交于点M,N,如图所示,设点D到AC的距离为h,则S△ADC=AC·h,S四边形HGNM=HG××h=×AC·h,∴S四边形HGNM=S△ADC,∴S四边形HGFE=S四边形ABCD,∴所求概率是,故选B.【自我检测】1.D[解析] 春节和端午节至少有一个被选中的对立事件是春节和端午节都没有被选中,而春节和端午节都没有被选中的概率为=0.3,所以春节和端午节至少有一个被选中的概率为1-0.3=0.7.故选D.2.A[解析] 设小圆的半径为r,根据题意可知四边形ABDC为正方形,OA=r.由R-r=r,得r==(-1)R,所以大圆的面积为πR2,四个小圆的面积为4π(-1)2R2.由几何概型的概率计算公式可得,所求概率为=12-8.故选A.3.D[解析] 本题可利用几何概型求解.如图,O为圆心,NP为直径,且MO⊥NP.根据题意可得,该圆的周长为2πR,满足条件“弦MN的长度超过R”的点N所在的弧是,且其长度为πR,则弦MN的长度超过R的概率P=.故选D.4.[解析] 总事件数为6×6=36.当第1次掷骰子向上的点数为1,2,4,5时,满足条件的事件有(1,3),(1,6),(2,3),(2,6),(4,3),(4,6),(5,3),(5,6),共8个;当第1次掷骰子向上的点数为3,6时,满足条件的事件有2×6=12(个).所以所有满足条件的事件共20个,所求概率P==.小题4例4(1)C(2)[解析] (1)满足题意时,记下的颜色应是2个红1个白或者2个白1个红,据此可得,所求概率为××+××=.(2)启动一次出现数字为A=10101的概率P=×=.设100次独立重复试验中成功的次数为η,则η~B,∴D(η)=100××=.∵X=2η-1×(100-η)=3η-100,∴D(X)=D(3η-100)=9D(η)=.【自我检测】1.D[解析] 该选手只闯过前两关的概率为0.8×0.7×(1-0.6)=0.224,故选D.2.A[解析] 设事件A为连续熬夜48小时诱发心脏病,事件B为连续熬夜72小时诱发心脏病.由题意可知,P(A)=0.055,P(B)=0.19,则P()=0.945,P()=0.81,由条件概率计算公式可得,P(|)====.3.B[解析] 由P(ξ≥1)=,得p(1-p)+p2=2p-p2=,∴p=,∴P(η≥2)=p2(1-p)2+p3(1-p)+p4=6××+4××+=,故选B.4.[解析] 因为X~B,所以P(X=3)=××=.[备选理由] 例1主要考查条形图的识别以及应用;例2为高考试题,考查2×2列联表的应用;例3考查古典概型,需要在一定的排列组合计数的基础上完成;例4考查几何概型,涉及数学史,可以开拓学生的视野和应用意识;例5需要对所给的问题进行判断,属于二项分布问题,考查二项分布的方差.例1[配例1使用]下图是某企业在2008年—2017年企业产值的年增量(即当年产值比前一年产值增加的量)统计图(单位:万元),下列说法正确的是()A.2009年产值比2008年产值少B.从2011年到2015年,产值年增量逐年减少C.产值年增量的增量最大的是2017年D.2016年的产值年增长率可能比2012年的产值年增长率低[解析] D由图,2009年产值比2008年产值多29 565万元,故A中说法错误;2013年的产值年增量大于2012年的,故B中说法错误;产值年增量的增量最大的不是2017年,故C中说法错误;因为增长率等于增长量除以上一年产值,由于上一年产值不确定,所以2016年的产值年增长率可能比2012年的产值年增长率低,故D中说法正确.故选D.例2[配例2使用] [2014·江西卷]某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1A.成绩B.C.智商D.阅读量[解析] D根据独立性检验计算可知,阅读量与性别有关联的可能性较大.例3[配例3使用]若20件产品中有16件一级品,4件二级品,从中任取2件,则这2件中至少有1件二级品的概率是()A.B.C.D.[解析] C由题意,从20件产品中任取2件的情况总数为=190,其中至少有1件二级品的情况数为+=70,由古典概型的概率计算公式可得所求概率为=,故选C.例4[配例3使用]中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若cos 2∠BAE=,则在正方形ABCD内随机取一点,该点恰好在正方形EFGH内的概率为() A.B.C.D.[解析] D如图可知,正方形EFGH的边长为a-b,正方形ABCD的边长为.由题意知cos 2∠BAE=2cos2∠BAE-1=2×-1=,得9a2=16b2,即a= b.∴所求概率为==.故选D.例5[配例4使用] [2017·全国卷Ⅱ]一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=.[答案] 1.96[解析] X~B(100,0.02),故D(X)=100×0.02×0.98=1.96.。
专题三立体几何与空间向量专题检测选题明细表知识点·方法A组B组集合与常用逻辑用语 1 2复数9 1平面向量 4 4,13 不等式与线性规划 2 15计数原理与古典概型8 11三角函数11 5,10,16空间几何体3,10,13 4,6,7,9,12空间位置关系5,7,12,14,15 3,8,14,17 立体几何的向量方法6,16 18A组一、选择题1.若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为( C )(A)5 (B)4 (C)3 (D)2解析:x=-1,y=0时,z=-1;x=-1,y=2时,z=1;x=1,y=0时,z=1;x=1,y=2时,z=3.故z的值为-1,1,3,共3个元素.2.设a= log2π,b== loπ,c=π-2,则( C )(A)a>b>c (B)b>a>c(C)a>c>b (D)c>b>a解析:因为a= log2π> log22=1,b= loπ< lo1=0,c=π-2∈(0,1),所以a>c>b,故选C.3.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是( A )(A)1 cm3(B)2 cm3(C)3 cm3(D)6 cm3解析:本题主要考查了三视图的应用,根据三棱锥的体积公式V=××2×1×3=1,所以选A.4.△ABC的三个内角A,B,C所对的边分别为a,b,c,设向量p=(a+c,b),q=(b-a,c-a),若p∥q,则角C的大小为( B )(A)(B)(C)(D)解析:因为p∥q,所以(a+c)(c-a)=b(b-a),即b2+a2-c2=ab.由余弦定理得cos C=,又0<C<π,所以C=.5.已知正四棱锥S ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为( C )(A)(B) (C) (D)解析:设AC,BD的交点为O,连接EO,则∠AEO为AE,SD所成的角或其补角;设正四棱锥的棱长为a,则AE=a,EO=a,OA=a,所以cos ∠AEO===,故选C.6.在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a.点E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为( D )(A)30°(B)45°(C)60°(D)90°解析:以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系D xyz,D(0,0,0),P(0,0,a),B(a,a,0),E(0,,),=(a,a,-a),又=(0,,),·=0+-=0,所以PB⊥DE.由已知DF⊥PB,又DF∩DE=D,所以PB⊥平面EFD,所以PB与平面EFD所成角为90°.故选D.7.在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一点.若PA=AC=a,则当△MBD的面积为最小值时,直线AC与平面MBD所成的角为( B )(A)(B)(C)(D)解析:连接AC,BD交于O,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,所以PA⊥BD,AC⊥BD,所以BD⊥平面PAC,进一步求出BM=DM,过O点作OM⊥PC于M,当△MBD的面积为最小值,只需OM最小即可,若PA=AC=a,所以∠ACP=即为所求.故选B.二、填空题8.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.解析:因为这10个数是1,-3,(-3)2,(-3)3,(-3)4,(-3)5,(-3)6,(-3)7,(-3)8,(-3)9,所以它小于8的概率为=.答案:9.已知复数z=a2-1+(a+1)i(a∈R)为纯虚数,则为.解析:因为复数z=a2-1+(a+1)i(a∈R)为纯虚数,所以解得a=1,故z=2i,则=-2i.答案:-2i10.已知三棱锥S ABC的各顶点都在一个表面积为4π的球面上,球心O在AB上,SO⊥平面ABC,AC=,则三棱锥S-ABC的表面积为.解析:因为球的表面积为4π,所以球的半径为R=1,三棱锥S ABC的图形如图所示,由题意及图可知AB=2R=2,SO=AO=BO=CO=1,又SO⊥平面ABC,所以SA=SB=SC=,又AC=,所以BC=,所以△ABC与△ABS均为等腰直角三角形,其面积和为2×1=2,△SAC与△SBC均为等边三角形,其面积和为××=,所以三棱锥的表面积为2+.答案:2+11.方程3sin x=1+cos 2x在区间[0,2π]上的解为.解析:3sin x=1+cos 2x,即3sin x=2-2sin2x,所以2sin2x+3sin x-2=0,解得sin x=或sin x=-2(舍去),所以在区间[0,2π]上的解为或.答案:或12.平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且S位于平面α,β之间,AS=8,BS=6,CS=12,则SD= .解析:根据题意做出图形.因为AB,CD交于S点,所以三点确定一平面,所以设ASC平面为n,于是有n交α于AC,交β于DB,因为α,β平行,所以AC∥DB,所以△ASC∽△BSD,所以=,因为AS=8,BS=6,CS=12,所以=,所以SD=9.答案:913. 如图是正方体的平面展开图,则在这个正方体中①BM与ED平行;②CN 与BE是异面直线;③CN与BM成60°角;④DM与BN是异面直线.以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).解析:把展开图复原成正方体,如图,由正方体的性质,可知:BM与ED是异面直线,所以①是错误的;CN与BE是平行直线,所以②是错误的;从图中连接AN,AC,由于几何体是正方体,所以三角形ANC为等边三角形,所以CN,BE所成的角为60°,所以③是正确的;DM与BN是异面直线,所以④是正确的.答案:③④14. 如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为.解析: 因为四边形ABCD是正方形,所以CB⊥AB.因为平面ABCD⊥平面ABEF且交于AB,所以CB⊥平面ABEF.因为AG,GB⊂平面ABEF,所以CB⊥AG,CB⊥BG.又AD=2a,AF=a,四边形ABEF是矩形,G是EF的中点,所以AG=BG=a,AB=2a, 所以AB2=AG2+BG2,所以AG⊥BG,因为BG∩BC=B,所以AG⊥平面CBG,而AG⊂平面AGC,故平面AGC⊥平面BGC,如图.在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,所以∠BGH是GB与平面AGC所成的角.在Rt△CBG中,BH==a,BG=a,所以sin ∠BGH==.答案:三、解答题15. 如图,直三棱柱ABC A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N 分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h 为高)法一(1)证明:连接AB′,AC′,如图,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′的中点.又因为N为B′C′的中点,所以MN∥AC′,又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,因此MN∥平面A′ACC′.(2)解:连接BN,如图所示,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC,又A′N=B′C′=1,故====,法二(1)证明:取A′B′的中点P,连接MP,NP,AB′,如图,而M,N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′,又MP∩NP=P,因此平面MPN∥平面A′ACC′,而MN⊂平面MPN,因此MN∥平面A′ACC′.(2)解:=-==.16. (2018·全国Ⅱ卷)如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M PA C为30°,求PC与平面PAM所成角的正弦值.(1)证明:因为PA=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2.如图,连接OB.因为AB=BC=AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=AC=2.由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC,OB∩AC=O,得PO⊥平面ABC.(2)解:如图,以O为坐标原点,的方向为x轴正方向,建立空间直角坐标系O-xyz.由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2),=(0,2, 2).取平面PAC的一个法向量=(2,0,0).设M(a,2-a,0)(0≤a≤2),则=(a,4-a,0).设平面PAM的法向量为n=(x,y,z).由·n=0,·n=0得可取y=a,得平面PAM的一个法向量为n=((a-4),a,-a),所以cos<,n>=.由已知可得︱cos<,n>︱=cos 30°=,所以=,解得a=-4(舍去)或a=.所以n=(-,,-).又=(0,2,-2),所以cos<,n>=,所以PC与平面PAM所成角的正弦值为.B组一、选择题1.若复数z=1+i(i为虚数单位),是z的共轭复数,则z2+的虚部为( A )(A)0 (B)-1 (C)1 (D)-2解析:法一由z=1+i知=1-i,z2+=(1+i)2+(1-i)2=2i+(-2i)=0,其虚部为0.故应选A.法二由z=1+i知=1-i,z2+=(z+)2-2z=4-4=0,其虚部为0.故应选A.2.已知集合A={1,2,3,4,5},B={(x,y)︱x∈A,y∈A,x-y∈A},则B中所含元素的个数为( D )(A)3 (B)6 (C)8 (D)10解析:因为A={1,2,3,4,5},x,y∈A,x-y∈A,所以所以B中共10个元素,选D.3.(2017·湖州、衢州、丽水三市高三4月联考)已知平面α与两条不重合的直线a,b,则“a⊥α,且b⊥α”是“a∥b”的( A )(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:已知平面α与两条不重合的直线a,b,如果a⊥α,且b⊥α,那么根据直线与平面垂直的性质定理,可得a∥b,充分性成立;反之,如果a∥b,那么不能推断a⊥α,且b⊥α,必要性不成立,即“a⊥α,且b⊥α”是“a∥b”的充分不必要条件.故选A.4.对任意向量a,b,下列关系式中不恒成立的是( B )(A)︱a·b︱≤︱a︱︱b︱ (B)︱a-b︱≤︱︱a︱-︱b︱︱(C)(a+b)2=︱a+b︱2 (D)(a+b)(a-b)=a2-b2解析:因为︱a·b︱=︱a︱︱b︱︱cos <a,b>︱≤︱a︱︱b︱,所以选项A 正确;当a与b方向相反时,︱a-b︱≤︱︱a︱-︱b︱︱不成立,所以选项B 错误;向量的平方等于向量的模的平方,所以选项C正确;(a+b)(a-b)=a2-b2,所以选项D正确.故选B.5.在△ABC中,BC边上的中线AD长为3,且cos B=,cos∠ADC=-,则边AC长为( A )(A)4 (B)16 (C)(D)解析:如图,因为∠ADC与∠ADB互补,所以当cos∠ADC=-时,cos∠ADB=,则sin∠ADB==,又cos B=,则sin B=,所以sin∠BAD=sin(π-∠B-∠ADB)=sin(∠B+∠ADB)=sin Bcos∠ADB+cos Bsin∠ADB=×+×=,在△BAD中,由正弦定理得:=,从而BD=2,所以CD=2,在△ADC中,由余弦定理得:AC2=9+4-2×3×2×(-)=16,所以AC=4.故选A.6. 如图,四面体ABCD中,AB=DC=1,BD=,AD=BC=,二面角A BD C的平面角的大小为60°,E,F分别是BC,AD的中点,则异面直线EF与AC所成的角的余弦值是( B )(A)(B) (C) (D)解析:取DC的中点为G,连EG,FG,则EG=BD=,FG=AC=,易知EF=,则∠EFG=θ就是异面直线EF与AC所成的角,故在△EFG中,cos θ==,故选B.7.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D重合于F,此时二面角E BC F的余弦值为( B )(A)(B) (C)(D)解析: 如图所示,取BC中点P,连接EP,FP,由题意得BF=CF=2,所以PF⊥BC,又因为EB=EC==,所以EP⊥BC,所以∠EPF即为二面角E BC F的平面角,而FP==,在△EPF中,cos ∠EPF===,故选B.8.在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则( A )(A)平面α与平面β垂直(B)平面α与平面β所成的(锐)二面角为45°(C)平面α与平面β平行(D)平面α与平面β所成的(锐)二面角为60°解析:设P1=fα(P),P2=fβ(P),则PP1⊥α,P1Q1⊥β,PP2⊥β,P2Q2⊥α.若α∥β,则P1与Q2重合、P2与Q1重合,所以PQ1≠PQ2,所以α与β相交.设α∩β=l,由PP1∥P2Q2,所以P,P1,P2,Q2四点共面,同理,P,P1,P2,Q1四点共面.所以P,P1,P2,Q1,Q2五点共面,且α与β的交线l垂直于此平面.又因为PQ1=PQ2,所以Q1,Q2重合且在l上,四边形PP1Q1P2为矩形.那么∠P1Q1P2=为二面角αlβ的平面角,所以α⊥β.故选A.二、填空题9.某几何体的三视图如图所示,则此几何体的表面积是,体积是.解析:由三视图可得该几何体的直观图如图所示.该几何体是一个四棱锥A-CDEF和一个三棱锥F-ABC构成的组合体,底面直角梯形ABCD的面积为6,侧面CDEF的面积为4,侧面ABF的面积为2,侧面BCF的面积为2,侧面ADE的面积为4,侧面AEF的面积为2,所以这个几何体的表面积为16+2+2,四棱锥A-CDEF的底面面积为4,高为4,故体积为×4×4=,三棱锥F-ABC的底面积为2,高为2,故体积为×2×2=,故这个几何体的体积为V=+=.答案:16+2+210.若2sin α-cos α=,则sin α= ,tan (α-)=.解析:2sin α-cos α=⇒4sin 2α-4sin αcos α+cos 2α=5⇒sin 2α+4sin αcos α+4cos 2α=0⇒sin α+2cos α=0,因此sin α=,cos α=-,tan α=-2;tan (α-)==3. 答案: 311.若(x+)(2x-)5的展开式中各项系数的和为2,则该展开式中的常数项为.解析:令x=1,即可得到(x+)(2x-)5的展开式中各项系数的和为1+a=2,所以a=1,(x+)(2x-)5=(x+)(2x-)5,要找其展开式中的常数项,需要找(2x-)5的展开式中的x和,由通项公式得T r+1=(2x)5-r·(-)r=(-1)r·25-r·x5-2r,令5-2r=±1,得到r=2或r=3,所以有80x和-项,分别与和x相乘,再相加,即得该展开式中的常数项为80-40=40.答案:4012. 如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°.沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.解析:如图,连接BD′,设直线AC与BD′所成的角为θ.O是AC的中点.由已知得AC=,以OB为x轴,OA为y轴,过O与平面ABC 垂直的直线为z轴,建立空间直角坐标系,则A(0,,0),B(,0,0),C(0,-,0).作DH⊥AC于H,连接D′H,翻折过程中,D′H始终与AC垂直,则CH===,则OH=,DH==,因此D′(-cos α,-,sin α)(设∠DHD′=α),则=(-cos α-,-,sin α),与平行的单位向量为n=(0,1,0),所以cos θ=︱cos<,n>︱=︱︱=,所以cos α=-1时,cos θ取得最大值为.答案:13.如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则·= .解析:设AC与BD交于O点,则·=2·==2×32=18.(注意AP⊥BD 有·=)答案:1814. 如图,二面角α-l-β的大小是45°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是.解析:过点A作AO垂直平面β于点O,作AC垂直直线l于点C,连接CO,BO,则∠ACO=45°,∠ABC=30°,∠ABO即为AB与平面β所成的角.设AO=a,则AC=a,AB=2a,所以sin∠ABO===.答案:15.已知正数a,b,c满足:5c-3a≤b≤4c-a,cln b≥a+cln c,则的取值范围是.解析:把5c-3a≤b≤4c-a变形为5·-3≤≤4·-1,所以5·-3≤4·-1,所以0<≤2;所以-3<5·-3≤≤4·-1≤7,①又cln b≥a+cln c,所以c(ln b-ln c)>a,所以ln>-ln.设x=,h(x)=x-ln x(x≥),利用导数可以证明h(x)在(,1)上单调递减,在(1,+∞)上单调递增,所以h(x)≥h(1)=1,故ln≥1,所以≥e,②由①②可得e≤≤7.答案:[e,7]三、解答题16.(2017·江苏卷)已知向量a=(cos x,sin x),b=(3,-),x∈[0,π].(1)若a∥b,求x的值;(2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值.解:(1)因为a=(cos x,sin x),b=(3,-),a∥b,所以-cos x=3sin x.若cos x=0,则sin x=0,与sin2x+cos2x=1矛盾,故cos x≠0.于是tan x=-.又x∈[0,π],所以x=.(2)f(x)=a·b=(cos x,sin x)·(3,-)=3cos x-sin x=2cos (x+). 因为x∈[0,π],所以x+∈[,],从而-1≤cos(x+)≤.于是,当x+=,即x=0时,f(x)取到最大值3;当x+=π,即x=时,f(x)取到最小值-2.17.(2018·宁波期末) 如图,在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,底面ABCD为矩形,E为PA中点,AB=2a,BC=a,PC=PD= a.(1)求证:PC∥平面BDE;(2)求直线AC与平面PAD所成角的正弦值.解:(1)设AC与BD的交点为O,连接EO.因为四边形ABCD为矩形,所以O为AC的中点.在△PAC中,由已知E为PA中点,所以EO∥PC.又EO⊂平面BDE,PC⊄平面BDE,所以PC∥平面BDE.(2)在△PCD中,DC=2a,PC=PD=a,所以DC2=PD2+PC2,即PC⊥PD.因为平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AD⊥CD,所以AD⊥平面PCD,故AD⊥PC.又因为AD∩PD=D,AD,PD⊂平面PAD,所以PC⊥平面PAD,故∠PAC就是直线AC与平面PAD所成的角.在Rt△PAC中AC=a,PC=a,所以sin ∠PAC===.即直线AC与平面PAD所成角的正弦值为.18. (2017·山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E AG C的大小.解:(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP.又BP⊂平面ABP,所以BE⊥BP.又∠EBC=120°,所以∠CBP=30°.(2)法一如图①,取的中点H,连接EH,GH,CH. 因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==.取AG的中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG, 所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12, 所以EC=2,所以△EMC为等边三角形,故所求的角为60°.法二以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图②所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3).设m=(x1,y1,z1)是平面AEG的一个法向量,由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量,由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>==.故所求的角为60°.。
年份 卷别 考查内容及考题位置 命题分析2018卷Ⅲ三视图·T 3数学文化题是近几年课标全国卷中出现的新题型,预计在高考中,数学文化题仍会以选择题或填空题的形式考查,也不排除以解答题的形式考查,难度适中或容易.2017卷Ⅰ中国古代太极图与几何概型·T 2 卷Ⅱ数列求和·T 3 2016卷Ⅱ秦九韶算法·T 8立体几何中的数学文化题立体几何中的数学文化题一般以我国古代发现的球的体积公式、圆柱的体积公式、圆锥的体积公式、圆台的体积公式和“牟合方盖”“阳马”“鳖臑”“堑堵”“刍薨”等中国古代几何名词为背景考查空间几何体的三视图、几何体的体积与表面积等.[典型例题](1)(2018·郑州第二次质量预测)我国古代数学专著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“鳖臑”意指四个面都是直角三角形的三棱锥.某“鳖臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知该几何体的高为22,则该几何体外接球的表面积为________.(2)(2018·黄冈模拟)我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是几何体的高,“幂”是截面面积.其意:如果两个等高的几何体在同高处的截面面积恒等,那么这两个几何体的体积相等.已知双曲线C 的渐近线方程为y =±2x ,一个焦点为(5,0).直线y =0与y =3在第一象限内与双曲线及渐近线围成如图所示的图形OABN ,则它绕y 轴旋转一圈所得几何体的体积为________.【解析】 (1)由该几何体的三视图还原其直观图,并放入长方体中,如图中的三棱锥A -BCD 所示,其中AB =22,BC =CD =2,易知长方体的外接球即三棱锥A BCD 的外接球,设外接球的直径为2R ,所以4R 2=(22)2+(2)2+(2)2=8+2+2=12,则R 2=3,因此外接球的表面积S =4πR 2=12π.(2)由题意可得双曲线的方程为x 2-y 24=1,直线y =3在第一象限内与渐近线的交点N 的坐标为⎝⎛⎭⎫32,3,与双曲线在第一象限内的交点B 的坐标为⎝⎛⎭⎫132,3,在所得几何体中,在高为h 处作一截面,则截面面积为π⎝⎛⎭⎫1+h 24-h24=π,根据祖暅原理,可得该几何体的体积与底面面积为π,高为3的圆柱的体积相同,故所得几何体的体积为3π.【答案】 (1)12π (2)3π(1)本例(1)以“鳖臑”为背景,考查由三视图还原几何体,并求几何体的表面积.此类问题源于生活中的盖房问题.这将引领师生关注生产、生活中的社会问题,体现数学文化“以数化人”的功能.对于其他几何体,如“刍童”“羡除”等,需要给予关注.(2)祖暅原理是我国古代数学家祖暅提出的一个关于几何体体积的著名定理,祖暅提出这个原理,要比其他国家的数学家早一千多年.人教A 版《必修2》教材第30页专门介绍了祖暅原理.本题取材于祖暅原理,既考查了考生的基础知识和基本技能,又展示了中华优秀传统文化.[对点训练]《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈7264L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.355113解析:选A.依题意,设圆锥的底面半径为r ,则V =13πr 2h ≈7264L 2h =7264(2πr )2h ,化简得π≈227.故选A.数列中的数学文化题数列中的数学文化题一般以我国古代数学名著中的等差数列和等比数列问题为背景,考查等差数列和等比数列的概念、通项公式和前n 项和公式.[典型例题](1)《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿( )A.507斗粟 B.107斗粟 C.157斗粟 D.207斗粟 (2)北宋数学家沈括的主要成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n 层,上底由a ×b 个物体组成,以下各层的长、宽依次增加一个物体,最下层(即下底)由c ×d 个物体组成,沈括给出求隙积中物体总数的公式为s =n 6[(2a +c )b +(2c +a )d ]+n6(c -a ),其中a 是上底长,b 是上底宽,c 是下底长,d 是下底宽,n 为层数.已知由若干个相同小球粘黏组成的隙积的三视图如图所示,则该隙积中所有小球的个数为( )A .83B .84C .85D .86【解析】 (1)法一:设羊、马、牛主人赔偿的粟的斗数分别为a 1,a 2,a 3,则这3个数依次成等比数列,公比q =2,所以a 1+2a 1+4a 1=5,解得a 1=57,故a 3=207,a 3-a 1=207-57=157,故选C.法二:羊、马、牛主人赔偿的比例是1∶2∶4,故牛主人应赔偿5×47=207(斗),羊主人应赔偿5×17=57(斗),故牛主人比羊主人多赔偿了207-57=157(斗),故选C. (2)由三视图知,n =5,a =3,b =1,c =7,d =5,代入公式s =n 6[(2a +c )b +(2c +a )d ]+n6(c -a )得s =85,故选C.【答案】 (1)C (2)C解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比(差)数列的概念、通项公式和前n 项和公式.[对点训练]《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为( )A.76钱B.56钱C.23钱 D.1钱解析:选D.因为甲、乙、丙、丁、戊每人所得依次成等差数列,设每人所得依次为a -2d 、a -d 、a 、a +d 、a +2d ,则a -2d +a -d +a +a +d +a +2d =5,解得a =1,即丙所得为1钱,故选D.算法中的数学文化题算法中的数学文化题一般以我国古代优秀算法为背景,考查程序框图.[典型例题](1)公元三世纪中期,数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并因此创立了割圆术.利用割圆术,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的割圆术设计的程序框图,则输出的n 为(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)( )A .12B .24C .36D .48(2)我国古代的劳动人民曾创造了灿烂的中华文明,戍边的官兵通过在烽火台上举火向国内报告,烽火台上点火表示数字1,不点火表示数字0,这蕴含了进位制的思想.图中的程序框图的算法思路就源于我国古代戍边官兵的“烽火传信”.执行该程序框图,若输入a =110011,k =2,n =7,则输出的b =( )A .19B .31C.51 D.63【解析】(1)按照程序框图执行,n=6,S=3sin 60°=332,不满足条件S≥3.10,执行循环;n=12,S=6sin 30°=3,不满足条件S≥3.10,执行循环;n=24,S=12sin 15°≈12×0.258 8=3.105 6,满足条件S≥3.10,跳出循环,输出n的值为24,故选B.(2)按照程序框图执行,b依次为0,1,3,3,3,19,51,当b=51时,i=i+1=7,跳出循环,故输出b=51.故选C.【答案】(1)B(2)C辗转相除法、更相减损术、秦九韶算法、进位制和割圆术都是课本上出现的算法案例.其中,更相减损术和秦九韶算法是中国古代的优秀算法,课本上的进位制案例原本不渗透中国古代数学文化,但命题人巧妙地将烽火戍边的故事作为背景,强化了试题的“文化育人”功能.[对点训练]《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步;第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出“更相减损术”的程序框图如图所示,如果输入的a=114,b=30,则输出的n为()A.3 B.6C.7 D.30解析:选C.a=114,b=30,k=1,n=0,a,b都是偶数,a=57,b=15,k=2,a,b不满足都为偶数,a=b不成立,a>b成立,a=57-15=42,n=0+1=1;a=b不成立,a>b成立,a=42-15=27,n=1+1=2;a=b不成立,a>b成立,a=27-15=12,n=2+1=3;a=b不成立,a>b不成立,a=15,b=12,a =15-12=3,n=3+1=4;a=b不成立,a>b不成立,a=12,b=3,a=12-3=9,n=4+1=5;a=b不成立,a>b成立,a=9-3=6,n=5+1=6;a=b不成立,a>b成立,a=6-3=3,n=6+1=7;a=b成立,输出的kb=6,n=7.概率中的数学文化题概率中的数学文化题一般以优秀传统文化为背景,考查古典概型和几何概型.[典型例题](1)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,田忌获胜的概率是( )A.13B.14C.15D.16(2)太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,如图所示,其中小圆的半径均为1,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A.136B.118C.112D.19【解析】 (1)从双方的马匹中随机选一匹马进行一场比赛,对阵情况如下表:齐王的马 上 上 上 中 中 中 下 下 下 田忌的马上中下上中下上中下双方马的对阵中,有3种对抗情况田忌能赢,所以田忌获胜的概率P =39=13.故选A.(2)函数y =3sin π6x 的图象与x 轴相交于点(6,0)和点(-6,0),则大圆的半径为6,面积为36π,而小圆的半径为1,两个小圆的面积和为2π,所以所求的概率是2π36π=118.故选B.【答案】 (1)A (2)B(1)本例(1)选取田忌赛马这一为人熟知的故事作为背景,考查了古典概型,趣味性很强,利于缓解考生在考场的紧张心理,体现了对考生的人文关怀.(2)本例(2)以中国优秀传统文化太极图为背景,考查几何概型,角度新颖,所给图形有利于考生分析问题和解决问题,给出了如何将抽象的数学问题形象化的范例.[对点训练]《九章算术》是我国古代数学名著,书中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )A.π15 B.2π5 C.2π15D.4π15解析:选C.因为该直角三角形两直角边长分别为5步和12步,所以其斜边长为13步,设其内切圆的半径为r ,则12×5×12=12(5+12+13)r ,解得r =2.由几何概型的概率公式,得此点取自内切圆内的概率P =4π12×5×12=2π15.故选C.三角函数中的数学文化题三角函数中的数学文化题一般以我国古代数学名著中的几何测量问题或几何图形为背景,考查解三角形或三角变换.[典型例题](2018·益阳、湘潭调研)《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,现有周长为22+5的△ABC 满足sin A ∶sin B ∶sin C =(2-1)∶5∶(2+1),用上面给出的公式求得△ABC 的面积为( )A.32 B.34 C.52D.54【解析】 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =(2-1)∶5∶(2+1),可设三角形的三边分别为a =(2-1)x ,b =5x ,c =(2+1)x ,由题意得(2-1)x +5x +(2+1)x =(22+5)x =22+5,则x =1,故由三角形的面积公式可得△ABC 的面积S =14⎣⎢⎡⎦⎥⎤(2+1)2(2-1)2-⎝ ⎛⎭⎪⎫3+22+3-22-522=34,故选B. 【答案】 B我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白,从中可以看出我国古代已经具有很高的数学水平,人教A 版《必修5》教材对此有专门介绍.本题取材于教材中出现的“三斜求积”公式,考查了运算求解能力,同时也传播了中华优秀传统文化.[对点训练]第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么tan ⎝⎛⎭⎫θ+π4=________.解析:依题意得大、小正方形的边长分别是5,1,于是有5sin θ-5cos θ=1(0<θ<π2),即有sin θ-cos θ=15.从而(sin θ+cos θ)2=2-(sin θ-cos θ)2=4925,则sin θ+cos θ=75,因此sin θ=45,cos θ=35,tan θ=43,故tan ⎝⎛⎭⎫θ+π4=tan θ+11-tan θ=-7.答案:-7函数中的数学文化题函数中的数学文化题一般以中华优秀传统文化为背景,考查函数的图象与性质.[典型例题]中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O 的周长和面积同时等分成两部分的函数称为圆O 的一个“太极函数”,给出下列命题:①对于任意一个圆O ,其“太极函数”有无数个; ②函数f (x )=ln(x 2+x 2+1)可以是某个圆的“太极函数”; ③正弦函数y =sin x 可以同时是无数个圆的“太极函数”;④函数y =f (x )是“太极函数”的充要条件为函数y =f (x )的图象是中心对称图形. 其中正确的命题为( )A .①③B .①③④C .②③D .①④【解析】 过圆心的直线都可以将圆的周长和面积等分成两部分,故对于任意一个圆O ,其“太极函数”有无数个,故①正确;函数f (x )=ln(x 2+x 2+1)的图象如图所示,故其不可能为圆的“太极函数”,故②错误;将圆的圆心放在正弦函数y =sin x 图象的对称中心上,则正弦函数y =sin x 是该圆的“太极函数”,从而正弦函数y =sin x 可以同时是无数个圆的“太极函数”,故③正确; 函数y =f (x )的图象是中心对称图形,则y =f (x )是“太极函数”,但函数y =f (x )是“太极函数”时,图象不一定是中心对称图形,如图,故④错误.故选A.【答案】 A中华太极图,悠悠千古昭著于世,像朝日那样辉煌宏丽,又像明月那样清亮壮美.它是我们华夏先祖的智慧结晶,它是中国传统文化的骄傲象征,它更是中华民族献给人类文明的无价之宝.试题通过太极图展示了数学文化的民族性与世界性.[对点训练]在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,如图所示,鳖臑ABCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则函数y =f (x )的图象大致是( )解析:选A.如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则PQ ∥AB ,QR ∥CD . 因为PQ ⊥BD ,又PQ ∩QR =Q ,所以BD ⊥平面PQR ,所以BD ⊥PR ,即PR 为△PBD 中BD 边上的高.设AB =BD =CD =1,则CP AC =x 3=PQ 1,即PQ =x 3,又QR 1=BQ BC =APAC =3-x 3,所以QR =3-x 3,所以PR =PQ 2+QR 2=⎝⎛⎭⎫x 32+⎝ ⎛⎭⎪⎫3-x 32=332x 2-23x +3,所以f (x )=362x 2-23x +3=66⎝⎛⎭⎫x -322+34,故选A.一、选择题1.(2018·合肥模拟)我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A .五寸B .二尺五寸C .三尺五寸D .四尺五寸解析:选B.设从夏至到冬至的晷长依次构成等差数列{a n },公差为d ,a 1=15,a 13=135,则15+12d =135,解得d =10.所以a 2=15+10=25,所以小暑的晷长是25寸.故选B.2.(2018·益阳、湘潭调研)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例.若输入n ,x 的值分别为3,3,则输出v 的值为( )A .15B .16C .47D .48解析:选D.执行程序框图,n =3,x =3,v =1,i =2≥0,v =1×3+2=5,i =1≥0,v =5×3+1=16,i =0≥0,v =16×3+0=48,i =-1<0,退出循环,输出v 的值为48.故选D.3.(2018·沈阳教学质量监测(一))刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国宝贵的数学遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )A.334πB.332πC.12πD.14π解析:选B.如图,在单位圆中作其内接正六边形,则所求概率P =S 六边形S 圆=34×12×6π×12=332π.4.(2018·高考北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322f C.1225fD.1227f解析:选D.从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122,第一个单音的频率为f ,由等比数列的概念可知,这十三个单音的频率构成一个首项为f ,公比为122的等比数列,记为{a n },则第八个单音频率为a 8=f (122)8-1=1227f ,故选D.5.(2018·潍坊模拟)“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、…、癸酉,甲戌、乙亥、丙子、…、癸未,甲申、乙酉、丙戌、…、癸巳,…,癸亥,60个为一周,周而复始,循环记录.2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( )A .己亥年B .戊戌年C .庚子年D .辛丑年解析:选C.由题意知2014年是甲午年,则2015到2020年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年.6.(2018·惠州第二次调研)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:卦名 符号表示的二进制数表示的十进制数坤 000 0 艮 001 1 坎 010 2 巽0113依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( ) A .33 B .34 C .36D .35解析:选B.由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.7.(2018·兰州模拟)刘徽《九章算术注》记载:“邪解立方,得两堑堵.邪解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意即把一长方体沿对角面一分为二,这相同的两块叫堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2∶1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为( )A.3πB.3π2C .3πD .4π解析:选B.由三视图得阳马是一个四棱锥,如图中四棱锥P -ABCD ,其中底面是边长为1的正方形,侧棱P A ⊥底面ABCD 且P A =1,所以PC =3,PC 是四棱锥P -ABCD 的外接球的直径,所以此阳马的外接球的体积为4π3⎝⎛⎭⎫323=3π2,故选B.8.(2018·唐山五校联考)割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.这是公元三世纪我国古代数学家刘徽大胆地应用以直代曲、无限趋近求圆周率的思想方法.现利用刘徽的“割圆术”思想设计一个计算圆周率的近似值的程序框图(如图).若输入的a =3,n =10,则输出的n =( )A .20B .40C .80D .160参考数据:α 36° 18° 9° 4.5° sin α0.587 80.309 00.156 40.078 5解析:选B.当a =3,n =10时,b =3,a =12×10sin 360°10=2.939,此时|a -b |=0.061>0.05,不满足条件,则n =20,b =2.939,a =12×20×sin 360°20=3.090,此时|a -b |=0.151>0.05,不满足条件,则n =40,b =3.090,a =12×40×sin 360°40=3.128,此时|a -b |=0.038<0.05,满足条件,故输出的n =40.故选B. 9.我国南宋著名数学家秦九韶发现了由三角形三边长求三角形的面积的“三斜求积”公式:设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,则△ABC 的面积S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222.若a 2sin C =4sinA ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A. 3 B .2 C .3D. 6解析:选A.根据正弦定理,由a 2sin C =4sin A ,得ac =4.再结合(a +c )2=12+b 2,得a 2+c 2-b 2=4,则S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222=16-44=3,故选A. 10.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A.392B.752C .39D.6018解析:选B.设下底面的长为x ⎝⎛⎭⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝⎛⎭⎫922+92×172+392=752.故选B.11.(2018·昆明模拟)我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,提出下面的体积计算原理(祖暅原理):“幂势既同,则积不容异”.“幂”是截面面积,“势”是几何体的高.意思是:若两个等高几何体在同高处的截面面积总相等,则这两个几何体的体积相等.现在一旋转体D (如图1所示),它是由抛物线y =x 2(x ≥0),直线y =4及y 轴围成的封闭图形绕y 轴旋转一周形成的几何体,旋转体D 的参照体的三视图如图2所示,利用祖暅原理,则旋转体D 的体积是( )A.16π3 B .6π C .8πD .16π解析:选C.由三视图知参照体是一个直三棱柱,其体积V =12×4×4×π=8π,故旋转体D 的体积为8π,故选C.12.(2018·郑州第一次质量预测)刍甍,中国古代算数中的一种几何形体,《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也”.翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶”.如图为一个刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则该茅草屋顶的面积为( )A .24B .32 5C .64D .32 6解析:选B.由三视图可知该几何体的直观图如图所示,其中S 四边形ABED =S 四边形ACFD ,S △ABC =S △DEF .过点A 向平面BCFE 作垂线,垂足为A ′,作AM ⊥CF 于点M ,作AN ⊥BC 于点N ,连接A ′N ,易知AA ′=4,A ′N =CM =8-42=2,CN =12BC =2.在Rt △AA ′N 中,AN =AA ′2+A ′N 2=42+22=25,在Rt △ANC 中,AC=CN 2+AN 2=22+(25)2=26,在Rt △AMC 中,AM =AC 2-CM 2=(26)2-22=2 5.所以S四边形ACFD =12×(4+8)×25=125,S △ABC=12×BC ×AN =12×4×25=4 5.所以该茅草屋顶的面积为2×125+2×45=325,故选B.二、填空题13.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:“今有蒲草第1天长高3尺,莞草第1天长高1尺.以后,蒲草每天长高前一天的一半,莞草每天长高前一天的2倍.问第几天蒲草和莞草的高度相同?”根据上述的已知条件,可求得第________天时,蒲草和莞草的高度相同.(结果采取“只入不舍”的原则取整数,相关数据:lg 3≈0.477 1,lg 2≈0.301 0).解析:由题意得,蒲草的长度组成首项为a 1=3,公比为12的等比数列{a n },设其前n 项和为A n ;莞草的长度组成首项为b 1=1,公比为2的等比数列{b n },设其前n 项和为B n .则A n =3⎝⎛⎭⎫1-12n 1-12,B n =2n -12-1,令3⎝⎛⎭⎫1-12n 1-12=2n -12-1,化简得2n +62n =7(n ∈N *),解得2n =6,所以n =lg 6lg 2=1+lg 3lg 2≈3,即第3天时蒲草和莞草长度相等.答案:314.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =________.解析:第一次循环,得S =2,否;第二次循环,得n =2,a =12,A =2,S =92,否;第三次循环,得n=3,a =14,A =4,S =354,否;第四次循环,得n =4,a =18,A =8,S =1358>10,是,输出的n =4.答案:415.(2018·广州调研)我国南宋数学家杨辉所著的《详解九章算法》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角”.现将杨辉三角中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为S n ,如S 1=1,S 2=2,S 3=2,S 4=4,…,则S 126=________.解析:题图②中的三角形数表,从上往下数,第1次全行的数都为1的是第1行,有1个1,第2次全行的数都为1的是第2行,有2个1,第3次全行的数都为1的是第4行,有4个1,依此类推,第n 次全行的数都为1的是第2n-1行,有2n-1个1.第1行,1个1,第2行,2个1,第3行,2个1,第4行,4个1;第1行1的个数是第2行1的个数的12,第2行与第3行1的个数相同,第3行1的个数是第4行1的个数的12;第5行,2个1,第6行,4个1,第7行,4个1,第8行,8个1;第5行1的个数是第6行1的个数的12,第6行与第7行1的个数相同,第7行1的个数是第8行1的个数的12.根据以上规律,当n =8时,第28-1行有128个1,即S 128=128,第127行有64个1,即S 127=64,第126行有64个1,即S 126=64. 答案:6416.我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,于五世纪末提出下面的体积计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是几何体的高,“幂”是截面积.意思是,两等高立方体,若在每一等高处的截面积都相等,则两立方体体积相等.现有下题:在xOy 平面上,将两个半圆弧(x -1)2+y 2=1(x ≥1)和(x -3)2+y 2=1(x ≥3)、两条直线y =1和y =-1围成的封闭图形记为D ,如图所示阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,y )(|y |≤1)作Ω的水平截面,所得截面面积为4π1-y 2+8π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为________.解析:根据提示,一个底面半径为1,高为2π的圆柱平放,一个高为2,底面积为8π的长方体,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积为π·12·2π+2·8π=2π2+16π.答案:2π2+16π。
第3讲 立体几何中的计算 课时训练1. 已知正四棱锥底面边长为42,体积为32,则此四棱锥的侧棱长为________.答案:5解析:由正四棱锥底面边长为42,则底面正方形对角线的一半长为4,再由体积公式得四棱锥的高为3,则此四棱锥的侧棱长为5.2. (2017·镇江期末)若圆锥底面半径为2,高为5,则其侧面积为________.答案:6π解析:因为圆锥的母线长为l =22+(5)2=3,所以其侧面积为π×2×3=6π.3. (2017·常州期末)以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________.答案:2∶2解析:如图,由题意可得圆柱的侧面积为S 1=2πrh =2πr 2.圆锥的母线l =h 2+r 2=2r ,故圆锥的侧面积为S 2=12×2πr ×l =2πr 2,所以S 2∶S 1=2∶2.4. (2018·启东调研)高为63的正四面体的表面积为________.答案:3解析:由正四面体的高为63,得正四面体的棱长为1,表面积为4×34=3.5. (2017·南通一调)如图,在正四棱柱ABCD A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1A 1BD 的体积为________cm 3.答案:32解析:VD 1A 1BD =VBA 1DD 1=13×3×12×3×1=32(cm 3).6. 将半径为5的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r 1,r 2,r 3,则r 1+r 2+r 3=________.答案:5解析:三个圆锥的底面周长分别为53π,103π,5π,则它们的半径r 1,r 2,r 3依次为56,53,52,则r 1+r 2+r 3=5. 7. 已知圆锥的母线长为10 cm ,侧面积为60π cm 2,则此圆锥的体积为________cm 3. 答案:96π解析:设圆锥的底面半径为r ,侧面积=12×母线长×底面圆周长=60π,得r =6 cm ,此圆锥的高为8 cm ,则此圆锥的体积为13×36π×8=96π(cm 3).8. (2018·南通中学练习)如图,在正三棱柱ABC A 1B 1C 1中,若各条棱长均为2,且M 为A 1C 1的中点,则三棱锥M AB 1C 的体积是________.答案:233解析:在正三棱柱中,AA 1⊥平面A 1B 1C 1,则AA 1⊥B 1M .因为B 1M 是正三角形的中线,所以B 1M ⊥A 1C 1.所以B 1M ⊥平面ACC 1A 1,则VMAB 1C =VB 1ACM =13×⎝ ⎛⎭⎪⎫12×AC ×AA 1×B 1M =13×12×2×2×3=233.9. (2018·常熟期中)已知正三棱锥的体积为9 3 cm 3,高为3 cm ,则它的侧面积为________cm 2.答案:183解析:设正三棱锥底面三角形的边长为a ,则V =13×34a 2×3=93,a =6(cm),底面等边三角形的高为32×6=33(cm),底面中心到一边的距离为13×33=3(cm),侧面的斜高为32+(3)2=23(cm), S 侧=3×12×6×23=183(cm 2).10. (2018·南通一调)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm.(不计损耗)答案:210解析:由题意,六角螺帽毛坯体积为正六棱柱的体积减去圆柱的体积,即V 正六棱柱-V圆柱=(S 正六边形-S 圆)h =⎝ ⎛⎭⎪⎪⎫6×34×42-93×4=603(cm 3),因为正三棱柱的体积与六角螺帽毛坯的体积相等,设正三棱柱的底面边长为a ,所以34a 2·6=603,解得a =210(cm).11. 已知等边圆柱(轴截面是正方形的圆柱)的表面积为S ,求其内接正四棱柱的体积. 解:设等边圆柱的底面半径为r ,则高h =2r . 因为S =S 侧+2S 底=2πrh +2πr 2=6πr 2, 所以r =S6π, 所以内接正四棱柱的底面边长a =2r sin45°=2r ,所以V =S 底·h =(2r )2·2r =4r 3=S 6πS9π2.12. 如图,四边形ABCD 为菱形,四边形ACFE 为平行四边形,BD 与AC 相交于点G ,AB =BD =2,AE =3,∠EAD =∠EAB .(1) 求证:平面ACFE ⊥平面ABCD ;(2) 若∠EAG =60°,求三棱锥F BDE 的体积.(1) 证明:连结EG . ∵ 四边形ABCD 为菱形, ∴ AD =AB ,BD ⊥AC ,DG =GB . 在△EAD 和△EAB 中,AD =AB ,AE =AE ,∠EAD =∠EAB ,∴ △EAD ≌△EAB , ∴ ED =EB ,∴ BD ⊥EG . ∵ BD ⊥AC ,AC ∩EG =G , ∴ BD ⊥平面ACFE . ∵ BD ⊂平面ABCD , ∴ 平面ACFE ⊥平面ABCD .(2) 解:连结FG ,∵ BD ⊥平面ACFE ,FG ⊂平面ACFE ,∴ FG ⊥BD . 在△EAG 中,AE =AG =3,且∠EAG =60°, ∴ △EAG 为正三角形, ∴ ∠EGA =60°. 在△FCG 中,CG =FC =3,∠GCF =120°, ∴ ∠FGC =30°,∴ ∠EGF =90°,即FG ⊥EG . 又BD ∩EG =G , ∴ FG ⊥平面BDE ,∴ 点F 到平面BDE 的距离为FG =3. ∵ S △BDE =12×BD ·EG=12×2×3=3,∴ 三棱锥FBDE 的体积为13×3×3=3.13. 在矩形ABCD 中,将△ABC 沿其对角线AC 折起来得到△AB 1C ,且顶点B 1在平面ACD 上的射影O 恰好落在边AD 上,如图所示.(1) 求证:AB 1⊥平面B 1CD ; (2) 若AB =1,BC =3,求三棱锥B 1ABC 的体积.(1) 证明:因为B 1O ⊥平面ABCD ,CD ⊂平面ABCD ,所以B 1O ⊥CD . 又CD ⊥AD ,AD ∩B 1O =O , 所以CD ⊥平面AB 1D .因为AB 1⊂平面AB 1D ,所以AB 1⊥CD . 因为AB 1⊥B 1C ,且B 1C ∩CD =C , 所以AB 1⊥平面B 1CD .(2) 解:因为AB 1⊥平面B 1CD ,B 1D ⊂平面B 1CD , 所以AB 1⊥B 1D . 在Rt △AB 1D 中,B 1D =AD 2-AB 21=2. 由B 1O ·AD =AB 1·B 1D , 得B 1O =AB 1·B 1D AD=63,所以VB 1ABC =13S △ABC ·B 1O =13×12×1×3×63=26.。
2019届二轮复习短文语法填空专题训练六单句填空1.Several pages ________ (tear) out of the book by accident just now.答案与解析were torn句中时间状语是“just now”,故谓语用一般过去时;主语“several pages”与tear是被动关系,故用一般过去时的被动语态,故填were torn。
tear(撕掉;撕破)—tore—torn—tearing。
2.Never hesitate ________ (count) on him when you are in trouble, because he is reliable.答案与解析to count hesitate to do sth. “犹豫做某事”。
3.________ cellphones, life would be entirely different because we depend on them too much.答案与解析Without根据语境“如果没有手机,生活将会截然不同,因为我们太依赖它们。
”可知该空处填介词without,该句是without的含蓄虚拟语气。
4.Only when you ________ (accompany) by your parents can you be allowed to come in.答案与解析are accompanied when引导的时间状语从句谓语动词用一般现在时,且主语you与accompany是被动关系,故用一般现在时的被动语态,故填are accompanied。
5.The poor conditions made the company hard to work ________ (finance).答案与解析financially设空处所填词在句中修饰非谓语动词work, 应用副词,故填financially。
热点一 分段函数的性质、图象以及应用新课标下高考数学题中以分段函数为载体,考查函数的图像、性质等知识的习题倍受青睐.所谓的分段函数是指自变量X 在不同的取值范围内对应关系不同的函数,由分段函数本身的特点,使得一个函数在各段上有不同的解析式,所以可将一次函数、反比例函数、二次函数、指数函数、对数函数、三角函数、抽象函数融合在一个题目之中,考查多个知识点.因而分段函数已成为高考命题的一个热点.纵观近几年高考对于分段函数的性质、图象的考查,重点放在函数的奇偶性、周期性以及函数的零点问题与分段函数结合上;要求学生有较强的抽象思维能力、作图能力以及准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握比较模糊,看到就头疼的题目.分析原因,除了这类题目本身就是压轴题确实不易之外,主要是学生的作图能力普遍较弱,还有就是没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 本文就高中阶段出现这类问题加以类型的总结和方法的探讨.1 分段函数与函数值分段函数:定义域中各段的x 与y 的对应法则不同,函数式是分两段或几段给出的.分段函数是一个函数,定义域、值域都是各段的并集.分段函数中的问题一般是求解析式、值域或最值,讨论奇偶性、单调性等.分段函数的处理方法:分段函数分段研究.一般将具体函数或与抽象函数结合,通过考查对数、指数的运算形成的函数求值问题. 例 1【山东省枣庄第八中学2019届高三1月考前测试】已知函数( )A .8B .6C .3D .1 【答案】C 【解析】 由函数,可得,则,解得.所以.故选C.2 分段函数与图象:分段函数的图象分段画.例 2.已知函数,则函数的大致图象是()A. B.C. D.【答案】B【解析】令,则,化简得,因g x在上都是增函数.又,故选B.此()3 分段函数与方程已知函数值求自变量x或其它参数的值的问题,一般按自变量x的取值范围分类讨论,通过解方程而得到.数形结合是解答此类问题的重要方法.例3【河北省衡水中学2019届高三上学期五调】已知定义在上的函数,若函数恰有2个零点,则实数的取值范围是()A. B.C. D.【答案】B【解析】由题意函数恰有2个零点,即是方程有两不等实根,即是两函数与有两不同交点,作出函数图像如下图,易得当时,有两交点,即函数恰有2个零点.故选B.4 分段函数与不等式将分段函数与不等式结合,考查函数单调性及解不等式知识,体现分类讨论思想.例4【河南省开封市2019届高三上学期第一次模拟】已知函数若,则的取值范围是A. B. C. D.【答案】B【解析】∵,∴或即或即∴的取值范围是故选:B5 分段函数与零点解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.讨论参数、数形结合是解答此类问题的重要方法.例5【2019年上海市普陀区高考一模】设是定义在R上的周期为4的函数,且,记,若则函数在区间上零点的个数是()A.5 B.6 C.7 D.8【答案】D【解析】由图可知:直线与在区间上的交点有8个,故选:D .6 分段函数与解析式分段函数是定义域中各段的x 与y 的对应法则不同,函数式是分两段或几段给出的.因此求解析式时,也是分段求解析式的.例 6【2018届湖南省株洲市高三教学质量统一检测(一)】已知()f x 是定义在R 上的奇函数.当0x >时,,则不等式()0f x >的解集用区间表示为( )A. ()1,1-B.C.D.【答案】D【解析】f (x )是定义在R 上的奇函数,∴f (0)=0.设x <0,则-x >0,∵当x >0时,f (x )=x 2-x , ∴f (-x )=x 2+x ,又f (-x )=x 2+x=-f (x ),∴f (x )=-x 2-x ,x <0.当x >0时,由f (x )>0得x 2-x >0,解得x >1或x <0(舍去),此时x >1. 当x=0时,f (0)>0不成立.当x <0时,由f (x )>0得-x 2-x >0,解得-1<x <0. 综上x ∈(-1,0)∪(1,+∞). 故选D.7 分段函数与周期和最值分段函数的值域是各段值域的并集,最大值是各段最大值中的最大者是函数的最大值,最小值是各段最小值中的最小者,一般可借助于图像来解决.例 7【2018届山西省太原十二中高三1月月考】已知8m n -<<,函数若()f x 的值域为[]1,3-,则n m -的最大值与最小值之积为( ) A. 4 B. 6 C. 8 D. 10 【答案】B点睛:这是一个动态变化的问题,注意到函数在区间[)8,m -有最大值3,但无最小值,故函数的最小值1-只能在[],m n 取得,但是,因此[]1,m n ∈且12m ≤-,再根据()f x 的最大值为3,得到,所以n m -的最小值为32,最大值为4,它们的乘积为6. 例 8【2018届贵州省贵阳市第一中学高三12月月考】已知()f x 是定义在R 上的奇函数,满足,当10,2x ⎡⎤∈⎢⎥⎣⎦时,,则函数在区间3,32⎡⎤-⎢⎥⎣⎦上所有零点之和为( )A. 4B. 3C. 2D. 1 【答案】A【解析】由已知()f x 是定义在R 上的奇函数,所以,又,所以()f x。
专题检测(一) 集合、复数、算法一、选择题1.(2018·福州质检)已知集合A ={x |x =2k +1,k ∈Z },B ={x |-1<x ≤4},则集合A ∩B 中元素的个数为( )A .1B .2C .3D .4解析:选B 依题意,集合A 是由所有的奇数组成的集合,故A ∩B ={1,3},所以集合A ∩B 中元素的个数为2.2.(2018·全国卷Ⅱ)1+2i 1-2i =( )A .-45-35iB .-45+35iC .-35-45iD .-35+45i解析:选D 1+2i 1-2i =(1+2i )2(1-2i )(1+2i )=-3+4i 5=-35+45i.3.(2019届高三·湘东五校联考)已知i 为虚数单位,若复数z =a1-2i +i(a ∈R )的实部与虚部互为相反数,则a =( )A .-5B .-1C .-13D .-53解析:选D z =a 1-2i +i =a (1+2i )(1-2i )(1+2i )+i =a 5+2a +55i ,∵复数z =a1-2i+i(a ∈R )的实部与虚部互为相反数,∴-a 5=2a +55,解得a =-53.4.设全集U =R ,集合A ={x |x ≥1},B ={x |(x +2)(x -1)<0},则( ) A .A ∩B =∅ B .A ∪B =U C .∁U B ⊆AD .∁U A ⊆B解析:选A 由(x +2)(x -1)<0,解得-2<x <1,所以B ={x |-2<x <1},则A ∩B =∅, A ∪B ={x |x >-2},∁U B ={x |x ≥1或x ≤-2},A ⊆∁U B ,∁U A ={x |x <1},B ⊆∁U A ,故选A.5.(2019届高三·武汉调研)已知复数z 满足z +|z |=3+i ,则z =( ) A .1-i B .1+i C.43-i D.43+i解析:选D 设z =a +b i ,其中a ,b ∈R ,由z +|z |=3+i ,得a +b i +a 2+b 2=3+i ,由复数相等可得⎩⎨⎧a +a 2+b 2=3,b =1,解得⎩⎪⎨⎪⎧a =43,b =1,故z =43+i.6.(2018·开封高三定位考试)“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,如图所示的程序框图的算法思路就是来源于“欧几里得算法”.执行该程序框图(图中“a MOD b ”表示a 除以b 的余数),若输入的a ,b 分别为675,125,则输出的a =( )A .0B .25C .50D .75解析:选B 初始值:a =675,b =125,第一次循环:c =50,a =125,b =50;第二次循环:c =25,a =50,b =25;第三次循环:c =0,a =25,b =0,此时不满足循环条件,退出循环.输出a 的值为25.7.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}解析:选B ∵x 2-x -2>0,∴(x -2)(x +1)>0, ∴x >2或x <-1,即A ={x |x >2或x <-1}. 则∁R A ={x |-1≤x ≤2}.故选B.8.(2018·益阳、湘潭调研)设全集U =R ,集合A ={x |log 2x ≤2},B ={x |(x -2)(x +1)≥0},则A ∩∁U B =( )A .(0,2)B .[2,4]C .(-∞,-1)D .(-∞,4]解析:选A 集合A ={x |log 2x ≤2}={x |0<x ≤4},B ={x |(x -2)(x +1)≥0}={x |x ≤-1或x ≥2},则∁U B ={x |-1<x <2}.所以A ∩∁U B ={x |0<x <2}=(0,2).9.(2019届高三·南宁二中、柳州高中联考)执行如图所示的程序框图,若输出的结果s =132,则判断框中可以填( )A .i ≥10?B .i ≥11?C .i ≤11?D .i ≥12?解析:选B 执行程序框图,i =12,s =1;s =12×1=12,i =11;s =12×11=132, i =10.此时输出的s =132,则判断框中可以填“i ≥11?”.10.执行如图所示的程序框图,输出的结果是( )A .5B .6C .7D .8解析:选B 执行程序框图,第一步:n =12,i =1,满足条件n 是3的倍数,n =8,i =2,不满足条件n >123; 第二步:n =8,不满足条件n 是3的倍数,n =31,i =3,不满足条件n >123; 第三步:n =31,不满足条件n 是3的倍数,n =123,i =4,不满足条件n >123; 第四步:n =123,满足条件n 是3的倍数,n =119,i =5,不满足条件n >123;第五步:n =119,不满足条件n 是3的倍数,n =475,i =6,满足条件n >123,退出循环,输出i 的值为6.11.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 本题关键看清-1和1本身也具备这种运算,这样所求集合即由-1,1,3和13,2和12这“四大”元素所能组成的集合.所以满足条件的集合的个数为24-1=15.12.(2018·太原模拟)若复数z =1+m i1+i在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(-1,1) B .(-1,0) C .(1,+∞) D .(-∞,-1)解析:选A 法一:因为z =1+m i 1+i =(1+m i )(1-i )(1+i )(1-i )=1+m 2+m -12i 在复平面内对应的点为⎝⎛⎭⎫1+m 2,m -12,且在第四象限,所以⎩⎨⎧1+m 2>0,m -12<0,解得-1<m <1.法二:当m =0时,z =11+i =1-i (1+i )(1-i )=12-12i ,在复平面内对应的点在第四象限,所以排除选项B 、C 、D ,故选A.13.(2018·安徽知名示范高中联考)执行如图所示的程序框图,如果输出的n =2,那么输入的a 的值可以为( )A .4B .5C .6D .7解析:选D 执行程序框图,输入a ,P =0,Q =1,n =0,此时P ≤Q 成立,P =1, Q =3,n =1,此时P ≤Q 成立,P =1+a ,Q =7,n =2.因为输出的n 的值为2,所以应该退出循环,即P >Q ,所以1+a >7,结合选项,可知a 的值可以为7,故选D.14.(2019届高三·广西五校联考)已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 2 0171-i=( ) A .1 B .0 C .iD .1-i解析:选C 因为z =(a 2-1)+(a +1)i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,得a =1,则有1+i 2 0171-i =1+i 1-i =(1+i )2(1+i )(1-i )=i.15.(2018·新疆自治区适应性检测)沈括是我国北宋著名的科学家,宋代制酒业很发达,为了存储方便,酒缸是要一层一层堆起来的,形成了堆垛.沈括在其代表作《梦溪笔谈》中提出了计算堆垛中酒缸的总数的公式.图1是长方垛:每一层都是长方形,底层长方形的长边放置了a 个酒缸,短边放置了b 个酒缸,共放置了n 层.某同学根据图1,绘制了计算该长方垛中酒缸总数的程序框图,如图2,那么在◇和▭两个空白框中,可以分别填入( )A .i <n ?和S =S +a ·bB .i ≤n ?和S =S +a ·bC .i ≤n ?和S =a ·bD .i <n ?和S =a ·b解析:选B 观察题图1可知,最下面一层酒缸的个数为a ·b ,每上升一层长方形的长边和短边放置的酒缸个数分别减少1,累加即可,故执行框中应填S =S +a ·b ;计算到第n 层时,循环n 次,此时i =n ,故判断框中应填i ≤n ?,故选B.16.已知集合A =⎩⎨⎧⎭⎬⎫(x ,y )|x 2+y 2=π24,y ≥0,B ={(x ,y )|y =tan(3π+2x )},C =A ∩B ,则集合C 的非空子集的个数为( )A .4B .7C .15D .16解析:选C 因为B ={(x ,y )|y =tan(3π+2x )}={(x ,y )|y =tan 2x },函数y =tan 2x 的周期为π2,画出曲线x 2+y 2=π24,y ≥0与函数y = tan 2x 的图象(如图所示),从图中可观察到,曲线x 2+y 2=π24,y ≥0与函数y =tan 2x 的图象有4个交点.因为C=A ∩B ,所以集合C 中有4个元素,故集合C 的非空子集的个数为24-1=15,故选C.二、填空题 17.已知复数z =1+3i2+i,则|z |=________. 解析:法一:因为z =1+3i 2+i =(1+3i )(2-i )(2+i )(2-i )=5+5i5=1+i ,所以|z |=|1+i|= 2.法二:|z |=⎪⎪⎪⎪⎪⎪1+3i 2+i =|1+3i||2+i|=105= 2. 答案: 218.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}.答案:{(2,3)}19.已知复数z =x +4i(x ∈R )(i 是虚数单位)在复平面内对应的点在第二象限,且|z |=5,则z1+i的共轭复数为________.解析:由题意知x <0,且x 2+42=52, 解得x =-3, ∴z 1+i =-3+4i 1+i =(-3+4i )(1-i )(1+i )(1-i )=12+72i ,故其共轭复数为12-72i.答案:12-72i20.已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)如果集合A 中只有1个元素,那么A =________; (2)有序集合对(A ,B )的个数是________.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,6∉B ,故A ={6}. (2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个; 当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个; 当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个. 综上可知,有序集合对(A ,B )的个数是1+5+10+10+5+1=32. 答案:(1){6} (2)32。
第2讲 平面向量、解三角形【课前热身】第2讲 平面向量、解三角形(本讲对应学生用书第4~6页)1.(必修4 P76习题7改编)在矩形ABCD 中,O 是对角线的交点,若BC u u u r =e 1,DC u u u r =e 2,则OC u u u r= .【答案】12(e 1+e 2)【解析】因为O 是矩形ABCD 对角线的交点,BCu u u r =e 1,DCu u u r =e 2,所以OCu u u r =12(BC u u u r +DC u u u r)=12(e 1+e 2).2.(必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x+1),若a ⊥b ,则实数x= . 【答案】3【解析】因为a ⊥b ,所以a ·b =0,所以12-3x-3=0,解得x=3.3.(必修5 P10练习2改编)在锐角三角形ABC 中,设角A ,B 所对的边分别为a ,b.若2a sin B=3b ,则角A= .【答案】π3【解析】在△ABC 中,由正弦定理及已知得2sin A·sin B=3sin B ,因为B 为△ABC的内角,所以sin B ≠0,所以sinA=32.又因为△ABC 为锐角三角形,所以A ∈π02⎛⎫ ⎪⎝⎭,,所以A=π3.4.(必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k= 时,向量k a -b 与a +3b 平行.【答案】-13【解析】由题设知向量a 与b 不平行,因为向量k a -b 与a +3b 平行,所以1k =-13,即k=-13.5.(必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=7,b=43,c=13,则△ABC 最小的内角为 .【答案】π6【解析】因为13<43<7,所以C<B<A ,又因为cosC=222-2a b c ab +=2743⨯⨯=32,所以C=π6.【课堂导学】平面向量与三角函数综合例1 (2016·淮安5月信息卷)已知向量m =(cos α,sin α),n =(3,-1),α∈(0,π).(1)若m ⊥n ,求角α的大小; (2)求|m +n |的最小值.【解答】(1)因为m =(cos α,sin α),n =(3,-1),且m ⊥n ,所以3cos α-sin α=0,即tan α=3.又因为α∈(0,π),所以α=π3.(2)因为m +n =(cos α+3,sin α-1),所以|m +n |=22(cos 3)(sin -1)αα++=523cos -2sin αα+=π54cos 6α⎛⎫++ ⎪⎝⎭. 因为α∈(0,π),所以α+ππ7π666⎛⎫∈ ⎪⎝⎭,,故当α+π6=π,即α=5π6时,|m +n |取得最小值1.正弦定理、余弦定理的应用例2 (2016·苏州暑假测试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin2-2A B+sin A sin B=22+.(1)求角C 的大小;(2)若b=4,△ABC 的面积为6,求c 的值.【解答】(1)sin2-2A B+sin A sin B=1-cos(-)2A B+2sin sin2A B=1-cos cos-sin sin2A B A B+2sin sin2A B=1-cos cos sin sin2A B A B+=1-(cos cos-sin sin)2A B A B=1-cos()2A B+=1-cos(π-)2C=1cos2C+=22+,所以cos C=22.又0<C<π,所以C=π4.(2)因为S=12ab sin C=12a×4×sinπ4=2a=6,所以a=32.因为c2=a2+b2-2ab cos C=(32)2+42-2×32×4×22=10,所以c=10.变式1(2016·南通一调)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(a+b-c)(a+b+c)=ab.(1)求角C的大小;(2)若c=2a cos B,b=2,求△ABC的面积.【解答】(1)在△ABC中,由(a+b-c)(a+b+c)=ab,得222-2a b cab+=-12,即cosC=-12.因为0<C<π,所以C=2π3.(2)方法一:因为c=2a cos B,由正弦定理,得sin C=2sin A cos B.因为A+B+C=π,所以sin C=sin(A+B ),所以sin(A+B )=2sin A cos B ,即sin A cos B-cos A sin B=0, 所以sin(A-B )=0.又-π3<A-B<π3,所以A-B=0,即A=B ,所以a=b=2. 所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.方法二:由c=2a cos B 及余弦定理,得c=2a×222-2a c b ac +,化简得a=b ,所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.变式2 (2016·南通、扬州、淮安、宿迁、泰州二调)在斜三角形ABC 中,tan A+tan B+tan A tan B=1.(1)求角C 的大小; (2)若A=15°,2,求△ABC 的周长.【解答】(1)因为tan A+tan B+tan A tan B=1, 即tan A+tan B=1-tan A tan B.因为在斜三角形ABC 中,1-tan A tan B ≠0,所以tan(A+B )=tan tan 1-tan tan A BA B +=1,即tan(180°-C )=1,tan C=-1. 因为0°<C<180°,所以C=135°.(2)在△ABC 中,A=15°,C=135°,则B=180°-A-C=30°.由正弦定理sin BC A =sin CAB =sin ABC ,得sin15BC o =°sin30CA=2=2,故BC=2sin 15°=2sin(45°-30°)=2(sin 45°cos 30°-cos 45°sin 30°)=6-2 2,CA=2sin 30°=1.所以△ABC的周长为AB+BC+CA=2+1+6-22=2622++.平面向量与解三角形综合例3(2016·无锡期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量a=(sin B-sin C,sin C-sin A),b=(sin B+sin C,sin A),且a⊥b.(1)求角B的大小;(2)若b=c·cos A,△ABC的外接圆的半径为1,求△ABC的面积.【解答】(1)因为a⊥b,所以a·b=0,即sin2B-sin2C+sin A(sin C-sin A)=0,即sin A sin C=sin2A+sin2C-sin2B,由正弦定理得ac=a2+c2-b2,所以cos B=222-2a c bac+=12.因为B∈(0,π),所以B=π3.(2)因为c·cos A=b,所以bc=222-2b c abc+,即b2=c2-a2,又ac=a2+c2-b2,b=2R sin3,解得a=1,c=2.所以S△ABC =12ac sin B=3.变式(2016·苏锡常镇二调)在△ABC中,内角A,B,C的对边分别是a,b,c,已知向量m=(cos B,cos C),n=(4a-b,c),且m∥n.(1)求cos C的值;(2)若c=3,△ABC的面积S=15,求a,b的值.【解答】(1)因为m∥n,所以c cos B=(4a-b)cos C,由正弦定理,得sin C cos B=(4sin A-sin B)cos C,化简得sin(B+C)=4sin A cos C.因为A+B+C=π,所以sin(B+C)=sin A.又因为A∈(0,π),所以sin A≠0,所以cos C=14.(2)因为C∈(0,π),cos C=14,所以sin C=21-cos C=11-16=15.因为S=12ab sin C=15,所以ab=2.①因为c=3,由余弦定理得3=a2+b2-12ab,所以a2+b2=4,②由①②,得a4-4a2+4=0,从而a2=2,a=2(a=-2舍去),所以a=b=2.【课堂评价】1.(2016·镇江期末)已知向量a=(-2,1),b=(1,0),则|2a+b|=. 【答案】13【解析】因为2a+b=(-3,2),所以|2a+b|=22(-3)2+=13.2.(2016·南京学情调研)已知向量a=(1,2),b=(m,4),且a∥(2a+b),则实数m=.【答案】2【解析】方法一:由题意得a=(1,2),2a+b=(2+m,8),因为a∥(2a+b),所以1×8-(2+m)×2=0,故m=2.方法二:因为a∥(2a+b),所以存在实数λ,使得λa=2a+b,即(λ-2)a=b,所以(λ-2,2λ-4)=(m,4),所以λ-2=m且2λ-4=4,解得λ=4,m=2.3.(2016·南京、盐城一模)在△ABC中,设a,b,c分别为内角A,B,C的对边,若a=5,A=π4,cos B=35,则c=.【答案】7【解析】因为cos B=35,所以B∈π2⎛⎫⎪⎝⎭,,从而sin B=45,所以sin C=sin(A+B)=sinA cos B+cos A sin B=2×35+2×45=72,又由正弦定理得sinaA=sincC,即52 =72c,解得c=7.4.(2016·全国卷Ⅲ)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=.(第4题)【答案】-10【解析】如图,作AD ⊥BC交BC 于点D ,设BC=3,则AD=BD=1,AB=2,AC=5.由余弦定理得32=(2)2+(5)2-2×2×5×cos A ,解得cos A=-10.5.(2016·南通一调)已知在边长为6的正三角形ABC 中,BD u u u r =12BC u u u r ,AE u u u r=13AC u u u r ,AD 与BE 交于点P ,则PB u u u r ·PD u u ur 的值为 .(第5题)【答案】274【解析】如图,以BC 为x 轴,AD 为y 轴,建立平面直角坐标系,不妨设B (-3,0),C (3,0),则D (0,0),A (0,33),E (1,23),P 330⎛ ⎝⎭,,所以PB u u u r ·PD u u ur =|PD u u u r |2=233⎝⎭=274.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第3~4页.【检测与评估】第2讲 平面向量、解三角形一、 填空题1.(2016·苏州暑假测试)设x ,y ∈R ,向量a =(x ,1),b =(2,y ),且a +2b =(5,-3),则x+y= .2.(2016·盐城三模)已知向量a ,b 满足a =(4,-3),|b |=1,|a -b |=21,则向量a ,b 的夹角为 .3.(2016·全国卷Ⅱ)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b= .4.(2016·天津卷)在△ABC 中,若AB=13,BC=3,∠C=120°,则AC= .5.(2016·南京三模)如图,在梯形ABCD 中,AB ∥CD ,AB=4,AD=3,CD=2,AM u u u u r =2MD u u u u r .若AC u u u r ·BM u u u u r =-3,则AB u u u r ·AD u u u r = .(第5题)6.(2016·无锡期末)已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围为 .7.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若b a +ab =6cos C ,则tan tan C A +tan tan CB = .8.(2016·苏北四市摸底)在△ABC 中,AB=2,AC=3,角A 的平分线与AB 边上的中线交于点O ,若AO u u u r =x AB u u u r+y AC u u u r (x ,y ∈R ),则x+y 的值为 .二、 解答题9.(2016·苏北四市期末)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin A=35,tan(A-B )=-12.(1)求tan B 的值; (2)若b=5,求c 的值.10.(2016·徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD=1,BD=210,∠CAD=π4,tan ∠ADC=-2.(1)求CD 的长; (2)求△BCD 的面积.(第10题)11.(2016·南京三模)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B.(1)求cos B 的值;(2)若a ,b ,c 成等比数列,求1tan A +1tan C 的值.【检测与评估答案】第2讲 平面向量、解三角形一、 填空题1. -1 【解析】由题意得a +2b =(x+4,1+2y )=(5,-3),所以4512-3x y +=⎧⎨+=⎩,,解得1-2x y =⎧⎨=⎩,,所以x+y=-1.2. π3【解析】设向量a ,b 的夹角为θ,由|a -b|=,得21=(a -b )2=a 2+b 2-2a ·b =25+1-2·5·cos θ,即cos θ=12,所以向量a ,b 的夹角为π3.3. 2113 【解析】因为cos A=45,cos C=513,且A ,C 为三角形的内角,所以sin A=35,sin C=1213,所以sin B=sin(A+C )=sin A cos C+cos A sin C=6365.由正弦定理得sin b B =sin aA ,解得b=2113.4. 1【解析】设AC=x,由余弦定理得cos 120°=29-13 23xx+⋅⋅=-12,即x2+3x-4=0,解得x=1或x=-4(舍去),所以AC=1.5.32【解析】方法一:设ABu u u r=4a,ADu u u r=3b,其中|a|=|b|=1,则DCu u u r=2a,AMu u u u r=2b.由ACu u u r·BMu u u u r=(ADu u u r+DCu u u r)·(BAu u u r+AMu u u u r)=-3,得(3b+2a)·(2b-4a)=-3,化简得a·b=18,所以ABu u u r·ADu u u r=12a·b=32.方法二:建立平面直角坐标系,使得A(0,0),B(4,0),设D(3cos α,3sin α),则C(3cos α+2,3sin α),M(2cos α,2sin α).由ACu u u r·BMu u u u r=-3,得(3cos α+2,3sin α)·(2cos α-4,2sin α)=-3,化简得cos α=18,所以ABu u u r·ADu u u r=12cos α=32.6.23⎛⎤⎥⎝⎦,【解析】如图,设α=ABu u u r,β=ACu u u r,则β-α=BCu u u r,∠ABC=60°,设α与β的夹角为θ,则0°<θ<120°,由正弦定理可得°||sin(120-)θα=°||sin60β,所以|α|=233sin(120°-θ).因为0°<θ<120°,所以0°<120°-θ<120°,所以0<sin(120°-θ)≤1,所以0<|α|≤23.(第6题)7. 4 【解析】b a +ab =6cos C ⇒6ab cos C=a 2+b 2⇒3(a 2+b 2-c 2)=a 2+b 2⇒a 2+b 2=232c ,所以tan tan C A +tan tan CB =sin cosC C ·cos sin sin cos sin sin B A B A A B +=sin cos C C ·sin()sin sin A B A B +=1cos C ·2sin sin sin C A B =2222-aba b c +·2c ab =22223-2c c c=2222c c =4.8. 58 【解析】如图,在△ABC 中,AD 为∠BAC 的平分线,CE 为AB 边上的中线,且AD ∩CE=O.在△AEO 中,由正弦定理得sin AE AOE ∠=sin EOEAO ∠.在△ACO 中,由正弦定理得sin AC AOC ∠=sin COCAO ∠,两式相除得AE AC =EO OC .因为AE=12AB=1,AC=3,所以EO OC =13,所以CO u u u r =3OE u u u r ,即AO u u u r -AC u u u r =3(AE u u u r -AO u u ur ),即4AO u u u r =3AE u u u r+AC u u u r ,所以4AO u u u r =32AB u u ur +AC u u u r ,从而AO u u u r =38AB u u u r +14AC u u u r .因为AO u u u r =x AB u u u r+y ACu u u r ,所以x=38,y=14,所以x+y=58.(第8题)二、 解答题9. (1) 方法一:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tan A=sin cos A A =34.由tan(A-B )=tan -tan 1tan ?tan A B A B +=-12,得tan B=2.方法二:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tanA=sin cos A A =34.又因为tan(A-B )=-12,所以tan B=tan[A-(A-B )]=tan -tan(-)1tan tan(-)A A B A A B +=31--42311-42⎛⎫ ⎪⎝⎭⎛⎫+⨯ ⎪⎝⎭=2. (2) 由(1)知tan B=2,得sin B=255,cos B=55, 所以sin C=sin(A+B )=sin A cos B+cos A sin B=11525,由正弦定理sin bB =sin cC ,得c=sin sin b C B =112.10. (1) 因为tan ∠ADC=-2,且∠ADC ∈(0,π),所以sin ∠ADC=255,cos ∠ADC=-55. 所以sin ∠ACD=sinππ--4ADC ∠⎛⎫ ⎪⎝⎭ =sin ∠ADC+π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=,在△ADC 中,由正弦定理得CD=·sin sin AD DACACD ∠∠=.(2) 因为AD ∥BC ,所以cos ∠BCD=-cos ∠ADC=,sin ∠BCD=sin ∠ADC=.在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD , 即BC 2-2BC-35=0,解得BC=7,所以S △BCD =12BC ·CD ·sin ∠BCD=12×7=7.11. (1) 因为m ·n =3b cos B ,所以a cos C+c cos A=3b cos B. 由正弦定理得sin A cos C+sin C cos A=3sin B cos B , 所以sin(A+C )=3sin B cos B , 所以sin B=3sin B cos B.因为B 是△ABC 的内角,所以sin B ≠0,所以cos B=13.(2) 因为a ,b ,c 成等比数列,所以b 2=ac. 由正弦定理得sin 2B=sin A ·sin C.因为cos B=13,B 是△ABC 的内角,所以sinB=,又1tan A +1tan C =cos sin A A +cos sin C C =cos ?sin sin ?cos sin sin A C A CA C +⋅ =sin()sin sin A C A C +⋅=sin sin sin B A C=2sin sin B B =1sin B=.。
[必练习题]
1.过圆x 2+y 2-x -y +1
4=0的圆心,且倾斜角为π4的直线方程为( )
A .x -2y =0
B .x -2y +3=0
C .x -y =0
D .x -y +1=0
解析:选C.由题意知圆的圆心坐标为⎝⎛⎭⎫12,12,所以过圆的圆心,且倾斜角为π
4的直线方程为y =x ,即x -y =0.
2.圆心为(4,0)且与直线3x -y =0相切的圆的方程为( ) A .(x -4)2+y 2=1 B .(x -4)2+y 2=12 C .(x -4)2+y 2=6
D .(x +4)2+y 2=9
解析:选B.由题意,知圆的半径为圆心到直线3x -y =0的距离,即r =|3×4-0|
3+1=
23,结合圆心坐标可知,圆的方程为(x -4)2+y 2=12,故选B.
3.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5
2,则其渐近方程为( )
A .y =±2x
B .y =±4x
C .y =±1
2
x
D .y =±14
x
解析:选C.由题意得e =c a =52,又a 2+b 2=c 2,所以b a =1
2,所以双曲线的渐近线方程
为y =±1
2
x ,选C.
4.设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA =π
4,若|AB |=4,|BC |=2,则椭
圆的两个焦点之间的距离为( )
A.463
B.263
C.433
D.233
解析:选A.不妨设椭圆的标准方程为x 2a 2+y 2
b 2=1(a >b >0),如图,
由题意知,2a =4,a =2,因为∠CBA =π
4
,|BC |=2,所以点C 的坐标
为(-1,1),因为点C 在椭圆上,所以14+1b 2=1,所以b 2=43,所以c 2=a 2-b 2=4-43=8
3,c
=263,则椭圆的两个焦点之间的距离为46
3
.
5.已知⊙M 经过双曲线S :x 29-y 2
16=1的一个顶点和一个焦点,圆心M 在双曲线S 上,
则圆心M 到原点O 的距离为( )
A.143或73
B.154或83
C.133
D.163
解析:选D.因为⊙M 经过双曲线S :x 29-y 2
16=1的一个顶点和一个焦点,圆心M 在双曲
线S 上,所以⊙M 不可能过异侧的顶点和焦点,不妨设⊙M 经过双曲线的右顶点和右焦点,则圆心M 到双曲线的右焦点(5,0)与右顶点(3,0)的距离相等,所以x M =4,代入双曲线方程可得y M =±
16×⎝⎛⎭⎫169-1=±47
3
,所以|OM |=16+⎝⎛⎭⎫4732
=16
3
,故选D.
6.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )
A.334
B.938
C.6332
D.94
解析:选D.易知直线AB 的方程为y =
33⎝⎛⎭
⎫
x -34,与y 2=3x 联立并消去x 得4y 2- 123y -9=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=33,y 1y 2=-94,S △OAB =1
2|OF |·|y 1-y 2|
=12×34(y 1+y 2)2-4y 1y 2=3827+9=9
4
.故选D. 7.已知双曲线x 2a 2-y 2
12=1(a >0),以原点为圆心,双曲线的实半轴长为半径的圆与双曲
线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为43,则双曲线的方程为( )
A.x 24-3y 2
4=1 B.x 24-4y 2
3=1 C.x 26-y 2
12
=1 D.x 24-y 2
12
=1 解析:选 D.根据对称性,不妨设点A 在第一象限,A (x ,y ),则⎩⎪⎨⎪
⎧x 2
+y 2
=a 2
,y =23a x
解得
⎩
⎪⎨⎪
⎧x =a 212+a 2
,
y =23a
12+a 2
,
因为四边形ABCD 的面积为43,所以4xy =4×23a 3
12+a 2=43,解得a =2,
故双曲线的方程为x 24-y 2
12
=1,选D.
8.已知圆C 1:(x -1)2+y 2=2与圆C 2:x 2+(y -b )2=2(b >0)相交于A ,B 两点,且|AB |=2,则b =________.
解析:由题意知C 1(1,0),C 2(0,b ),半径r 1=r 2=2,所以线段AB 和线段C 1C 2相互垂直平分,则|C 1C 2|=2,即1+b 2=4,又b >0,故b = 3.
答案: 3
9.已知椭圆x 2a 2+y 2
b 2=1(a >b >0),以原点O 为圆心,短半轴长为半径作圆O ,过椭圆的
长轴的一端点P 作圆O 的两条切线,切点为A ,B ,若四边形P AOB 为正方形,则椭圆的离心率为________.
解析:如图,因为四边形P AOB 为正方形,且P A ,PB 为圆O 的切线,所以△OAP 是等腰直角三角形,故a =2b ,所以e =c a =2
2
.
答案:
22
10.已知抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2
=1的右焦点的连线交
C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =________.
解析:由题意知,经过第一象限的双曲线的渐近线方程为y =
3
3
x .抛物线的焦点为F 1⎝⎛⎭⎫0,p 2,双曲线的右焦点为F 2(2,0).又y ′=1p
x ,故抛物线C 1在点M ⎝⎛⎭⎫x 0,x 2
2p 处的切线的斜率为
33,即1p x 0=33,所以x 0=33p ,又点F 1⎝⎛⎭⎫0,p 2,F 2(2,0),M ⎝⎛⎭⎫33
p ,p
6三点共线,所以p 2-00-2=p 6-p
23
3
p -0,即p =
433.
答案:433。