第六章 有限元法
- 格式:ppt
- 大小:14.94 MB
- 文档页数:50
第六章杆件系统结构有限元法杆件系统是由几何特征为长度比横梁面的两个尺寸大很多的杆件连接而成的结构体系。
起重机械和运输机械的动臂、汽车的车架、钢结构等,都是由金属的杆件组成的。
杆件系统的有限元法在机械、建筑、航空、造船等各个工程领域得到了广泛的应用。
若杆件之间由铰相连,并且外载荷都作用在铰节点上,则该体系称为桁架。
有限元中将桁架的单元称为杆单元,即桁架是由仅承受轴向拉压的杆单元的集合。
如果杆件之间是由刚性连接,则该体系是刚架,刚架的单元称为梁单元。
梁单元可以承受轴力、弯矩、剪力及扭矩的作用。
第一节等截面梁单元平面刚架结构——所有杆件的轴线以及所有外力作用线都位于同一平面内,并且各杆件都能在此平面内产生平面弯曲,从而结构的各个节点位移都将发生在这个平面内。
一、结构离散化原则:杆件的交叉点、边界点、集中力作用点、位移约束点、分布力突变的位置都要布置成节点,而不同横截面的分界面和不同材料的分界面都要成为单元的分界面。
平面桁架对于桁架结构,因每个杆件都是一个二力杆,故每个杆件可设置成一个单元。
平面桁架结构每个节点有2个自由度,分别是u 和v ,每个单元有4个自由度。
最大半带宽B=(2+1)×2=6。
一维单元和二维单元的混合应用:左边部分是平面问题的二维板件结构(黑线部分),右面框架部分是一维杆件结构(红线部分)。
xy采用平面4节点四边形单元模拟二维板件,用平面杆单元单元模拟一维杆件结构。
离散化后,共有37个节点,32个单元,其中4节点四边形单元16个,杆单元单元16个。
因为平面4节点四边形单元和平面杆单元单元每个节点都有2个自由度,4节点四边形单元的刚度矩阵是8×8,平面杆单元的刚度矩阵是4×4。
整体刚度矩阵刚[]k 的维数是227474n n ⨯=⨯。
其中部分总刚子块为[](1)(2)(3)(4)777777777722k k k k k ⨯⎡⎤⎡⎤⎡⎤⎡⎤=+++⎣⎦⎣⎦⎣⎦⎣⎦(4)(6)(19)11,1111,1111,1111,1122k k k k ⨯⎡⎤⎡⎤⎡⎤⎡⎤=++⎣⎦⎣⎦⎣⎦⎣⎦最大半带宽B=[(8-2) +1]×2=14。
有限元法定义:利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近未知量的真实系统。
有限元模型是真实系统理想化的数学抽象。
自由度用于描述一个物理场的响应特征。
节点:空间中的坐标位置,具有一定自由度和存在相互物理作用。
单元:一组节点自由度间相互作用的数值、矩阵描述(称为刚度或系数矩阵)。
单元有线、面或实体以及二维或三维的单元等种类。
有限元模型由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
每个单元的特性是通过一些线性方程式来描述的。
信息是通过单元之间的公共节点传递的。
节点自由度是随连接该节点单元类型变化的。
有限元法的分类:移位法(以节点的位移为基本未知量)、力法(以节点力为基本未知量)、混合法(一部分以节点位移为基本未知量,一部分以节点力为基本未知量)有限元法基本思想:1、将表示结构的连续体离散为若干个子域,单元之间通过其边界上的结点相连接成组合体。
2、用每个单元内所假设的近似函数分片的表示全求解域内待求的未知矢场变量。
每个单元内的近似函数用未知场变量函数在单元各结点上的数值和与其对应的插值函数表示。
由于在连接相邻单元结点上,场变量函数应具有相同的数值,因而将它们用作数值求解的基本未知量,将求解原函数的无穷多自由度问题转换为求解场变量函数结点值的有限自由度问题。
3、通过和原问题数学模型(基本方程、边界条件)等效的变分原理或加权余量法,建立求解基本未知量(场变量函数的结点值)的代数方程或常微分方程组,应用数值方法求解,从而得到问题的解答。
有限元分析问题的主要步骤:建立模型、推导有限元方程列式、求解有限元方程组、数值结果表述。
UG有限元分析第6章
热传导问题是指在不同温度的物体之间,由于温度差引起的热量传递现象。
其基本方程为热传导方程,即Fourier定律。
热传导问题的求解需要确定物体的温度分布以及热通量。
在确定温度分布时,需要考虑边界条件,包括温度边界条件和热通量边界条件。
本章详细介绍了这些基本方程和边界条件,并引入了标量场和标量场描述方法。
针对热传导问题的离散化方法是有限元方法。
有限元方法将物体划分为若干个小单元,并在每个小单元内近似求解。
本章详细介绍了有限元方法的基本思想和步骤。
首先需要建立有限元模型,确定离散化的小单元形状和尺寸。
然后,根据有限元方法的离散化原理,将热传导问题离散化为一个线性代数方程组。
最后,通过求解线性代数方程组,得到物体的温度分布。
在有限元分析的过程中,还需要进行一些计算和处理。
本章详细介绍了有限元分析中常用的计算和处理方法。
其中包括矩阵形式的方程组和有限元的组装方法。
此外,本章还介绍了一些有限元分析的数值方法,如迭代法和加速技术。
最后,本章通过一个具体的案例进行了实际的有限元分析。
案例中考虑了一个简单的热传导问题,通过建立有限元模型、离散化、求解线性代数方程组等步骤,最终得到了物体的温度分布。
总之,UG有限元分析第6章主要介绍了基于有限元方法进行热传导问题求解的原理和方法。
通过本章的学习,读者可以了解到热传导问题的基本方程和边界条件,以及有限元方法的基本思想和步骤。
同时,通过案例的实际操作,读者可以更好地理解和应用有限元分析方法。
有限元法原理
有限元法是一种工程计算方法,主要用于求解连续介质的力学问题。
它的基本原理是将连续介质离散成有限个小单元,然后利用有限元的形状函数对每个小单元进行近似,最终利用这些近似解来求解整个连续介质的力学问题。
有限元法的主要思想是将问题的解表示为一个有限个数的基函数的线性组合。
这些基函数与小单元的形状函数相联系,通过对小单元的形状函数进行合适的选取和调整,可以确保解在小单元内满足边界条件。
然后,通过将所有的小单元的解进行组合,就可以得到整个连续介质的解。
在实际的计算中,有限元法通常分为以下几个步骤:首先,需要根据实际问题确定合适的有限元模型,包括选择适当数量和类型的有限元单元。
然后,需要确定边界条件,即确定整个连续介质的边界约束条件。
接下来,根据小单元的形状函数和基函数,可以建立刚度矩阵和荷载向量。
最后,通过求解线性方程组,可以得到整个连续介质的解。
有限元法具有广泛的应用范围,在工程领域中可以用于求解各种静力学、动力学、热力学、流体力学等问题。
它不仅能够提供精确的解,同时也具有较高的计算效率和灵活性。
因此,有限元法已经成为工程计算领域中一种非常重要的数值分析方法。
一:有限元的基本思想有限元法的基本思想是将连续的求解区域离散为一组有限个、且按一定方式相互联结在一起的单元的组合体。
由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。
通常有限元法都遵循以下基本步骤:物体的离散化:离散化是有限元法的基础,这就是依据结构的实际情况,选择合适的单元形状、类型、数目、大小以及排列方式,将拟分析的物体假想地分成有限个分区或分块的集合体。
假设这些单元在处于它们边界上的若干个离散节点处相互连接,这些节点的位移将是该问题的基本未知参数。
挑选形函数或插值函数:选择一组函数,通常是多项式,最简单的情况是位移的线性函数。
这些函数应当满足一定条件,该条件就是平衡方程,它通常是通过变分原理得到的,可由每个“有限单元”的节点位移唯一地确定该单元中的位移状态。
确定单元的性质:确定单元性质就是对单元的力学性质进行描述。
确定了单元位移后,可以很方便地利用几何方程和物理方程求得单元的应变和应力。
一般用单元的刚度矩阵来描述单元的性质,确定单元节点力与位移的关系。
组成物体的整体方程组:组成物体的整体方程组就是由已知的单元刚度矩阵和单元等效节点载荷列阵集成表示整个物体性质的结构刚度矩阵和结构载荷列阵,从而建立起整个结构己知量-------总节点载荷与整个物体未知量-------总节点位移的关系。
解有限元方程和辅助计算:引入强制边界条件,解方程得到节点位移。
一般整体方程组往往数目庞大,可能是几十个、几百个,以至于成千上万个。
对于这些方程组需要一定的计算数学方法解出其未知量。
然后,根据实际问题进行必要的辅助计算。
完整的有限元的求解过程如下图所示:二:有限元的数学方法从更广泛的观点看,有限元法的数学基础是变分原理。
根据变分原理发展而来的有限元法,在求解微分方程方面得到了广泛的应用。
变分原理是表达物理基础定律的一种普遍形式,其表达课概括如下:给出一个依赖物理状态v 的变量()J v ,同时给出()J v 的容许函数集v ,即一切可能的物理状态,则真是的状态是v 中使()J v 达到极小值的函数。