7.2(估计量的评价标准)
- 格式:ppt
- 大小:362.50 KB
- 文档页数:13
§7.2 点估计的评价标准同一参数可以有几种不同的估计,这时就需要判断采用哪一种估计为好的问题。
另一方面,对于同一个参数,用矩法和极大似然法即使得到的是同一个估计, 也存在衡量这个估计优劣的问题。
估计量的评选标准就是:评价一个估计量“好”与“坏”的标准。
评价一个估计量的好坏, 不能仅仅依据一次试验的结果, 而必须由多次试验结果来衡量. 因为估计量是样本的函数, 是随机变量. 故由不同的观测结果, 就会求得不同的参数估计值. 因此一个好的估计, 应在多次重复试验中体现出其优良性.估计量的评价一般有三条标准:1. 无偏性;2. 有效性;3. 相合性(一致性)一.无偏性估计量是随机变量, 对于不同的样本值会得到不同的估计值. 一个自然的要求是希望估计值在未知参数真值的附近, 不要偏高也不要偏低. 由此引入无偏性标准.定义1 设),,(ˆ1nX X θ是未知参数θ的估计量, 若,)ˆ(θθ=E 则称θˆ为θ的无偏估计量. 若ˆ()E θθ≠称ˆθ为有偏估计量,ˆ()E θθ-并称为估计量 ˆθ的偏差.如果ˆθ是有偏估计量,ˆˆlim (),n E θθθθ→∞=但,则称是的渐近无偏估计量 注: 无偏性是对估计量的一个常见而重要的要求, 其实际意义是指估计量没有系统偏差,只有随机偏差. 在科学技术中, 称θθ-)ˆ(E 为用θˆ估计θ而产生的系统误差.定理1 设12,,n X X X 为取自总体X 的样本,总体X 的均值为μ, 方差为2σ.则(1) 样本均值X 是μ的无偏估计量;(2) 样本方差2S 是2σ的无偏估计量;(3) 样本二阶中心矩2211()ni i B X X n ==-∑是2σ的不是无偏估计量.,是渐近无偏估计量证明:(1)因为 12,,n X X X 独立同分布,且()i E X μ=所以11111()()n n i i i i E X E X E X n n n n μμ==⎡⎤===⋅=∑∑⎢⎥⎣⎦ 故X 是μ的无偏估计量;(2)因2222221111111()2()111n n n n i i i i i i i i S X X X X X nX X nX n n n ====⎡⎤⎛⎫=-=-+=-∑∑ ⎪⎢⎥---⎣⎦⎝⎭∑∑ 注意到22222222()()[()],()()[()],i i i E X D X E X n E X D X E X σμσμ=+=+=+=+于是,有22222222111()()()().11n i i E S E X nE X n n n n n σσμμσ=⎡⎤⎛⎫⎡⎤=-=+-+=∑⎢⎥ ⎪⎢⎥⎣⎦--⎝⎭⎣⎦故样本方差2S 是2σ的无偏估计量; (3)222111()n i i n B X X S n n=-=-=∑ 222211()()n n E B E S n nσσ--==≠ 故2B 是2σ的有偏估计量.2221lim ()lim n n n E B nσσ→∞→∞-== 故2B 是2σ的渐近无偏估计量.二.有效性一个参数θ常有多个无偏估计量,在这些估计量中,自然应选用对θ的偏离程度较小的为好,即一个较好的估计量的方差应该较小.由此引入评选估计量的另一标准—有效性.定义2 设),,(ˆˆ111n X X θθ=和),,(ˆˆ122nX X θθ=都是参数θ的无偏估计量, 若)ˆ()ˆ(21θθD D <,则称1ˆθ较2ˆθ有效. 例1:设123,,X X X 是总体X 的样本,证明11231ˆ (),3X X X μ=++21231ˆ ()2X X X μ=-+33121ˆ ()42X X X μ=++ 都是总体均值()E X 的无偏估计量,并比较哪个更有效.解: 112311ˆE( )[()()()][()()()]()33E X E X E X E X E X E X E X μ=++=++= 212311ˆE( )()()()()22E X E X E X E X μ=-+= 3123111ˆE( )()()()()442E X E X E X E X μ=++= 故1ˆ μ,2ˆ ,μ3ˆ μ都是总体均值()E X 的无偏估计量 112311ˆD( )[()()()]()93D X D X D X D X μ=++= 212313ˆD( )[()()]()()42D X D X D X D X μ=++= 3123113ˆD( )[()()]()()1648D X D X D X D X μ=++= 则132ˆˆˆD( )D( )D( )μμμ<<,故1ˆ μ较2ˆ ,μ3ˆ μ更有效 三.一致性 (相合性)我们不仅希望一个估计量是无偏的, 并且具有较小的方差, 还希望当样本容量无限增大时, 估计量能在某种意义下任意接近未知参数的真值, 由此引入相合性(一致性)的评价标准.定义 3 设),,(ˆˆ1nX X θθ=为未知参数θ的估计量, 若当n →∞时,θˆ依概率收敛于θ, 即对任意0>ε, 有,1}|ˆ{|lim =<-∞→εθθP n 或,0}|ˆ{|lim =≥-∞→εθθP n则称θˆ为θ的一致估计量.例2:证明样本k 阶原点矩11n k k i i A X n ==∑是总体k 阶原点矩)(k X E 的一致估计量. 证明: 样本k 阶原点矩11n k k i i A X n ==∑依概率收敛于总体k 阶原点矩)(k X E 即对任意的0ε>,有111111lim |()lim |()1,n n n k k k k i i i n n i i i P X E X P X E X n n n εε→∞→∞===⎧⎫⎧⎫-<=-<=⎨⎬⎨⎬⎩⎭⎩⎭∑∑∑ 所以k A 是总体)(k X E 的一致估计量.注:1样本方差2S 是总体方差2σ的一致估计量.由于样本k 阶原点矩与样本方差分别作为总体k 阶原点矩与总体方差的估计是无偏的、一致的,因此是较好的估计,2.若12(,,)l g t t t 是连续函数,),,,(ˆ21n X X X θ是ˆ(1,2,)i i l θ=的一致估计量,则12ˆˆˆ(,,)lg θθθ是12(,,)l g θθθ的一致估计量,所以用矩估计法确定的统计量一般是一致估计量.人们还证明了在相当广泛的情况下,极大似然估计量也是一致估计量.。
第四版统计学课后习题答案《统计学》第四版统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
估计量的评选标准估计量是指在缺乏准确数据的情况下,根据一定的方法和经验,对某一现象或数值进行估算的过程。
在实际生活和工作中,我们经常需要对各种各样的数据进行估计,比如市场需求量、产品销售额、人口数量等等。
而估计量的准确性和可靠性对于决策和规划具有重要意义。
因此,对估计量的评选标准也显得尤为重要。
首先,估计量的评选标准应当包括准确性。
准确性是估计量的基本要求,也是最为重要的一个方面。
一个准确的估计量应当尽可能接近真实数值,能够反映出实际情况。
在评选估计量时,需要对比不同估计量的准确度,选择最为接近真实情况的估计量作为最终结果。
其次,估计量的评选标准还应当考虑到可靠性。
可靠性是指估计量的稳定性和一致性,即在不同条件下得到的估计量应当是相近的。
一个可靠的估计量应当具有较小的误差范围,能够在不同情况下保持一致性。
在评选估计量时,需要对其可靠性进行充分的考量,选择稳定性和一致性较高的估计量作为最终结果。
此外,估计量的评选标准还应当考虑到数据来源和方法的科学性和合理性。
一个科学合理的估计量应当基于充分的数据支撑和合理的估算方法,能够经得起推敲和验证。
在评选估计量时,需要对其数据来源和估算方法进行审查,选择数据充分、方法科学的估计量作为最终结果。
最后,估计量的评选标准还应当考虑到应用的实际性和适用性。
一个优秀的估计量应当能够满足实际应用的需求,能够为决策和规划提供有力支持。
在评选估计量时,需要对其实际应用价值进行评估,选择能够最大程度满足实际需求的估计量作为最终结果。
综上所述,估计量的评选标准应当包括准确性、可靠性、数据来源和方法的科学性和合理性,以及应用的实际性和适用性。
只有在综合考量这些方面的因素之后,我们才能够选择出最为合适的估计量,为决策和规划提供可靠的支持。
因此,在进行估计量的评选时,需要全面考量各方面因素,以确保选择出最为优秀的估计量。