点估计的评价标准
- 格式:ppt
- 大小:349.00 KB
- 文档页数:29
第三讲点估计的评价标准副教授主讲教师叶宏在前两讲中我们介绍了两种点估计法,发现了点估计的不唯一性,即对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题:应该选用哪一种估计量?用何标准来评价一个估计量的好坏?常用标准(1) 无偏性(3) 一致性(2) 有效性这一讲我们介绍估计量是随机变量,对于不同的样本值会得到不同的估计值. 我们希望估计值在未知参数真值附近摆动,而它的期望值等于未知参数的真值. 这就导致无偏性这个标准.(1) 无偏性θθ=)ˆ(E 则称为的无偏估计.θˆθ),,(ˆ1n X X θ设是未知参数的估计量,若θ.真值∙∙∙∙∙∙∙∙∙∙∙∙∙∙),,,(21n X X X 是总体X 的样本,证明: 不论X 服从什么分布(但期望存在),是k μ的无偏估计量.证∑∑====n i k i n i k i k X E n X n E A E 11)(1)1()(例设总体X 的k 阶矩)(k k X E =μ存在,因而ni X E k k i ,,2,1)( ==μ由于k k n n μμ=⋅⋅=1∑==n i k i k X n A 11特别地样本二阶矩∑==n i i X n A 1221是总体二阶矩是总体期望E ( X ) 的X 样本均值无偏估计量)(22X E =μ的无偏估计量例设总体X 的期望与方差存在,X 的样本为),,,(21n X X X (1) 不是D ( X )的无偏估计; ∑=-=n i i n X X n S 122)(1(2) 是D ( X ) 的无偏估计. ∑=--=n i i X X n S 122)(11原样本方差样本修正方差2221)(σσ≠-=nn S E n ()22σ=S E 2221lim ()lim n n n n E S nσσ→∞→∞-==是D ( X )的渐进无偏估计2n S无偏估计以方差小者为好, 这就引进了有效性的概念12ˆˆ,θθ一个参数往往有不止一个无偏估计, 若θ都是参数的无偏估计量,我们可以比较的大小来决定谁更优.21)ˆ(θθ-E 和22)ˆ(θθ-E 211)ˆ()ˆ(θθθ-=E D 由于222)ˆ()ˆ(θθθ-=E D (2) 有效性(2) 有效性D ( )< D ( )2ˆθ1ˆθ则称较有效.2ˆθ1ˆθ都是参数的无偏估计量,若有),,(ˆ11n X X θ),,(ˆˆ122n X X θθ==1ˆθ设和θ*1ˆˆ()()D D θθ≤*ˆθ是的任一无偏估计.θ则称为的最小方差无偏估计.θθˆ若321232111254131ˆ)(31ˆX X X X X X ++=++=μμ都是μ的无偏估计量1ˆμ最有效例如X ~ N ( μ,σ2) ,样本是.,,321X X X μμμ==)ˆ()ˆ(21E E 22217225)ˆ(31)ˆ(σμσμ=<=D D 推广i n i i X c ∑==1ˆμ是μ的无偏估计量X X c i ni i 中∑==1ˆμ最有效11n i i c ==∑当时ˆlim ()1n P θθε→∞-<=则称θˆ是参数θ的一致(或相合)估计量.(3) 一致性(相合性)即,0>∀ε一致性估计量仅在样本容量n 足够大时,才显示其优越性.定义设是总体参数θ),,,(ˆˆ21n X X X θθ=θˆ的估计量. 若n →∞时, 依概率收敛于θ,关于一致性的常用结论样本k 阶矩是总体k 阶矩的一致性估计量由大数定律可证明矩法得到的估计量一般为一致估计量为方便鉴别有效性,引进定理: 1lim (),lim ()(,,0)n n nn n n n X X E D θθθθθθ→∞→∞=== 设是未知参数的估计量,若定理 n θθ则是的一个相合估计量.212221~(,),,,1()1n n i i X N X X X S X X n μσσ==--∑ 设总体是的样本则是的一致例估计量.22211()1ni i S X X n σ==--∑是的一致估计量.证明2222(1)(1)1,2(1)n S n S E n D n σσ⎛⎫⎛⎫--=-=- ⎪ ⎪⎝⎭⎝⎭()222lim (),lim 0n n E S D S σ→∞→∞⇒==222(1)~(1)n S n χσ-- ()()42222,1E S D S n σσ=∴=-由卡方分布性质知。
6.2 点估计的评价标准1,总体X U (θ,2θ)是未知参数,又1x ,…..,nx为取自该总体的样本,_x 为样本均值。
(1)证明 θ =23x --是参数θ的无偏估计和相和估计;(2)求θ的最大似然估计,它是无偏估计吗?是相和估计吗? 解 (1)总体X U(θ,2θ),则 2123(),()2nE X Var X θθ==-,从而123()2E x θ=, ()212Var x n θ=于是,E (θ )=_2()3E x =θ,这说明θ =_23x 是参数θ的无偏估计。
进一步,224()091227Var n nθθθ=⨯=→这就证明了θ也是θ的相和估计。
(2)似然函数为(1)()()(2),1()n nL I x x θθθθ=<<<显然()L θ是θ的减函数,且θ的取值范围为()(1)2n xx θ<<,因而θ的最大似然估计为()2n mlexθ=下求mleθ的均值与方差,由于()n x 的密度函数为1()()n f x n x θθ-=-。
1θ=1()n n nx n θ--,(2x θθ<<),故2112(1)021()(),1()n n n nnn E xdx t dt n x n x t θθθθθθθ--+==+=+-⎰⎰2221222482()(1)(2)(1)()n n nE dx n n n x n x xθθθθ-++==++-⎰22()(2)(1)n n Var n x n θ=++,从而()121()()22(1)n n E E n n x θθθ+==→→+∞+ ,这说明mleθ不是θ的无偏估计,而是θ的渐进无偏估计。
又22()1()()0()44(2)(1)n n V Var n n x n θθ==→→+∞++, 因而mleθ是θ的相和估计。
2,设123,,x x x 是取自某总体的容量为3的样本,试证下列统计量都是该总体均值μ的无偏估计,在方差存在时指出哪一个估计的有效性最差?(1) 1123111233x x x μ=++ (2) 2123111333x x x μ=++ (3) 3123112663x x x μ=++ 解 先求三统计量的数学期望,1123111111()()()(),236236E E E E x x x μμμμμ=++=++= 2123111111()()()()333333E E E E x x x μμμμμ=++=++= 3123112112()()()()663663E E E E x x x μμμμμ=++=++= 这说明它们都是总体均值μ的无偏估计,下面求它们的方差,不妨设总体的方差为2σ则222211231111117()()()()4936493618V a r V a r V a r V a r x x x μσσσσ=++=++=222221231111111()()()()9999993Var Var Var Var x x x μσσσσ=++=++=222231231141141()()()()36369363692Var Var Var Var x x x μσσσσ=++=++= 不难看出(1,)(,)L M x L M x += 213()()()Var Var Var μμμ<<。
6.2点估计的评价标注我们已经看到,点估计有各种不同的求法,为了在不同点估计间进行比较选择,就必须对各种点估计的好坏给出评价标准.数理统计中给出了众多的估计量评价标准,对同一估计量实用不同的评价标准可能会得到完全不同的结论,因此在评价某一个估计好坏时首先要说明是在哪一个标准下,否则所论好坏则毫无意义.但不管怎么说,有一个基本标准时所有的估计都应该满足的,它是衡量一个估计是否可行的必要条件,这就是估计的相合性,我们就从相合性开始。
6.2.1 相合性我们知道,点估计是一个统计量,因此它是一个随机变量,在样本量一定的条件下,我们不可能要求它完全等同于参数的真实取值。
但如果我们有足够的观测值,根据格里文科定理,随着样本量的不断增大,经验分布函数逼近真实分布函数,因此完全可以要求估计量随着样本量的不断增大而逼近参数真值,这就是相合性,严格定义如下:定义6.2.1 设θ∈Θ为未知参数,()12,,,n n n x x x θθ∧∧= 是θ的一个估计量,n 是样本容量,若对任何一个0ε>,有()ˆlim 0nn P θθε→∞->= 则称ˆnθ为参数θ的相合估计。
相合性被认为是对估计的一个最基本的要求,如果一个估计量,在样本量不断增大时,它都不能把被估参数估计到任意指定的精度,那么这个估计值是很值得怀疑的。
通常,不满足相合性要求的估计一般不予考虑。
证明估计的相合性一般可应用大数定律或直接由定义来证。
若把依赖于样本量n 的估计量ˆn θ看作一个随机变量序列,相合性就是ˆnθ依概率收敛于θ,所以证明估计的相合性可应用依概率收敛的性质以及各种大数定律。
例6.2.1 设12,,x x 是来自正态总体()2,N μσ的样本,则有辛钦大数定律及依概率收敛的性质知:x 是μ的相合估计;*2s 是2σ相合估计;2s 也是2σ的相合估计。
由此可见参数的相合估计不止一个。
在判断估计的相合性时下述两个定理是很有用的。
判断点估计优良的三个标准
大家好,我是本文的主要编写者。
在本文中,我将讨论“判断点估计优良的三个标准”的主题。
首先,对于点估计来说,准确度是最重要的标准。
如果把点估计看作一种量化投资工具,那么它就像一把可以帮助投资者发现适合投资机会的宝剑,靠准确度来控制投资产品的出入。
很明显,如果点估计的准确度高,可以有效的帮助投资者进行投资,节约时间,降低损失,获得更多收益。
因此,准确性是判断点估计优良的首要标准。
其次,可用性是一个重要的标准。
可用性的核心是指点估计的易用性和易于理解性,即投资者在使用时,能够轻松上手,快速理解点估计,从而快速实现投资目标。
如果点估计不可用,不管其他性能有多出色,都无法实现投资目标,因此可用性也是判断点估计优良的重要标准。
最后,安全性也是一个重要的判断标准。
目前,点估计在投资过程中扮演着重要的角色,许多投资者在投资时都会使用点估计;但是,由于现代社会网络技术的发展,越来越多的人从事网络活动,黑客也利用这些技术对系统进行攻击,如果点估计系统存在安全漏洞,将面临严重的安全风险,无法抵御网络突发事件。
因此,安全性也是判断点估计优良的重要标准。
通过以上的分析,我们可以将判断点估计优良的三个标准总结为:准确度、可用性和安全性。
当点估计具备这三个标准时,则可以认定它是优良的。
本文就以“判断点估计优良的三个标准”为主题,讨论了准确性、可用性和安全性三个重要标准,以此作为判断点估计优良的参考标准,希望对投资者及相关从业者有所帮助。